Design. 29.1. Design a reinforced concrete contilever type retaining wall having a 5 m tall stem. The wall $=$ soil qevel with its top. The soil weighs $18000 \mathrm{~N} / \mathrm{m}^{3}$ and has an angle of repose of 30°. The safe bearing capacity of ${ }^{3}$ is $200 \mathrm{kN} / \mathrm{m}^{2}$ Use M 20 concrete and Fe 415 steel.

Solution:

Wall proportions.

Thickness of the stem of the top $=200 \mathrm{~mm}$
Thickness of the stem at the bottom
Consider one metre run of the wall.
Maximum bending moment per metre run of the wall

$$
=\mathrm{M}=C_{p} \frac{w h^{3}}{6}=\frac{1}{3} \times 18000 \times \frac{5^{3}}{6}=125000 \mathrm{Nm}
$$

Ultimate moment
$M_{u}=1.5 \times 125000=187500 \mathrm{Nm}$
$0.138 f_{c k} b d^{2}=0.138 \times 20 \times 1000 d^{2}=187500 \times 10^{3}$

$$
d=261 \mathrm{~mm}
$$

Effective cover to stem reinforcement $=40 \mathrm{~mm}$
Total thickness of stem $=261+40=301 \mathrm{~mm}$
The thickness may be increased by 30% to 35% for an economical

Provide a base width of 3 m

Fig. 29.24

Toe projection This may be made about one-third the base width.
Provide a toe projection of 1 m
Stability calculations
See table below for stability calculations.

Load due to	Magnitude of the load (N)	Distance from $a(m)$	Moment abo $a(\mathrm{Nm})$
$W_{1} 0.2 \times 5 \times 25000$	25000	1.7	42500
$\frac{0.2 \times 5}{2} \times 25000$	12500	$\frac{28}{15}$	23333.33
$W_{2} 3 \times 0.40 \times 25000$	30000	1.5	45000
$W_{b} 1.6 \times 5 \times 18000$	144000	0.8	115200
Moment of lateral pressure			
$C_{p} w \frac{H^{3}}{6}=\frac{1}{3} \times 18000 \times \frac{5.4^{3}}{6}$			157464
Total	211500		383497.33

Distance of the point of application of the resultant force from the heel end a,

$$
=Z=\frac{383497.33}{211500}=1.813 \mathrm{~m}
$$

\therefore Eccentricity $e=Z-\frac{b}{2}=1.813-1.50=0.313 \mathrm{~m}$

$$
\frac{b}{6}=\frac{3}{6}=0.5 \therefore e<\frac{b}{6}
$$

