1

DAV UNIVERSITY, JALANDHAR

FACULTY OF AGRICULTURAL SCIENCES
AND
TECHNOLOGY

COURSE CURRICULUM

FOR

B.Sc. AGRICULTURE (HONOURS)

(4 Years Course)

1st to 8th SEMESTER

Examinations 2014–2015 Session

Syllabi Applicable For Admissions in 2014
1. Mode of Admission: Entrance examination for seats filled by ICAR. DAVU may follow entrance examination or merit at 10+2 or a combination.

2. Reservation of seats: Reservation of seats shall be governed by the rules of State government.

3. Semester Duration: The minimum duration of 110 working days, consisting of 95 instructional days and 15 examination days.

4. Credit Definition: One credit is defined as one-hour lecture/2 hours lab/3 hours field work per week.

5. Attendance

 • 75 percent
 • Relaxation in minimum attendance requirement should be given only in the case of indoor hospitalization.

6. Maximum Permissible Course Workload

 27 credits per semester

7. Course Curriculum and minimum credits requirement

 • The minimum credit requirement for the graduate degree should be 160 credits excluding non-credit courses for language, physical education/NCC/NSS
<table>
<thead>
<tr>
<th>S.No</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGR 111</td>
<td>Principles of Agronomy and Agricultural Meteorology</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>AGR 112</td>
<td>Principles of Genetics</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>AGR 113</td>
<td>Introduction to Soil Science</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>AGR 114</td>
<td>Fundamentals of soil water conservation and engineering</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>AGR 115</td>
<td>Plant Pathogens and Principles of Plant Pathology</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>AGR 117</td>
<td>Introductory Agriculture (Ancient, Heritage, Agriculture, Scenario and gender equity in Agriculture)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>ENG 153</td>
<td>Comprehension and Communication Skills in English</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>ENG 154</td>
<td>Comprehension and Communication Skills in English Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>BOT 155*</td>
<td>General Botany</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>MTH170</td>
<td>Basic Mathematics**</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>SGS 102</td>
<td>General Knowledge and Current Affairs</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>SGS104</td>
<td>Stenography</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type & Subjective Type Test
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type & Subjective Type Test
F: Practical Exam: Based on Continuous Assessment and Exam.

L: Lectures T: Tutorial P: Practical Cr: Credits

* The students with PCM in 10 +2 has to register General Botany and General Zoology

** The students with PCB in 10 +2 has to register Basic Mathematics.

The students with both PCMB has the option to opt for any of these courses.

Note1: BOT 155, SGS 102, SGS104 and MTH 170 are Non-credit courses so credits and weightage is not added to core courses.

Note2: Instead of Subjective type tests, one can follow MCQ type tests on OMR sheets in the End Term Exam.

BOT 155 comprises of Theory course BOT 155 and Laboratory course BOT 156
SGS 104 comprises of Theory course SGS 104 and Laboratory course SGS 105
Scheme of Courses B.Sc Agriculture (Hons) (Program ID-1)
B.Sc. Agriculture (Hons)
Semester 2

<table>
<thead>
<tr>
<th>S.No</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGR 121</td>
<td>Introductory Nematology</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>ECO 151</td>
<td>Statistics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AGR 122</td>
<td>Water management including micro irrigation</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AGR 123</td>
<td>Principles of Seed Technology</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AGR 124</td>
<td>Principles of Agril. Economics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AGR 125</td>
<td>Dimensions of Agril. Extension</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AGR 126</td>
<td>Agricultural Microbiology</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CSA 155</td>
<td>Introduction to computer application</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AGR 127</td>
<td>Soil Chemistry, Soil Fertility and Nutrient</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ZOO 152*</td>
<td>General Zoology</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type & Subjective Type Test
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type & Subjective Type Test
F: Practical Exam: Based on Continuous Assessment and Exam.
E: Total Weightage
L: Lectures T: Tutorial P: Practical Cr: Credits

* The students with PCM in 10 +2 has to register General Botany and General Zoology

ZOO 152 and ZOO 153 are Non-credit courses so credits and weightage is not added to core courses.

This batch has read AGR 101 which comprises of Principles of Agronomy and Introductory Agriculture (Ancient, Heritage, Agriculture, Scenario and gender equity in Agriculture) which are otherwise AGR 111 and AGR 117 under normal circumstances.
CSA 155 comprises of Theory course CSA 155 and Laboratory course CSA 156
ZOO 152 comprises of Theory course ZOO 152 and Laboratory course ZOO 153

Note: Instead of Subjective type tests, one can follow MCQ type tests on OMR sheets in the End Term Exam.
<table>
<thead>
<tr>
<th>S.No</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGR 211</td>
<td>Field Crops-I (Kharif)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>AGR 212</td>
<td>Principles of Plant Breeding</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>AGR 213</td>
<td>Insect Morphology and Systematics</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>AEC 211</td>
<td>Agricultural Finance and Co-operation</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>AGR 214</td>
<td>Farm power and machinery</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>AGR 215</td>
<td>Production Technology of Vegetables & Flowers</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>AGR 216</td>
<td>Livestock Production and Management</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>AGR 217</td>
<td>Organic Farming</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>AGR 218</td>
<td>Crop Physiology</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>625</td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type & Subjective Type Test
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type & Subjective Type Test
F: Practical Exam: Based on Continuous Assessment and Exam.
E: Total Weightage
L: Lectures T: Tutorial P: Practical Cr: Credits

Note: Instead of Subjective type tests, one can follow MCQ type tests on OMR sheets in the End Term Exam.
<table>
<thead>
<tr>
<th>S.No</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGR 221</td>
<td>Field crops-II (Rabi)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>AGR 222</td>
<td>Manures, Fertilizers and Agrochemicals</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>AGR 223</td>
<td>Insect Ecology & Integrated pest management including beneficial insects</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>AEC 221</td>
<td>Agricultural marketing, Trade and Prices</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>AGR 224</td>
<td>Protected cultivation and Post-harvest Technology</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>AGR 225</td>
<td>Diseases of Field Crops and their management</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>AGR 226</td>
<td>Production technology of spices, Aromatics Medicinal and Plantation crops</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>SGS 101*</td>
<td>Human Values and Ethics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>AGR 228</td>
<td>Production technology of fruit crops</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>7</td>
<td>8</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>575</td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type & Subjective Type Test
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type & Subjective Type Test
F: Practical Exam: Based on Continuous Assessment and Exam.
F: Practical Exam: Based on Continuous Assessment and Exam.
E: Total Weightage
L: Lectures T: Tutorial P: Practical Cr: Credits

Educational Tours: One educational tour of 2 Credit hours (0+2 NC)

*SGS 101 is Non credit Course

Note: Instead of Subjective type tests, one can follow MCQ type tests on OMR sheets in the End Term Exam.
Scheme of Courses B.Sc Agriculture (Hons) (Program ID-1)

B.Sc. Agriculture (Hons)

Semester 5

<table>
<thead>
<tr>
<th>S.No</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGR 311</td>
<td>Farming Systems and Sustainable Agriculture</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>AGR 312</td>
<td>Principles of Plant Biotechnology</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>AGR 313</td>
<td>Crop Pests and stored grain pests and their management</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>AGR 314</td>
<td>Fundamentals of Agri Business Management (Including product development, Appraisal and Monitoring)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>AGR 315</td>
<td>Practical crop production I (Cereals, Pulses and Fodder crops)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>AGR 316</td>
<td>Fundamentals of Rural Sociology and Educational Psychology</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>AGR 317</td>
<td>Post-harvest management and value addition of fruits and vegetables</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>AGR 318</td>
<td>Disease of Horticultural crops and their management</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>AGR 319</td>
<td>Breeding of Field / Horticultural crops</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>7</td>
<td>11</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type & Subjective Type Test
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type & Subjective Type Test
F: Practical Exam: Based on Continuous Assessment and Exam.
E: Total Weightage

L: Lectures T: Tutorial P: Practical Cr: Credits

Note: Instead of Subjective type tests, one can follow MCQ type tests on OMR sheets in the End Term Exam.
<table>
<thead>
<tr>
<th>S.No</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGR 321</td>
<td>Production Economics & Farm management</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>AGR 322</td>
<td>Extension Methodologies for Transfer of Agricultural Technology</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Biochemistry</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>AGR 323</td>
<td>Entrepreneurship Development</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>AGR 324</td>
<td>Practical crop production II (oil seeds & commercial crops)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>AGR 325</td>
<td>Weed management</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>AGR 326</td>
<td>Renewable Energy</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>EVS 151</td>
<td>Environmental Science</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>AGR 327</td>
<td>Breeding of Field / Horticultural crops</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>EVS 103*</td>
<td>Road Safety and Legal Awareness</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>15</td>
<td>7</td>
<td>9</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>575</td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type & Subjective Type Test
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type & Subjective Type Test
F: Practical Exam: Based on Continuous Assessment and Exam.
E: Total Weightage

L: Lectures T: Tutorial P: Practical Cr: Credits

Educational Tours: One educational tour of 2 Credit hours (0+2 NC)

*EVS 103 is Non Credit Course.

Note: Instead of Subjective type tests, one can follow MCQ type tests on OMR sheets in the End Term Exam.
Rural Agricultural Work Experience (RAWE): Under this programme two models are suggested and DAVU could choose any one depending upon need assessment.

<table>
<thead>
<tr>
<th>Sr.</th>
<th>RAWE Model I</th>
<th>Duration (Week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orientation</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Village attachment</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Research Station / KVK / DAATT Center activities and attachment to the Agro-based industries</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Project report preparation and examination</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr.</th>
<th>RAWE Model II</th>
<th>Duration (Week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orientation</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Village attachment</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Agri-clinics / Plant Health Clinics / Experiential leaning / Industrial Attachment</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Project report preparation and examination</td>
<td>2</td>
</tr>
</tbody>
</table>

RAWEP Attachment with Agro-based Industries: During RAWE Programme the students will undergo internship in any one of the following industries / companies / institutes for a period of twelve weeks (the list is only suggestive and need based / location specific industries may be included).

- Seed industries / companies
- Fertilizer industries
- Pesticides industries
- Biotechnological industries (Tissue Culture labs)
- Bio pesticides industries
- Commercial nurseries / landscaping units
• Sericulture units
• Food processing units
• Agricultural finance Institutions / Banks / Credit Societies etc.
• Non – Governmental organizations

Evaluation of RAWE Programme
Attendance: Minimum attendance for this programme - 85%.
Records: Students shall complete the record work based on daily field observation notebooks and weekly diaries maintained by them.

Evaluation Procedure: The students shall be evaluated by Course Coordinator as well as by a designated evaluation Committee.

Note: i) The duration of the RAWE is 24 weeks with a weightage of 24 credits; ii) Whenever facilities are not available for industrial training and / or agri-clinics, the duration of vocational training may be increased to that extent; iii) RAWE can be implemented either in the VII or VIII semester as per convenience.
Scheme of Courses B.Sc Agriculture (Hons) (Program ID-1)
B.Sc. Agriculture (Hons)

Semester 8

| Courses for Experiential Learning | 20 |

Courses for Experiential Learning: A student has to register minimum of 20 credits with major load in one area of electives and rest from among one / two areas of electives in the eighth semester.

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Title of the module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Crop Production</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Seed Production Technology</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>2</td>
<td>Remote Sensing GIS and Land use Planning</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>3</td>
<td>Integrated Farming System</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>4</td>
<td>Water Management (Watershed Micro-irrigation Problematic Water)</td>
<td>4(1+3)</td>
</tr>
<tr>
<td>5</td>
<td>Soil Management (conservation Problematic soil, Soil quality)</td>
<td>4(1+3)</td>
</tr>
<tr>
<td>II</td>
<td>Crop Protection</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>IPM and IDM (Pest Disease Scouting)</td>
<td>4(2+2)</td>
</tr>
<tr>
<td>2</td>
<td>Management of Post-Harvest insect- pests and diseases</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>3</td>
<td>Non-insect pests and their Management</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>4</td>
<td>Apiculture</td>
<td>2(0+2)</td>
</tr>
<tr>
<td>5</td>
<td>Mushroom (cultivation)</td>
<td>2(0+2)</td>
</tr>
<tr>
<td>6</td>
<td>Bio-control agencies and bio-pesticide (mass multiplication and uses)</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>7</td>
<td>Pesticides and Plant Protection equipment</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>8</td>
<td>Disease of Horticultural crops and their management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>III</td>
<td>Horticulture</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commercial Vegetable Production</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>2</td>
<td>Commercial Floriculture</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>3</td>
<td>Commercial Fruit Production</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>4</td>
<td>Nursery management of horticultural crops</td>
<td>4(1+3)</td>
</tr>
<tr>
<td>5</td>
<td>Protected cultivation of horticultural crops and Seed production of vegetables and flowers</td>
<td>4(1+3)</td>
</tr>
<tr>
<td>6</td>
<td>Processing and value addition of horticultural crops</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>IV</td>
<td>Post Harvest Technology and Value addition</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Post harvest Technology of Horticultural crops</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>2</td>
<td>Unit operation for quality value addition processing and development of new products</td>
<td>4(1+3)</td>
</tr>
<tr>
<td>3</td>
<td>Post harvest technology of spices, plantation crops, medicinal and aromatic crops</td>
<td>4(1+3)</td>
</tr>
<tr>
<td>4</td>
<td>Integrated storage management of fruits, flowers and vegetables</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>5</td>
<td>Post harvest handling of cut flowers and dry flowers</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>6</td>
<td>Processing of cereals, pulses and oilseed crops including biodiesel</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>7</td>
<td>Dairy Products Technology</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>V</td>
<td>Agri-Business Management</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Information & Communication Management</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>2</td>
<td>Management of Agro-based industry</td>
<td>4 (1+3)</td>
</tr>
<tr>
<td>3</td>
<td>Marketing Management (Agricultural Import-Export Policy of Govt. of India & Business Laws)</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>4</td>
<td>Financial Management of Agri-Business</td>
<td>4 (1+3)</td>
</tr>
<tr>
<td>5</td>
<td>Natural Resources Economics and Management</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td></td>
<td>Project formulation, Evaluation and Monitoring</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>VI</td>
<td>Social Sciences</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Agricultural Journalism</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>2</td>
<td>Visuals and Graphic Communications</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>3</td>
<td>Cyber Extension</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td>4</td>
<td>Behavioral Skills</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>5</td>
<td>Livestock, Poultry and Fish Marketing</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>6</td>
<td>Farm Planning and Budgeting</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>7</td>
<td>Government Policies and Programmes Related to Agriculture</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>8</td>
<td>Milk Processing</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>VII</td>
<td>Basic Sciences</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Molecular Breeding</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>2</td>
<td>Plant tissue culture</td>
<td>4 (1+3)</td>
</tr>
<tr>
<td>3</td>
<td>Recombinant DNA Technology</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>4</td>
<td>Bio informatics</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>5</td>
<td>Microbial & Environmental Technology</td>
<td>4 (1+3)</td>
</tr>
<tr>
<td>6</td>
<td>Molecular Diagnostics</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>VIII</td>
<td>Commercial Agriculture</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commercial floriculture</td>
<td>3 (0+3)</td>
</tr>
<tr>
<td>2</td>
<td>Commercial fruit production</td>
<td>3 (0+3)</td>
</tr>
<tr>
<td>3</td>
<td>Nursery management of horticultural crops</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>4</td>
<td>Cultivation of commercially important medicinal & aromatic plants</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td>5</td>
<td>Commercial spices production</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>6</td>
<td>Production technology of economic forest plants</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>7</td>
<td>Commercial seed production technologies</td>
<td>3 (1+2)</td>
</tr>
</tbody>
</table>
SYLLABUS

1. AGRONOMY

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 111</td>
<td>Principles of Agronomy and Agricultural Meteorology</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Study of tillage implements; Practice of ploughing; Practice of puddling; Study of seeding equipments and introduction of remote sensing. Different methods of sowing: Study of manures, fertilizers and green manure crops / seeds (including calculations); Study of intercultivation implements and practice; Practice of methods of fertilizer applications; Participation in ongoing field operations. Site selection for Agromet observatory; Measurement of temperature; Measurement of rainfall; Measurement of evaporation (atmospheric/soil); Measurement of atmospheric pressure; Measurement of sunshine duration and solar radiation; Measurement of wind direction and speed and relative humidity; Study of weather forecasting and synoptic charts.

Suggested Readings:-

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 117</td>
<td>Introductory Agriculture (Ancient, Heritage, Agriculture, Scenario and gender equity in Agriculture)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Art, Science and business of crop production, Basic elements of crop production; Factors affecting crop production; History of Agricultural Development; Ancient India Agriculture in
Civilization Era, Chronological Agricultural Technology development in India. Indian Agriculture, balance sheet, liabilities; Assets and Contrasting trends (DATA), Agrl. growth, contrasting food chains, Diversity in physiography, Soil groups, marine, livestock and water; Liabilities: Soil factors, weather factors, Economic ecology, dry and irrigation agriculture, Farming Systems approach, value addition, requirements in new technology; Women in Agriculture: multifaceted roles and tasks, work stress factors, Nutritional and rural life standards, role in house hold design making, drudgery reduction for farm women, women friendly agricultural technology; Empowerment of women; Group dynamics for farm women, rural women; The nucleus of Agricultural Extension and Training.

Suggested Readings

ICAR. 2006. Hand Book of Agriculture. ICAR. New Delhi

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 211</td>
<td>Field Crops-I (Kharif)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield of kharif crops.
Cereals – rice, maize, sorghum, pearl millet and minor millets;
Pulses : pigeonpea, mungbean and urdbean;
Oilseeds: groundnut, sesame and soybean;
Fibre crops: cotton, jute and sunhemp; and
Forage crops: sorghum, maize, cowpea, cluster bean and napier.

Practical: Rice nursery preparation and transplanting/seed bed preparation and sowing of Kharif crops; Calculations on seed rate; Sowing of soybean, pigeonpea, mungbean, maize, groundnut, and cotton; Effect of seed size on germination and seedling vigour of soybean/groundnut; Effect of sowing depth on germination of soybean; Identification of weeds in rice, maize and soybean fields and study of weed control experiments in these crops; Top dressing of nitrogen in maize and rice and study of fertilizer experiments on rice, maize, sorghum and millets; Study of yield contributing characters, yield calculations, harvesting and yield estimation of above crops; Study of crop varieties and important agronomic experiments; Study of forage experiments.

Suggested Readings:
Weeds: Introduction, harmful and beneficial effects, classification, propagation and dissemination; Weeds biology and ecology, crop weed association, crop weed competition and allelopathy. Concepts of weed prevention, control and eradication; Methods of weed control: physical, cultural, chemical and biological methods. Integrated weed management; Herbicides: advantages and limitation of herbicide usage in India; Herbicide classification, formulations, methods of application; Introduction to Adjuvants and their use in herbicides; Introduction to selectivity of herbicides; Compatibility of herbicides with other agro chemicals; Weed management in major field and horticultural crops, shift of weed flora in cropping systems, aquatic and problematic weeds and their control.

Practical: Identification of weeds; Survey of weeds in crop fields and other habitats; Preparation of herbarium of weeds; Calculations on weed control efficiency and weed index; Herbicide label information; Computation of herbicide doses; Study of herbicide application equipment and calibration; Demonstration of methods of herbicide application; Preparation of list of commonly available herbicides; Study of phytotoxicity symptoms of herbicides in different crops; Biology of nut sedge, Bermuda grass, Parthenium and Cynodon; Economics of weed control practices; Tours and visits of problem areas.

Suggested Readings:

Irrigation: definition and objectives, water resources and irrigation development in India; Soil plant water relationships; Methods of soil moisture estimation, evapotranspiration and crop water requirement; effective rainfall, scheduling of irrigation; Methods of irrigation: surface, sprinkler and drip irrigation; Irrigation efficiency and water use efficiency, conjunctive use of water, irrigation water quality and its management. Water management of different crops (rice, wheat, maize, groundnut, sugarcane, mango, banana and tomato); Agricultural drainage.

Practical: Determination of bulk density by field method; Determination of soil moisture content by gravimetric method, tensiometer, electrical resistance block and neutron moisture meter; Determination of field capacity by field method; Determination of permanent wilting point; Measurement of irrigation water through flumes and weirs; Calculation of irrigation water requirement (Problems); Determination of infiltration rate; Demonstration of furrow
method of irrigation; Demonstration of check basin and basin method of irrigation; Visit to farmers field and cost estimation of drip irrigation system; Demonstration of filter cleaning, fertigation, injection and flushing of laterals; Erection and operation of sprinkler irrigation system; Measurement of emitter discharge rate, wetted diameter and calculation of emitter discharge variability; Determination of EC, pH, carbonates, bicarbonates, Ca++ and Mg++ in irrigation water (quality parameters)

Suggested Readings:
Iraeslon, Irrigation Principles, John Willey & Sons New Delhi 1996.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 221</td>
<td>Field crops-II (Rabi)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield of rabi crops; Cereals: wheat, barley; Pulses: chickpea, lentil, peas, french bean; Oilseeds: rapeseed and mustard, sunflower, safflower and linseed; Sugar crops: sugarcane and sugarbeet, Medicinal and aromatic crops such as mentha, lemon grass, citronella, palma rosa, isabgol and posta; Commercial crops: potato and tobacco, Forage crops: berseem, lucerne and oat.

Practical: Seed bed preparation and sowing of wheat, sugarcane and sunflower; Calculations on seed rate; Top dressing of nitrogen in wheat and study of fertilizer experiments on wheat and mustard; Identification of weeds in wheat and grain legumes, application of herbicide and study of weed control experiments; Morphological characteristics of wheat, sugarcane, chickpea and mustard; Yield contributing characters of wheat; Yield and quality analysis of sugarcane; Crop distribution in the state and the region; Important agronomic experiments of rabi crops and visit to research stations related to rabi crops.

Suggested Readings:-

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 311</td>
<td>Farming Systems and Sustainable Agriculture</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Sustainable agriculture: Introduction, definition, goal and current concepts, factors affecting ecological balance and ameliorative measures; Land degradation and conservators of natural resources, LEIA & HEIA; Irrigation problems, waste lands and their development; Organic farming: definition, principles and components; Farming systems: definition, principles and components, IFS models for wetland, irrigated dryland and dryland situations.

Practical: Preparation of cropping scheme for irrigated situations; Preparation of cropping scheme for dryland situations; Study of existing farming systems in nearby villages;
Preparation of integrated farming system model for wetlands; Preparation of integrated farming system model for drylands; Preparation of enriched Farm Yard Manure; Preparation of Vermicompost; Visit to urban waste recycling unit; Study of profitable utilization of agricultural wastes; Visit to poultry and dairy units to study resource allocation, utilization and economics; Visit to an organic farm to study various components and utilization; Study of degraded lands.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 315</td>
<td>Practical crop production I (Cereals, Pulses and Fodder crops)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Crop planning, raising field crops in multiple cropping systems: Field preparation, seed treatment, nursery raising, sowing, nutrient management, water management, weed management and management of insect pests and diseases of crops harvesting, threshing, drying, winnowing, storage and marketing of produce. Preparation of balance sheet including cost of cultivation, net returns per student as well as per team of a group of students.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 324</td>
<td>Practical crop production II (oil seeds & commercial crops)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Crop planning, raising field crops in multiple cropping systems: Field preparation, seed treatment, nursery raising, sowing, nutrient management, water management, weed management and management of insect-pests and diseases of crops harvesting, threshing, drying, winnowing, storage and marketing of produce. Preparation of balance sheet including cost of cultivation, net returns per student as well as per team of a group of students.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 217</td>
<td>Organic Farming</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Introduction, concept, relevance in present context; Organic production requirements; Biological intensive nutrient management-organic manures, vermicomposting, green manuring, recycling of organic residues, biofertilizers; Soil improvement and amendments; Integrated diseases and pest management – use of biocontrol agents, biopesticides pheromones, trap crops, bird perches; Weed management; Quality considerations, certification, labeling and accreditation processors, marketing, exports.

Practical: Raising of vegetable crops organically through nutrient, diseases and pest management; vermicomposting; vegetable and ornamental nursery raising; macro quality analysis, grading, packaging, post-harvest management.

Suggested Readings:
GENETICS AND PLANT BREEDING

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 112</td>
<td>Principles of Genetics</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Mendel’s laws of inheritance and exceptions to the laws; Types of gene action, Multiple alleles, Pleiotropism, Penetrance and expressivity; Quantitative traits, Qualitative traits and differences between them; Multiple factor hypothesis; Cytoplasmic inheritance, it’s characteristic features and difference between chromosomal and cytoplasmic inheritance; Mutation and it’s characteristic features; Methods of inducing mutations and C I B technique. Gene expression and differential gene activation; Lac operon and Fine structure of Gene; Ultra structure of cell and cell organelles and their functions; Study of chromosome structure, morphology, number and types, Karyotype and Idiogram; Mitosis and meiosis, their significance and differences between them; DNA and it’s structure, function, types, modes of replication and repair. RNA and its structure, function and types; Transcription, Translation, Genetic code and outline of protein synthesis; Crossing over and factors affecting it; Mechanism of crossing over and Cytological proof of crossing over; Linkage, Types of linkage and estimation of linkage; Numerical chromosomal aberrations (Polyploidy) and evolution of different crop species like Cotton, Wheat, Tobacco, Triticale and Brassicas; Structural chromosomal aberrations.

Practical: Microscopy (Light microscopes and electron microscopes; Preparation and use of fixatives and stains for light microscopy; Preparation of micro slides and identification of various stages of mitosis; Preparation of micro slides and identification of various stages of meiosis; Preparation of micro slides and identification of various stages of meiosis; Preparation of micro slides and identification of various stages of meiosis; Monohybrid ratio and its modifications; Dihybrid ratio and its modifications; Trihybrid ratio; Chi-square analysis and Interaction of factors; Epistatic factors, Supplementary factors and Duplicate factors; Complementary factors, Additive factors and Inhibitory factors; Linkage – Two point test cross; Linkage – Three point test cross; Induction of polyploidy using colchicines; Induction of chromosomal aberrations using chemicals.

Suggested Readings:
Introduction to Seed Production, Importance of Seed Production, Seed policy, Seed demand forecasting and planning for certified, foundation and breeder seed production, Deterioration of crop varieties, Factors affecting deterioration and their control; Maintenance of genetic purity during seed production, Seed quality; Definition, Characters of good quality seed, Different classes of seed, Production of nucleus & breeder’s seed, Maintenance and multiplication of pre-release and newly released varieties in self and cross-pollinated crops; Seed Production, Foundation and certified seed production in maize (varieties, hybrids, synthetics and composites); Foundation and certified seed production of rice (varieties & hybrids); Foundation and certified seed production of sorghum and bajra (varieties, hybrids, synthetics and composites); Foundation and certified seed production of cotton and sunflower (varieties and hybrids); Foundation and certified seed production of castor (varieties and hybrids); Foundation and certified seed production of tomato and brinjal (varieties and hybrids); Foundation and certified seed production of chillies and bhendi (varieties and hybrids); Foundation and certified seed production of onion, bottle gourd and ridge gourd (varieties and hybrids); Seed certification, phases of certification, procedure for seed certification, field inspection and field counts etc.; Seed Act and Seed Act enforcement, Central Seed Committee, Central Seed Certification Board, State Seed Certification Agency, Central and State Seed Testing Laboratories; Duties and powers of seed inspectors, offences and penalties; Seed control order: Seed Control Order 1983, Seed Act 2000 and other issues related to seed quality regulation. Intellectual Property Rights, Patenting, WTO, Plant Breeders Rights, Varietal Identification through Grow–Out Test and Electrophoresis; Seed Drying: Forced air seed drying, principle, properties of air and their effect on seed drying, moisture equilibrium between seed and air, Heated air drying, building requirements, types of air distribution systems for seed drying, selection of crop dryers and systems of heated air drying, recommended temperature and depth of the seeds, management of seed drying, Planning and layout of seed processing plant; Establishment of seed processing plant. Seed processing; air screen machine and its working principle, different upgrading equipments and their use, Establishing a seed testing laboratory. Seed testing procedures for quality assessment, Seed treatment, Importance of seed treatment, types of seed treatment, equipment used for seed treatment (Slurry and Mist–O–matic treater), Seed packing and seed storage, stages of seed storage, factors affecting seed longevity during storage and conditions required for good storage. General principles of seed storage, constructional features for good seed warehouse, measures for pest and disease control, temperature control, Seed marketing, marketing structure, marketing organization, sales generation activities, promotional media, pricing policy; Factors affecting seed marketing.

Practical: Seed sampling principles and procedures; Physical Purity analysis of Field and Horticultural crops; Germination analysis of Field and Horticultural crops; Moisture tests of Field and Horticultural crops; Viability test of Field and Horticultural crops; Seed health test of Field and Horticultural crops; Vigour tests of Field and Horticultural crops; Seed dormancy and breaking methods; Grow out tests and electrophoresis for varietal identification; Visit to Seed production plots of Maize, Sunflower, Bajra, Rice, Sorghum, Cotton, Chillies and Vegetables. (Add or delete crops of the region); Visit to Seed processing plants; Visit to Seed testing laboratories; Visit to Grow out testing farms; Visit to Hybrid Seed Production farms; Varietal identification in seed production plots; Planting ratios, isolation distance, roguing etc
Suggested Readings:

Suggested Readings:

Paper Code	Course Title	L	T	P	Cr
AGR 212 | Principles of Plant Breeding | 2 | 1 | 1 | 3

Classification of plants, Botanical description, Floral biology, Emasculating and Pollination techniques in cereals, millets, pulses, oil seeds, fibers, plantation crops etc. Aims and objectives of Plant Breeding; Modes of reproduction, Sexual, Asexual, Apospory and their classification; Significance in plant breeding; Modes of pollination, genetic consequences, differences between self and cross pollinated crops; Methods of breeding – introduction and acclimatization. Selection, Mass selection Johannson’s pure line theory, genetic basis, pure line selection; Hybridization, Aims and objectives, types of hybridization; Methods of handling of segregating generations, pedigree method, bulk method, back cross method and various modified methods; Incompatibility and male sterility and their utilization in crop improvement; Heterosis, inbreeding depression, various theories of Heterosis, exploitation of hybrid vigour development of inbred lines, single cross and double cross hybrids; Population improvement programmes, recurrent selection, synthetics and composites; Methods of breeding for vegetatively propagated crops; Clonal selection; Mutation breeding; Ploidy breeding; Wide hybridization, significance in crop improvement.

Practical: Botanical description and floral biology; Study of megasporogenesis and microsporogenesis; Fertilization and life cycle of an angiospermic plant; Plant Breeder’s kit; Hybridization techniques and precautions to be taken; Floral morphology, selfing, emasculating and crossing techniques; Study of male sterility and incompatibility in field plots; Rice and Sorghum; Maize and Wheat; Bajra and ragi; Sugarcane and coconut; Groundnut, Castor, Safflower and Sesamum; Redgram, Bengalgram and Greengram; Soybean and blackgram; Chillies, Brinjal and Tomato; Bhendi, Onion, Bottle gourd and Ridge gourd; Cotton and Mesta; Jute and Sunhemp

Suggested Readings:

Paper Code	Course Title	L	T	P	Cr
AGR 312 | Principles of Plant Biotechnology | 2 | 0 | 1 | 3

Concepts of Plant Biotechnology: History of Plant Tissue Culture and Plant Genetic Engineering; Scope and importance in Crop Improvement: Totipotency and Morphogenesis, Nutritional requirements of in-vitro cultures; Techniques of In-vitro cultures, Micro propagation, Anther culture, Pollen culture, Ovule culture, Embryo culture, Test tube fertilization, Endosperm culture, Factors affecting above in-vitro culture; Applications and Achievements; Somaclonal variation, Types, Reasons: Somatic embryogenesis and synthetic seed production technology; Protoplast isolation, Culture, Manipulation and Fusion; Products of somatic hybrids and cybrids, Applications in crop improvement. Genetic engineering;

Practical: Requirements for Plant Tissue Culture Laboratory; Techniques in Plant Tissue Culture; Media components and preparations; Sterilization techniques and Inoculation of various explants; Aseptic manipulation of various explants; Callus induction and Plant Regeneration; Micro propagation of important crops; Anther, Embryo and Endosperm culture; Hardening / Acclimatization of regenerated plants; Somatic embryogenesis and synthetic seed production; Isolation of protoplast; Demonstration of Culturing of protoplast; Demonstration of Isolation of DNA; Demonstration of Gene transfer techniques, indirect methods; Demonstration of Confirmation of Genetic transformation; Demonstration of gel-electrophoricsis techniques.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 227</td>
<td>Breeding of Field / Horticultural crops</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Breeding objectives and important concepts of breeding self pollinated, cross pollinated and vegetatively propagated crops; Hardy-Weinberg Law; Study in respect of origin, distribution of species, wild relatives and forms; Cereals, (rice, wheat, maize, millets, sorghum, bajra, ragi); Pulses (redgram, greengram, blackgram, soybean); Oilseeds (Groundnut, sesame, sunflower, safflower, castor, mustard) etc. Fibers (Cotton, kenaf, roselle, jute) etc. Vegetables (Tomato, bhindi, chilli, cucumbers); Flowers crops (Chrysanthemum, rose, galardia, gerbera & marigold); Fruit crops (aonla, guava, mango, custard apple, banana, papaya); Major breeding procedures for development of hybrids / varieties of various crops; Plant Genetic Resources their conservation and utilization in crop improvement; Ideotype concept in crop improvement; Breeding for resistance to biotic and abiotic stresses variability in pathogens and pests; Mechanisms of resistance in plant to pathogens and pest; Genetic basis of adaptability to unfavourable environments; Definition of biometrics, assessment of variability i.e., additive, dominance and epistasis and their differentiation; Genotype x Environment interaction and influence on yield/performance, IPR and its related issues.

Practical: Emasculation and Hybridization techniques; Handling of segregating generations, pedigree methods; Handling of segregating generations, bulk methods; Handling of segregating generations, back cross methods; Field lay out of experiments; Field trials, maintenance of records and registers; Estimation of Heterosis and inbreeding depression; Estimation of Heritability, GCA and SCA; Estimation of variability parameters; Parentage of released varieties/hybrids; Problems on Hardy, Weinberg Law; Study of quality characters; Sources of donors for different characters; Visit to seed production and certification plots; Visit to AICRP trials and programmes; Visit to grow out test plots; Visit to various research stations; Visit to other institutions

Suggested Readings:

21

SOIL SCIENCE AND AGRICULTURAL CHEMISTRY

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 113</td>
<td>Introduction to Soil Science</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Soil: Pedological and edaphological concepts, Origin of the earth, Earth’s crust; Composition: Rocks and minerals Weathering, Soil formation factors and processes Components of soils; Soil profile, Soil physical properties, Soil texture, Textural classes, Particle size analysis, Soil structure Classification, Soil aggregates, significance, Soil consistency, Soil crusting, Bulk density and particle density of soils & porosity, their significance and manipulation, Soil compaction, Soil Colour, Elementary knowledge of soil classification and soils of India; Soil water, Retention and potentials, Soil moisture constants, Movement of soil water, Infiltration, percolation, permeability, Drainage, Methods of determination of soil moisture Thermal properties of soils, Soil temperature, Soil air, Gaseous exchange, Influence of soil temperature and air on plant growth; Soil colloids, Properties, nature, types and significance; Layer silicate clays, their genesis and sources of charges, Adsorption of ions, Ion exchange, CEC & AEC Factors influencing ion exchange and its Significance. Soil organic matter, Composition, Decomposability, Humus, Fractionation of organic matter, Carbon cycle, C: N ratio. Soil biology, Biomass, Soil organisms and their beneficial and harmful roles.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 222</td>
<td>Manures, Fertilizers and Agrochemicals</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Introduction – Raw materials – Manures – Bulky and concentrated – FYM, Composts – Different methods, Mechanical compost plants, Vermicomposting, Green manures, Oil cakes, Sewage and sludge – Biogas plant slurry, Plant and animal refuges. Fertilizers – classifications, Manufacturing processes and properties of major nitrogenous (ammonium sulphate, urea, calcium ammonium nitrate, ammonium nitrate, ammonium sulphate nitrate) phosphatic (single super phosphate, enriched super phosphate, diammonium phosphate,
ammonium poly phosphate), potassic and complex fertilizers their fate and reactions in the soil, Secondary and micronutrients fertilizers, Amendments. Fertilizer Control Order, Fertilizer storage; Biofertilizers and their advantage, Organic chemistry as prelude to agrochemicals, diverse types of agrochemicals, Botanical insecticides (Neem), Pyrethrum, Synthetic pyrethroids. Synthetic organic insecticides, Major classes, Properties and uses of some important insecticides under each class. Herbicides – Major classes – Properties and uses of 2, 4-D, atrazine, glyphosate, butachlor benthio carb; Fungicides – Major classes – Properties and uses of carbendazim, carboxin, captan, tridemorph and copper oxychloride – Insecticides Act, Plant growth regulators.

Practical: Total nitrogen and phosphorus in manures / composts – Ammoniacal and nitrate nitrogen – Water soluble P₂O₅, potassium, calcium, sulphur and zinc contents of fertilizers COD in organic wastes – Adulteration in fertilizer. Argentometric and iodometric titrations – their use in the analysis of lindane metasystox, endosulfan, Malathion, copper and sulphur fungicides – Compatibility of fertilizers with pesticides.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 127</td>
<td>Soil Chemistry, Soil Fertility and Nutrient Management</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Suggested Readings:
ENTOMOLOGY

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 213</td>
<td>Insect Morphology and Systematics</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Methods of collection and preservation of insects including immature stages; External features of Grasshopper/Blister beetle; Types of insect antennae, mouthparts and legs; Wing venation, types of wings and wing coupling apparatus Types of insect larvae and pupae; Dissection of digestive system in insects (Grassopper); Dissection of male and female reproductive systems in insects (Grassopper); Study of characters of orders Orthoptera, Dictyoptera, Odonata, Isoptera, Thysanoptera, Hemiptera, Lepidoptera, Neuroptera, Coleoptera, Hymenoptera, Diptera and their families of agricultural importance.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 223</td>
<td>Insect Ecology & Integrated pest management including beneficial insects</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Visit to meteorological observatory / automatic weather reporting station; Study of terrestrial and pond ecosystems of insects; Studies on behaviour of insects and orientation (repellency, stimulation, deterancy); Study of distribution patterns of insects, sampling techniques for the estimation of insect population and damage; Pest surveillance through light traps, pheromone traps and field incidence; Practicable IPM practices, Mechanical and physical methods; Practicable IPM practices, Cultural and biological methods; Chemical control, Insecticides and their formulations; Calculation of doses/concentrations of insecticides; Compatibility of pesticides and Phytotoxicity of insecticides; IPM case studies; Identification of common phytophagous mites and their morphological characters; Identification of common plant parasitic nematodes and their morphological characters; Identification of rodents and bird pests and their damage; Identification of earthworms in vermiculture – visit to vermiculture unit; Other beneficial insects – Pollinators, weed killers and scavengers

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 313</td>
<td>Crop Pests and stored grain pests and their management</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Stored grain pests: Coleopteran and Lepidopteran pests, their biology and damage, preventive and curative methods. Distribution, biology, nature and symptoms of damage, and management strategies of insect and non insect pests of rice, sorghum, maize, ragi (Eleucine coracana), wheat, sugarcane, cotton, mesta, sunhemp, pulses, groundnut, castor, gingerly, safflower, sunflower, mustard, brinjal, bhendi, tomato, cruciferous and cucurbitaceous vegetables, potato, sweet potato, colocasia, moringa, amaranthus, chillies, mango, citrus, grapevines, cashew, banana, pomegranate, guava, sapota, ber, apple, coconut, tobacco, coffee, tea, turmeric, betelvine, onion, coriander, garlic, curry leaf, pepper, ginger and ornamental plants.

25
Practical: Identification of pests, their damage symptoms and management of rice, sorghum, maize, wheat, sugarcane, cotton, pulses, Solanaceous and Malvaceous vegetables, cruciferous and cucurbitaceous vegetables, chilli, mango, carbon, citrus and sapota.

AGRICULTURAL ECONOMICS

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 124</td>
<td>Principles of Agrl. Economics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Suggested Readings:
Nanavati, M.B. and J. J. Anjaria, The Indian Rural Problem. The Indian Society of Agricultural Economics, Bombay, 1944.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC 211</td>
<td>Agricultural Finance and Co-operation</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Practical: Factors governing use of Capital and identification of credit needs; Time value of money, Compounding and discounting; Tools of financial management, Balance sheet, Income statement and cash flow analysis; Estimations of credit needs and determining unit costs; Preparations and analysis of loan proposals; Types of repayment loans; Study of financial institutions: PACS, DCCB, Apex Banks, RRBs, CBs, NABARD.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC 221</td>
<td>Agricultural marketing, Trade and Prices</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Identification of marketing channels; Study of Rythu Bazars, Regulated markets; Study of unregulated markets; Study of livestock markets; Price spread analysis; Visit to market institutions, NAFED; Study of SWC, CWC and STC; Analysis of information of daily prices; Marketed and marketable surplus of different commodities.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 321</td>
<td>Production Economics & Farm management</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Practical: Computation of cost concepts; Methods of computation of depreciation; Analysis of Net worth statement; Farm inventory analysis; Preparation of farm plans and budgets; Types of farm records and accounts; Preparation of profit and loss account; Break, Even analysis; Economics analysis of different crop and livestock enterprises; Application of Farm Management Principles.

Suggested Readings:
Economics of farm management in India, Govt. of India, 2007

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 314</td>
<td>Fundamentals of Agri Business Management (Including product development, Appraisal and Monitoring)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Practical: Study of input markets: seed, fertilizers, pesticides. Study of output markets, grains, fruits, vegetables, flowers. Study of product markets, retail trade commodity trading, and value added products. Study of financing institutions cooperatives commercial banks, RRBs, Agribusiness Finance Limited, NABARD; Preparations of projects, Feasibility reports; Project appraisal techniques; Case study of agro-based industries.
AGRICULTURAL ENGINEERING

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 114</td>
<td>Fundamentals of soil water conservation and engineering</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Acquaintance with chain survey equipment; Ranging and measurement of offsets; Chain triangulation; Cross staff survey; Plotting of chain triangulation; Plotting of cross staff survey; Levelling equipment – dumpy level, levelling staff, temporary adjustments and staff reading; Differential leveling; Profile leveling; Contour survey – grid method; Plotting of contours; Study of centrifugal pumping system and irrigation water measuring devices; Study of different components of sprinkler irrigation systems; Study of different components of drip and sprinkler irrigation systems; Uniformity of water application in drip and sprinkler systems; Study of soil and water conservation measures.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 214</td>
<td>Farm power and machinery</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Farm power in India: sources, I.C engines, working principles, two stroke and four stroke engines, I.C. engine terminology, different systems of I.C. engine. Tractors, Types, Selection of tractor and cost of tractor power. Tillage implements: Primary and Secondary tillage implements, Implements for intercultural operations, seed drills, paddy transplanters, plant protection equipment and harvesting equipment; Equipment for land development and soil conservation.

Practical: Study of different components of I.C. Engine; Study of working of four stroke engine; Study of working of two stroke engine; Study of M.B. plough, measurement of plough size, different parts, horizontal and vertical suction, determination of line of pull etc.; Study of disc plough; Study of seed–cum-fertilizer drills-furrow opener, metering mechanism, and calibration; Study, maintenance and operation of tractor; Learning of tractor driving; Study, maintenance and operation of power tiller; Study of different parts, registration, alignment and operation of mower. Study of different inter cultivation equipment
in terms of efficiency, field capacity; Repairs and adjustments and operation of sprayers; Repairs and adjustments and operation of dusters; Study of paddy transplanter.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 224</td>
<td>Protected cultivation and Post harvest Technology</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Practical: Study of different types of greenhouses based on shape, construction and cladding materials; Calculation of air rate exchange in an active summer winter cooling system; Calculation of rate of air exchange in an active winter cooling system; Estimation of drying rate of agricultural products inside green house; Testing of soil and water to study its suitability for growing crops in greenhouses; The study of fertigation requirements for greenhouses crops and estimation of E.C. in the fertigation solution; The study of various growing media used in raising of greenhouse crops and their preparation and pasteurization / sterilization; Visit to commercial greenhouses; Study of threshers, their components, operation and adjustments; Winnowers, their components, operation and adjustments; Study of different components of groundnut decorticator; Study of maize shellers; Study of castor shellers; Study of improved grain storage structure; Study of dryers; Study of cleaners & graders.
<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 326</td>
<td>Renewable Energy</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Practical: Constructional details of KVIC & Janatha type biogas plants; Constructional details of Deen Bandu type biogas plants; Field visit to biogas plants; Constructional details of different types of gasifiers; Testing of gasifiers; Briquette preparation from biomass; To study and find the efficiency of solar cooker; To study and find the performance of a solar still; To study and find the performance of a solar dryers; Study and working of solar photovoltaic pumping system; Study and performance evaluation of domestic solar water heater; Study and performance evaluation of solar lantern; Study and performance evaluation of solar street light; To study the performance of different types of wind mills; Field visit to wind mills; To study the processing of Bio-diesel production from Jatropha.
PLANT PATHOLOGY

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 115</td>
<td>Plant Pathogens and Principles of Plant Pathology</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Practical: Acquaintance to plant pathology laboratory and equipments; Preparation of culture media for fungi and bacteria; Isolation techniques, preservation of disease samples; Study of Pythium, Phytophthora and Albugo; Study of Sclerospora, Peronosclerospora, Pseudoperonospora, Peronospora, Plasmopara and Bremia; Study of genera Mucor and Rhizopus. Study of Oidium, Oidiopsis, Ovulriopsis, Erysiphe, Phyllactinia, Uncinula and Podosphaera; Study of Puccinia (different stages), Uromyces, Hemileia; Study of Sphaecelotheca, Ustilago and Tolyposporium; Study of Agaricus, Pleurotus and Ganoderma; Study of Septoria, Colletotrichum, Pestalotiopsis and Pyricularia; Study of Aspergillus, Penicillium, Trichoderma, and Fusarium; Study of Helminthosporium, Drechslera, Alternaria, Stemphylium, Cercospora, Phaeoisariopsis, Rhizoctonia and Sclerotium; Demonstration of Koch’s postulates; Study of different groups of fungicides and antibiotics; Preparation of fungicides – Bordeaux mixture, Bordeaux paste, Chestnut compound; Methods of application of fungicides – seed, soil and foliar; Bio-assay of fungicides – poisoned food technique, inhibition zone technique and slide germination technique; Bio-control of plant pathogens – dual culture technique, seed treatment. Visit to quarantine station and remote sensing laboratory.

Suggested Readings:
Publications, Coimbatore.
Vidyasekaran, P.1993, Principles of Plant Pathology, CBS publishers and Distributors, New Delhi.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 225</td>
<td>Diseases of Field Crops and their management</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Economic importance, symptoms, cause, epidemiology and disease cycle and integrated management of diseases of rice, sorghum, bajra, maize, wheat, sugarcane, turmeric, tobacco, groundnut, sesame, sunflower, cotton, redgram, bengalgram, blackgram, greengram, tea, soybean.

Practical: Study of symptoms, etiology, host-parasite relationship and specific control measures of the following crop diseases. Presentation of disease samples survey and collection of Diseases of rice, sorghum; Diseases of wheat, bajra & maize; Diseases of sugarcane, turmeric & tobacco; Diseases of groundnut, castor & sunflower; Diseases of sesame & cotton; Diseases of redgram, greengram, blackgram, bengalgram & beans; Field visits at appropriate time during the semester.

Note: Students should submit 50 pressed, well mounted diseased specimens in three installments during the semester.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 121</td>
<td>Introductory Nematology</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

(crop rotation, fallowing, soil amendments, other land management techniques), physical methods (soil solarisation, hot water treatment) Biological methods, Chemical methods (fumigants, non-fumigants). Resistant varieties. IDM.

Practical: Methods of survey – sampling methods, collection of soil and plant samples; Extraction of nematodes from soil and plant tissues following combined Cobb’s decanting – sieving and Baermann funnel technique, counting and estimation of plant parasitic nematodes; Preparation of temporary and permanent mounts; Method of preparation of perineal patterns for identification of species of Meloidogyne; Study and identification of most important plant parasitic nematodes with special reference to their characteristics and symptomatology – Meloidogyne, Pratylenchus; Heterodera, Ditylenchus, Globodera, Tylenchulus, Xiphinema, Radopholus, Rotylenchulus, and Helicotylenchus. Experimental techniques used in pathogenicity studies with root knot nematode.

Suggested Readings:
HORTICULTURE

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 116</td>
<td>Production technology of fruit crops</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Study of horticultural tools and implements and their uses; Containers, potting mixture, potting, depotting and repotting; Plant propagation, seed propagation, scarification, and stratification; Propagation by cuttings (soft wood, hard wood and semi-hardwood) layering (simple layering, Air layering, stooping in guava); Layout and planting systems (Traditional system and high density planting methods); Methods of pruning and training; Training of ber, grape and pomegranate; Pruning of ber, grape, phalsa, fig, apple, pear, peach; Description and identification of varieties of mango, guava, grape, papaya, apple and sapota; Description and identification of varieties of banana, citrus, (lime lemon, sweet orange, mandarin, grape fruit) pomegranate, ber, pear and cherries; Irrigation methods in fruit crops including drip – Micro irrigation methods of establishment of orchard; Methods of Fertilizer application methods in fruit crops including fertigation technology; Visit to local commercial orchards; Preparation of growth regulators, powder, solution and lanolin paste for propagation; Application of growth regulators for improving fruit set, fruit size, quality, delaying ripening and hastening ripening.

BOOKS
Hayes, W.B., Fruit growing in India, Kitabistan, Allahabad, 1945.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 215</td>
<td>Production Technology of Vegetables & Flowers</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: 1 Planning and layout of kitchen garden; 2 Identification of important vegetable seeds and plants; Raising of vegetable nurseries; Identification of ornamental plants (trees, shrubs, climbers, house plants, palms etc.) and development of garden features; Transplanting of vegetable seedlings in main field; Layout of lawns and maintenance; Seed extraction in tomato and brinjal; Depotting, repotting and maintenance of house plants; Visit to commercial vegetable farms; Training and pruning of rose (standards, hybrid ‘T’ roses scented roses) and chrysanthemum (pinching and disbudding); Planning and layout of gardens and garden designs for public and private areas; Intercultural operations in vegetable plots; Seed production in vegetable crops; Harvesting indices of different vegetable crops; Grading and packing of vegetables; Prolonging the shelf life of cut flowers.

Suggested Readings:
Oxford University

Paper Code	Course Title	L	T	P	Cr
AGR 226 | Production technology of spices, Aromatics Medicinal and Plantation crops | 2 | 1 | 1 | 3

Importance and cultivation technology of Spices – ginger, turmeric, pepper, cardamom, coriander, cumin, fenugreek; Aromatic crops – lemon grass, citronella, palmarose, vetiver, geranium, dawana; Plantation crops – coconut, arecanut, betelvine, cashew, cocoa, coffee, oilpalm; Medicinal plants – diascoria, rauwolfia, opium, ocimum, perwinkle, aloe, guggul, belladonna, nuxvomica, Solanum khasiamum , aonla, senna, plantago, stevia, coleus and Acorus.

Practical: Botanical description and identification of aromatic plants; Identification of varieties in spices and plantation crops; Identification of medicinal plants; Propagation techniques in aromatic and spice crops; Selection of mother palm, and seed nuts in coconut and oil palm; Study of identification of aromatic plants; Distillation procedures for aromatic crops; Propagation methods in plantation crops; Propagation and planting methods in turmeric; Propagation and planting techniques in ginger; Harvesting procedures in aromatic plants; Processing and curing of spices (ginger, turmeric and black pepper); Training methods in betelvine; Rejuvenation practices in cashewnut; Products – byproducts of spices and plantation crops; Procedures for oleoresin extraction; Visit to local commercial plantations. Aromatic & medicinal plant nurseries and seed spices field.

Suggested Readings:

Practical: Practice in judging the maturity of various fruits and vegetables. Conservation of zero energy cool chambers for on farm storage. 3& 4. Determination of physiological loss in weight (PLW), total soluble solids (TSS), total sugars, acidity and ascorbic and content in fruits and vegetables. Packing methods and types of packing and importance of ventilation. Pre cooling packing methods for export or international trade. Methods of prolonging storage life. Effect of ethylene on ripening of banana, sapota, mango, sapota. Identification of equipment and machinery used is preservation of fruits and vegetables. Preservation by drying and dehydration. Preparation of jam, jelly and marmalades. Preparation of squash, cordials and syrups. Preparation of chutneys, pickles sauces and ketchup. Visit to local processing units. Visit to local market yards and cold storage units. Visit to local market and packing industries.
AGRICULTURAL EXTENSION

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 125</td>
<td>Dimensions of Agril. Extension</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Practical: Visits to a village and kisan mandal to study the ongoing development programmes. Visits to Panchayat Raj Institutions to study the functioning of Gram Panchayat (GP) & Zilla Praja Parishad (ZPP). Visit and study the District Rural Development Agency (DRDA). Participation in monthly workshops of Training and Visit (T & V) System. Visit to Watershed Development Project area. Visit to a village to study the Self Help Groups (SHGs) of DWCRA. Visit to a voluntary organization to study the developmental activities. Organizing PRA techniques in a village to identify the agricultural problems. Visit to villages.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 316</td>
<td>Fundamentals of Rural Sociology and Educational Psychology</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 323</td>
<td>Entrepreneurship Development</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Entrepreneurship Development: Assessing overall business environment in the Indian economy. Overview of Indian social, political and economic systems and their implications for decision making by individual entrepreneurs. Globalisation and the emerging business / entrepreneurial environment. Concept of entrepreneurship; entrepreneurial and managerial characteristics; managing an enterprise; motivation and entrepreneurship development; importance of planning, monitoring, evaluation and follow up; managing competition; entrepreneurship development programs; SWOT analysis, Generation, incubation and commercialization of ideas and innovations. Government schemes and incentives for promotion of entrepreneurship. Government policy on Small and Medium Enterprises (SMEs) / SSIs. Export and Import Policies relevant to agriculture sector. Venture capital. Contract farming and joint ventures, public-private partnerships. Overview of agri inputs industry. Characteristics of Indian agricultural processing and export industry. Social Responsibility of Business. Communication Skills: Structural and functional grammar; meaning and process of communication, verbal and non-verbal communication; listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, précis writing, summarizing, abstracting; individual and group presentations, impromptu presentation, public speaking; Group discussion. Organizing seminars and conferences.

Practical: Listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, précis writing, summarizing, abstracting; individual and group presentations.
BIOCHEMISTRY/PHYSIOLOGY MICROBIOLOGY/ ENVIRONMENTAL SCIENCES

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Amino acid models (atomic); Paper electrophoresis for the separation of plant pigments; Protein denaturation – heat, pH, precipitation of proteins with heavy metals, Protein estimation by Lowry method; Enzyme kinetics, competitive inhibition, enzyme immobilization; Extraction of nucleic acids, column chromatography of RNA hydrolysate; Characterization of lipids by T.L.C.; Extraction of oil from oil seeds; Estimation of fatty acids by G.L.C.; Models of sugars, sucrose & starch; Quantitative determination of sugars; Paper chromatography for the separation of sugars; Determination of phenols.

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 218</td>
<td>Crop Physiology</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Preparation of solutions; Growth analysis: Calculation of growth parameters; Methods of measuring water status in roots, stems and leaves; Measurement of water potential by Chardakov’s method; Measurement of absorption spectrum of chloroplastic pigments and fluorescence; Measurement of leaf area by various methods; Stomatal frequency and index – Respirometer – Measurement of respirometer; Leaf anatomy of C₃ and C₄ plants; Transpiration of measurement; Imbibition of seed; Optimum conditions for seed germination; Breaking seed dormancy; (a) Chemical method (b) Mechanical method; Yield analysis; Seed viability and vigour tests; Effect of ethylene on regulation of stomata.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 126</td>
<td>Agricultural Microbiology</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: General instructions, Familiarization with instruments, materials, glassware etc. in a microbiology laboratory: Practice of Aseptic methods: I - Evaluation of aseptic technique

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVS 151</td>
<td>Environmental Science</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical: Collection, processing and storage of effluent samples; Determination of Bio-Chemical oxygen demand (BOD) in effluent sample; Determination of chemical oxygen demand (COD) in effluent sample; Estimation of dissolved oxygen in effluent samples; Determination of sound level by using sound level meter; Estimation of respirable and non respirable dust in the air by using portable dust sampler; Determination of total dissolved solids (TDS) in effluent samples; Estimation of species abundance of plants; Estimation of nitrate contamination in ground water; Analysis of temporary and total hardness of water sample by titration; Estimation of pesticide contamination in Agro-Ecosystem; Visit to Social Service Organisation / Environmental Education Centre; Crop adaptation to environmental variables, soils conditions; Study of transpiration and water balance in plants; Visit to a local polluted site. Observations and remedial measures; Assessment of chlorophyll content of fresh water / sea water ecosystem.
STATISTICS AND COMPUTER APPLICATION

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO 151</td>
<td>Statistics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Introduction: Definition of Statistics and its use and limitations; Frequency Distribution and Frequency Curves; Measures of Central Tendency: Characteristics of Ideal Average, Arithmetic Mean; Median, Mode, Merits and Demerits of Arithmetic Mean; Measures of Dispersion: Standard Deviation, Variance and Coefficient of Variation; Probability: Definition and concept of probability; Normal Distribution and its properties; Introduction to Sampling: Random Sampling; the concept of Standard Error; Tests of Significance- Types of Errors, Null Hypothesis, Level of Significance and Degrees of Freedom, Steps involved in testing of hypothesis; Large Sample Test- SND test for Means, Single Sample and Two Samples (all types); Small Sample Test for Means, Student’s t-test for Single Sample, Two Samples and Paired t test. F test; Chi-Square Test in 2x2 Contingency Table, Yates’ Correction for continuity; Correlation: Types of Correlation and identification through Scatter Diagram, Computation of Correlation Coefficient ‘r’ and its testing. Linear Regression: of Y on X and X on Y. Inter-relation between ‘r’ and the regression coefficients, fitting of regression equations. Experimental Designs: Basic Designs, Completely Randomized Design (CRD), Layout and analysis with equal and unequal number of observations, Randomized Block Design (RBD), Layout and analysis, Latin Square Design (LSD), Layout and analysis.

Practical: Construction of Frequency Distribution Tables and Frequency Curves; Computation of Arithmetic Mean for Un-Grouped and Grouped data; Computation of Median for Un-Grouped and Grouped data; Computation of Mode for Un-Grouped and Grouped data; Computation of Standard Deviation, Variance and Coefficient of Variation for Un-Grouped and Grouped data; SND test for Means, Single Sample; SND test for Means, Two Samples; Student’s t-test for Single Sample; Student’s t-test for Two Samples; Paired t test and F test; Chi-Square Test in 2x2 Contingency Table, Yates’ Correction for continuity; Computation of Correlation Coefficient ‘r’ and its testing; Fitting of regression equations- Y on X and X on Y; Analysis of Completely Randomized Design (CRD); Analysis of Randomized Block Design (RBD); Analysis of Latin Square Design (LSD).

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA 155</td>
<td>Introduction to computer application</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Suggested Readings:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA 156</td>
<td>Introduction to computer application Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Practical: Study of Computer Components: Booting of Computer and its Shut Down; Practice of some fundamental DOS Commands, TIME, DATE, DIR, COPY, FORMAT, VOL, LABEL, PATH; Practicing WINDOWS Operating System, Use of Mouse, Title Bar, Minimum, Maximum and Close Buttons, Scroll Bars, Menus and Tool Bars; WINDOWS Explorer, Creating Folders, COPY and PASTE functions; MSWORD: Creating a Document, Saving and Editing; MSWORD, Use of options from Tool Bars, Format, Insert and Tools (Spelling & Grammar) Alignment of text; MSWORD, Creating a Table, Merging of Cells, Column and Row width; MSEXCEL: Creating a Spreadsheet, Alignment of rows, columns and cells using Format tool bar; MSEXCEL: Entering Expressions through the formula tool bar and use of inbuilt functions, SUM, AVERAGE, STDEV; MSEXCEL: Data Analysis using inbuilt Tool Packs, Correlation & Regression; MSEXCEL: Creating Graphs and Saving with & without data; MSACCESS: Creating Database, Structuring with different types of fields; MS Power Point: Preparation of slides on Power Point; Transforming the data of WORD, EXCEL and ACCESS to other formats; Internet Browsing: Browsing a Web Page and Creating of E-Mail ID
ANIMAL PRODUCTION

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 216</td>
<td>Livestock Production and Management</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Place of livestock in the national economy, different livestock development programmes of Govt. of India. Important exotic and Indian breeds of cattle, buffalo, sheep, goat and swine. Measures and factors affecting fertility in livestock, reproductive behaviour like oestrus, parturition, farrowing etc. Milk secretion, milking of animals and factors affecting milk yield and composition. Selection and breeding of livestock for higher milk and meat production. Feeding and management of calves, growing heifers and milch animals and other classes and types of animals, housing principles, space requirements for different species of livestock. Disease control measures, sanitation and care, breeding, feeding and production records. Breed characteristics of poultry, their methods of rearing, breeding, feeding and management, incubation, hatching and brooding, vaccination and prevention of diseases, preservation and marketing of eggs, its economics and keeping quality. Cost of production of milk, economical units of cattle, buffalo, sheep, goat and swine.

Practical: Identification, handling and restraining of animals; Judging and culling; Feeding and ration formulation; Hatching, housing and management of poultry; Visit to livestock farms and Economics of livestock production.

Suggested Readings:
DAV UNIVERSITY, JALANDHAR

NON CREDIT COURSES

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 153</td>
<td>Comprehension and Communication Skills in English</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Comprehension: Text for comprehension, Current English for Colleges, By N. Krishnawamy & T.Sriraman, Macmillan India Limited, Madras, 1995; War Minus shooting The sporting spirit George Orwell (a) Reading Comprehension (b) Vocabulary – Synonyms – Antonyms – Often confused words and (c) Two exercises to help the students in the enrichment of vocabulary based on TOEFL and GRE and other competitive examinations. A Dilemma – A layman looks at science Raymond B. Fosdick (a) Reading Comprehension (b) Vocabulary – Homonyms and Homophones (c) Exercises on Figurative Language & Idiomatic Language (E.g.: dust and ashes, doorstep of doom, boundaries of knowledge, Apple of one’s eye, in a fix etc). 5&6 You and Your English – Spoken English and Broken English G.B.Shaw (a) Reading Comprehension (b) Language study, Functional Grammar, Agreement of verb with subject. Written Skills: Mechanics of good letter, Effective business correspondence, Personal Correspondence, Preparation of Curriculum vitae and Job applications. The Style, Importance of professional writing – Choice of words and Phrases, precision, conciseness clichés, redundancy, jargon, foreign words, Precise writing and synopsis writing. Interviews, Types of interviews, purpose, different settings, as interviewer, interviewee, physical makeup and manners, appearance, poise, speech, self-reliance, Evaluation process, Review or feedback.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 154</td>
<td>Comprehension and Communication Skills in English Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Practical: Listening Comprehension: Listening to short talks, lectures, speeches (scientific, commercial and general in nature) Practical: listening to at least two tape, recorded conversations aimed at testing the listening comprehension of students; Communication: Spoken English, oral communication, importance stress and intonation. Practical: Spoken English practice by using audiovisual aids, the essentials of good conversations, oral exercises in conversation practice (At the Doctor, at the Restaurant, at the Market Yard); Oral Presentation of Reports: Seminars and conferences, features of oral presentation, regulating speech, physical appearance, body language posture, eye contact, voice, audience, preparation of visual aids. Practical: One presentation by individual on the given topic related to agriculture like W.T.O, Developing new technologies in Agriculture, Bio fertilizers etc.; Evaluation of a Presentation: evaluation sheet, other strategies to be considered for evaluating a presentation, Practical: Mock evaluation of a presentation; Dyadic communication, face to face conversation, Telephonic conversation, rate of speech, clarity of voice, speaking and listening politeness, telephone etiquette, Practical: Practice of Telephonic conversation; Reading skills, using Dictionary, reading dialogues, rapid reading, intensive reading, improving reading skills; Meetings: purpose, procedure participation, chairmanship, physical arrangements, recording minutes of meeting; Practice of Presentation by using power point and LCD projector; Conducting Mock interviews – testing initiative, team spirit, leadership, intellectual ability – potential for development, memory, motivation, objectives, aptitude etc., Group Discussions and Debates on current topics; Review or Feed Back; Practical examination.
Review of trigonometric functions, sum and product formulae for trigonometric functions,
trigonometric equations and inverse trigonometric functions. Complex numbers, quadric equations,
permutations and combinations, mathematical induction, binomial theorem, sequences and series.
Matrices, operation of matrices, determinants, singular and non-singular matrices. Ad joint and
inverse of matrix. Co-ordinate Geometry: Rectangular co-ordinate system, straight lines. Circles,
parabola, ellipse and hyperbola their equations in standard form. Condition for tangency. Three
dimensional space. Differential calculus: real functions and their graphs, limits and continuity.
Derivative of function, product and quotient rule. Chain rule implicit and logarithmic differentiation.
The 2nd and 3rd derivative, parametric, increasing and decreasing functions. Maxima and minima.
Mean value theorem, tangents and normals.
Integral calculus: Integral as anti-derivatives integration as substitution, by partial fractions and by
parts. Definite integral: the definition of integral of real valued function of real variable as limit of sum
motivated by the determination of area. Functional theorem of integral calculus, properties of definite
integral. Areas of boundary regions. Differential equations: Formation and methods of solving first
order first degree diff. equations.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH170</td>
<td>Basic Mathematics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Classification of Plant kingdom. General outline of life history of Angiosperms. Morphology of Root,
Stem and Leaf. Seed structure of Gram and Maize. Seed Germination. Structure of Flower, Floral
formula and Floral Diagram. Inflorescence- different types. Pollination- Types and Agencies.
Fruit – Types, Dispersal of Fruit and Seed. Anatomy- Tissue types. Difference between Monocot and
Dicot Root, Stem, Leaf. Families- General characters of Solanaceae, Malvaceae, Cruciferae, Graminae,
Compositae.

Practical
Form and function of Root, Stem & Leaf and modifications.
Different types of inflorescence.
Representative of families included in theory.

Suggested Readings :

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 155</td>
<td>General Botany</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Introduction to Zoology, description of typical animal cell, difference between plant and animal cell.
Zoological nomenclature and principles of classification. General survey of animal kingdom up to
phylum in–vertebrates and up to class in vertebrates. Economic significance and importance of
Amoeba, Entamoeba, Sycon, Plasmodium, Fasciola, Tapeworm, Ascaris, Hirudo, Pharithema,
Grasshopper, Locust, Silkworm, Beetle, Red cotton, Honey bee, Bug, Mosquito, Rohu, Frog, Snake,
Owl, Woodpecker, Hoope, Parrot, Horse , Sheep, Rat, Mongoose and Monkey. Animals of economic
importance in Agriculture. Comparison of Digestive and Reproductive system of Horse, Ox and Sheep.
Physiology of Respiration Composition of Blood and its function Reproduction, Locomotion in Animals
Structure of skin and Heat Regulation General account of Aves.
Practical
Animal cell, cell division, tissue,
General survey and collection of fauna of local area
Smear of human blood
Skelton parts of ox, goat, and horse.

NSS/NCC / Physical Education 1(0+1)

NSS: Orientation of students in national problems, study of philosophy of NSS, fundamentals rights, directive principles of state policy, socio-economic structure of Indian society, population problems, brief of five year plan. Functional literacy, non-formal education of rural youth, eradication of social evils, awareness programmes, consumer awareness, highlights of consumer act. Environment enrichment and conservation, health, family welfare and nutrition. NCC: Introduction to NCC, defense services, system of NCC training, foot drill, sizing, forming up in three ranks, open and close order march, dressing, getting on parade, dismissing and falling out, saluting, marching, arms drill, shoulder arm, order arm, present arm, guard of honour, ceremonial drill, weapon training – rifle bayonet, light machine gun, sten machine carbine. Introduction and characteristic stripping, assembling and cleaning, loading, unloading and firing. Field craft, visual training, targets, judging distance, fire discipline and fire control orders, battle craft, field signals, description of ground, section formation, section battle drill, scouts and patrols, ambush, field engineering, map reading, conventional signs, grid systems, use of service protractor, prismatic compass and its use, self-defense, general principles, precautions and training, attacks and counter attacks, marching and searching, first aid, hygiene and sanitation, civil defense, leadership and NCC song. Physical Education: Introduction to physical education. Posture, exercise for good posture, physical fitness exercises for agility, strength, coordination, endurance and speed. Rules regulations of important games, skill development in any one of the games, football, hockey, cricket, volleyball, badminton, throw ball, tennis. Participation in one of the indoor games, badminton, chess and table tennis. Rules and regulations of athletic events, participation in any one of the athletic events, long jump, high jump, triple jump, javelin throw, discuss throw, shot put, short and long distance running, Safety education, movement education, effective way of doing day-to-day activities. First-aid training, coaching for major games and indoor games. Asans and indigenous ways for physical fitness and curative exercises. Exercises and games for leisure time, use and experience.

Note: Warming up and conditioning exercises are compulsory before the commencement of each class.