
CAP3: A DNA Sequence Assembly Program
Xiaoqiu Huang1,2 and Anup Madan3

1Department of Computer Science, Michigan Technological University, Houghton, Michigan 49931 USA; 3Department
of Molecular Biotechnology, University of Washington, School of Medicine, Seattle, Washington 98195 USA

We describe the third generation of the CAP sequence assembly program. The CAP3 program includes a
number of improvements and new features. The program has a capability to clip 58 and 38 low-quality regions
of reads. It uses base quality values in computation of overlaps between reads, construction of multiple sequence
alignments of reads, and generation of consensus sequences. The program also uses forward–reverse constraints
to correct assembly errors and link contigs. Results of CAP3 on four BAC data sets are presented. The
performance of CAP3 was compared with that of PHRAP on a number of BAC data sets. PHRAP often
produces longer contigs than CAP3 whereas CAP3 often produces fewer errors in consensus sequences than
PHRAP. It is easier to construct scaffolds with CAP3 than with PHRAP on low-pass data with forward–reverse
constraints.

The shotgun sequencing strategy has been used widely
in genome sequencing projects. A major phase in this
strategy is to assemble short reads into long sequences.
A number of DNA sequence assembly programs have
been developed (Staden 1980; Peltola et al. 1984;
Huang 1992; Smith et al. 1993; Gleizes and Henaut
1994; Lawrence et al. 1994; Kececioglu and Myers
1995; Sutton et al. 1995; Green 1996). The FAKII pro-
gram provides a library of routines for each phase of
the assembly process (Larson et al. 1996). The GAP4
program has a number of useful interactive features
(Bonfield et al. 1995). The PHRAP program clips 58 and
38 low-quality regions of reads and uses base quality
values in evaluation of overlaps and generation of con-
tig sequences (Green 1996). TIGR Assembler has been
used in a number of megabase microbial genome
projects (Sutton et al. 1995). Continued development
and improvement of sequence assembly programs are
required to meet the challenges of the human, mouse,
and maize genome projects.

We have developed the third generation of the
CAP sequence assembly program (Huang 1992). The
CAP3 program includes a number of improvements
and new features. A capability to clip 58 and 38 low-
quality regions of reads is included in the CAP3 pro-
gram. Base quality values produced by PHRED (Ewing
et al. 1998) are used in computation of overlaps be-
tween reads, construction of multiple sequence align-
ments of reads, and generation of consensus se-
quences. Efficient algorithms are employed to identify
and compute overlaps between reads. Forward–reverse
constraints are used to correct assembly errors and link
contigs. Results of CAP3 on four BAC data sets are pre-
sented. The performance of CAP3 was compared with
that of PHRAP on a number of BAC data sets. PHRAP

often produces longer contigs than CAP3 whereas
CAP3 often produces fewer errors in consensus se-
quences than PHRAP. It is easier to construct scaffolds
with CAP3 than with PHRAP on low-pass data with
forward–reverse constraints.

An unusual feature of CAP3 is the use of forward–
reverse constraints in the construction of contigs. A
forward–reverse constraint is often produced by se-
quencing of both ends of a subclone. A forward–reverse
constraint specifies that the two reads should be on the
opposite strands of the DNA molecule within a speci-
fied range of distance. By sequencing both ends of each
subclone, a large number of forward–reverse con-
straints are produced for a cosmid or BAC data set. A
difficulty with use of forward–reverse constraints in as-
sembly is that some of the forward–reverse constraints
are incorrect because of errors in lane tracking and
cloning. Our strategy for dealing with this difficulty is
based on the observation that a majority of the con-
straints are correct and wrong constraints usually occur
randomly. Thus, a few unsatisfied constraints in a con-
tig may not be sufficient to indicate an assembly error
in the contig. However, if a sufficient number of con-
straints are all inconsistent with a join in a contig and
all support an alternative join, it is likely that the cur-
rent join is an error, and the alternative join should be
made.

METHODS
The assembly algorithm consists of three major phases
(Fig. 1). In the first phase, 58 and 38 poor regions of
each read are identified and removed. Overlaps be-
tween reads are computed. False overlaps are identified
and removed. In the second phase, reads are joined to
form contigs in decreasing order of overlap scores.
Then, forward–reverse constraints are used to make
corrections to contigs. In the third phase, a multiple
sequence alignment of reads is constructed and a con-

2Corresponding author
E-MAIL huang@mtu.edu; FAX (906) 487-2283.

Resource

868 Genome Research 9:868–877 ©1999 by Cold Spring Harbor Laboratory Press ISSN 1054-9803/99 $5.00; www.genome.org
www.genome.org

sensus sequence along with a quality value for each
base is computed for each contig. Base quality values
are used in computation of overlaps and construction
of multiple sequence alignments. We describe each
phase in detail below.

Fast Identification of Pairs of Reads
with an Overlap
A fast method is designed to find pairs of sequence
reads that overlap. Specifically, let f1,f2,... be all the
input reads in given orientation and let rx be the re-
verse complement of read fx. The method quickly finds
pairs of reads fx and fy with x < y that overlap and pairs
of reads rx and fy with x < y that overlap. Note that each
identified pair of reads represents two symmetric over-
laps because of a reverse complementary relationship.
An overlap between reads fx and fy is symmetric to one
between reads rx and ry and an overlap between reads rx
and fy to one between reads fx and ry.

To determine quickly whether two reads have a
potential overlap, an overlapping alignment between
two reads is simplified as an ordered chain of segment
pairs, where each segment pair corresponds to an un-
gapped portion of sufficient length of the alignment. A
largest-scoring chain of segment pairs between two
reads can be quickly computed by use of a BLAST-like
technique (Altschul et al. 1990; Huang 1996b). A pair
of reads has a potential overlap if the reads contain a
chain of similarity score greater than a score cutoff.
One approach to finding pairs of reads with a potential
overlap is to apply the BLAST-like technique to each
pair of reads fx and fy with x < y and each pair of reads
rx and fy with x < y. However, this approach goes
through a large number of pairs of reads that may not
overlap. Below, we describe a more efficient approach.

The sequences of all reads f1,f2, ... are concatenated
together with a special character inserted at every read
boundary. The resulting sequence is called the com-
bined sequence. Then, the following procedure is per-
formed once for each read fx to find pairs of reads fx
and fy, x < y, with a potential overlap and once for each
read rx to find pairs of reads rx and fy, x < y, with a
potential overlap. Let the current read g be fx or rx.
High-scoring chains of segment pairs between the read
g and the combined sequence are computed. The spe-
cial boundary character is used to make sure that a
chain consists only of segment pairs from the same
read in the combined sequence. To find the corre-
sponding read fy in the combined sequence for a chain,
a binary search is performed in a sorted list of the start
and end positions of each read in the combined se-
quence. Note that the chains between the read g and
any read fy with x $ y in the combined sequence are
ignored.

For each pair of reads with a potential overlap, a
minimum band of diagonals in the dynamic program-
ming matrix is determined to cover all the chains of
score greater than the cutoff between the reads. Here, a
diagonal k in the dynamic programming matrix con-
sists of all entries (i,j) such that j 1 i = k (Smith and
Waterman 1981). A segment pair beginning with po-
sition i of one read and position j of the other read is
said to occur on diagonal j 1 i. A band of diagonals in
the matrix covers a chain of segment pairs if each seg-
ment pair in the chain occurs on a diagonal inside the
band. The band of diagonals for a pair of reads with a
potential overlap is later used for efficient computation
of the overlap.

Clipping of Low-Quality Regions
Low-quality end regions of reads are located and re-
moved as follows. Both base quality values and se-
quence similarities are used to compute 58 and 38 clip-
ping positions of reads. Our strategy is based on the
following definition of good regions of a read. Any
sufficiently long region of high-quality values that is
highly similar to a region of another read is defined to
be good. In addition, any sufficiently long region that
is highly similar to a good high-quality region of an-
other read is defined to be good. The 38 clipping posi-
tion of a read is the maximum of 38 end positions of
good regions of the read. The 58 clipping position of a
read is the minimum of 58 end positions of good re-
gions of the read. Figure 2 illustrates computation of
the 58 and 38 clipping positions of a read. Regions of
reads with a strong sequence similarity to other reads
are located by computing the start and end positions of
an optimal local alignment for each pair of reads with
a potential overlap. For efficiency, computation with
the algorithm of Smith and Waterman (1981) is re-
stricted to a band of diagonals in the dynamic pro-

Figure 1 Major steps of the assembly algorithm.

CAP3 Sequence Assembly Program

Genome Research 869
www.genome.org

gramming matrix (Pearson and Lipman 1988; Green
1996). Recall that our fast method for finding each pair
of reads with a potential overlap reports a band of di-
agonals for the pair. The band is expanded in both
directions by a certain number of bases, which can be
specified by the user. A local alignment computation is
performed over the expanded band of diagonals.

The local alignment algorithm of Smith and Wa-
terman (1981) is generalized to use base quality values.
The quality value of a base is q = 110 2 log10(p),
where p is the estimated error probability for the base
(Ewing and Green 1998). Match scores, mismatch
scores, and gap penalties are all weighted by the qual-
ity values of the bases involved. The intention for us-
ing base quality values is that matches at bases of high
quality values should receive a large positive score, dif-
ferences at bases of high quality values a large negative
score, but, matches and differences at bases of low
quality values should receive small positive and nega-
tive scores, respectively. Let a positive integer m be a
match score factor, let a negative integer n be a mis-
match score factor, and let a positive integer g be a gap
extension penalty factor. A match at bases of quality
values q1 and q2 is given a score of m * min(q1,q2). A
mismatch at bases of quality values q1 and q2 is given a
score of n * min(q1,q2). A base of quality value q1 in a
gap is given an extension score of 1g * min(q1,q2),
where q2 is the quality value of the base in the other
sequence immediately before the gap if there is a base
before the gap and the quality value of the base imme-
diately after the gap otherwise. Another possible defi-
nition for q2 is that q2 is the smaller of the quality
values of the bases in the other sequence immediately
before and after the gap. The second definition is not
currently used in the code and will be made available
as an option in the future. The score of a gap is the sum
of extension scores of each base in the gap minus a gap
open penalty. For simplicity, the gap open penalty is a
positive integer independent of base quality values.
The similarity score of an alignment is the sum of
scores of each match, each mismatch, and each gap.

For chimeric reads, their 58 and 38 clipping posi-
tions are computed in a different way. Chimeric reads
are identified by use of the method discussed in Huang

(1996a). For each chimeric read, a nonchimeric, good
region of the maximum length is found. The 58 and 38

clipping positions of the read are the start and end
positions of the region, respectively.

Computation and Evaluation of Overlaps
We first describe a method for computing overlaps be-
tween reads and then present a method for identifying
false overlaps. From now on, a clean read or a read
means the good region of the raw read after the 58 and
38 poor regions are removed. An overlap between two
reads is defined as a global alignment of the reads with
the maximum similarity score (Huang 1992). The defi-
nition of an overlap as an optimal global alignment of
two clean reads instead of as an optimal local align-
ment between two raw reads is useful for identifying
false overlaps. An optimal global alignment may show
that some good regions of the reads are not similar,
which indicates that the overlap is false, whereas an
optimal local alignment shows only similar regions.

For each pair of reads with a potential overlap, a
band of diagonals, centered at the start position of the
optimal local alignment computed previously, is
formed (Fig. 3). The band width is twice the band ex-
pansion size used in the local alignment computation.
A global alignment with the maximum similarity score
is computed over the band. A divide–conquer tech-
nique is used to perform the banded computation in
linear space (Chao et al. 1992). As in the local align-
ment computation, match and difference scores are
weighted by base quality values. The global alignment
is the overlap between the reads. The length, similarity
score, and percent identity of the overlap are defined
to be those of the alignment, respectively.

Each overlap is evaluated by five measures. If the
overlap fails under any of the five measures, then the
overlap is not considered in construction of contigs.

Figure 2 Computation of the 58 and 38 clipping positions of
read f. Read f has high local similarities to reads g and h. A pair of
broken lines shows the start and end positions of a similarity. A
thick line indicates the high-quality region of a read.

Figure 3 Computation of a global alignment of clean reads f
and g with the maximum score over a band. The rectangle rep-
resents the dynamic programming matrix, with the rows corre-
sponding to the bases of read f and the columns to the bases of
read g. The band is indicated by a shaded area and the start
position of an optimal local alignment between raw reads f and g
is indicated by a dot.

Huang and Madan

870 Genome Research
www.genome.org

The first three measures determine whether the over-
lap satisfies the minimum requirements on length, per-
cent identity, and similarity score.

The fourth measure examines the differences of
the overlap at bases of high quality values. If the over-
lap contains a sufficient number of differences at bases
of high-quality values, then the overlap is probably
false. Specifically, let an integer b be a high quality
value cutoff and let an integer d be a quality difference
score cutoff. For a difference of the overlap at bases of
quality values q1 and q2, the score at the difference is
max[0, min(q1,q2) 1 b]. The use of the term zero im-
plies that no difference is counted at bases of quality
values less than b. The quality difference score of the
overlap is the sum of scores at each difference. If the
quality difference score of the overlap exceeds d, then
the overlap is removed. For example, with b = 20, an
overlap with 15 differences at bases of quality values 40
or higher has a quality difference score of at least 300
and is removed if d = 250. The values for the param-
eters b and d can be set by the user.

Under the fifth measure, the difference rate of the
overlap is examined with respect to the sequencing
error rates of the two regions involved in the overlap.
The error rate of any region of a read is estimated using
the error vector method (Huang 1996a). For any true
overlap, the difference rate of the overlap is close to the
sum of the error rates of the two regions involved in
the overlap. Thus, if the difference rate of an overlap is
sufficiently higher than expected, then the overlap is
probably false. Let e be the largest clearance between
rates of difference. Let r1 be the estimated error rate for
one overlap region and let r2 be that for the other re-
gion. If the difference rate of the overlap is greater than
r1 + r2 + e, then the overlap is removed. The value for
the parameter e can be changed by the user. Giving a
smaller value to the parameter e causes more overlaps
to be removed. The fourth and fifth measures comple-
ment each other; the fourth measure depends on base
quality values, but the fifth measure does not.

Use of Constraints in Construction of Contigs
The procedure for using constraints in construction of
contigs consists of four major steps. In step 1, an initial
layout of reads is performed by use of a greedy method
in decreasing order of overlap scores (Huang 1996a). In
step 2, the quality of the current layout is assessed by
checking constraints. The constraint satisfiability in-
formation for each part of the current layout is col-
lected. In step 3, a region of the current layout with the
largest number of unsatisfied constraints is located
such that the unsatisfied constraints are satisfiable by
making corrections to the region. If such a region ex-
ists, corrections to the region are made and steps 2 and
3 are repeated. Otherwise, the correction procedure is
terminated. In step 4, contigs are linked with con-

straints. Then, each list of linked contigs is reported.
Below, we first give some definitions and then describe
steps 2–4.

A forward–reverse constraint consists of two reads
and two integers that specify a range for the distance
between the reads. The constraint is satisfied by a lay-
out if the two reads occur in the same contig, the up-
stream read is in forward orientation, the downstream
read in reverse orientation, and the distance between
the two reads is within the given range. Otherwise, the
constraint is unsatisfied. An overlap is unused if the
overlap is not used in the current layout. Let f → g de-
note an overlap from read f to read g. An unsatisfied
constraint involving reads h and r is satisfiable by an
unused overlap f → g if read f occurs downstream of
read h (r) in forward orientation in a contig, read g
occurs upstream of read r (h) in reverse orientation in a
contig, and the sum of the distance between read h (r)
in forward orientation and read f and the distance be-
tween read g and read r (h) in reverse orientation is
within the distance range of the constraint (Fig. 4A).
An unsatisfied constraint involving reads h and r is a
link between two contigs if read h (r) in the forward
orientation occurs in one contig, read r (h) in the re-
verse orientation occurs in the other contig, and the
sum of the distance between read h (r) and the 38 end
of the contig and the distance between the 58 end of
the other contig and read r (h) is less than the maxi-
mum distance of the constraint (Fig. 4B). Let u be the
minimum number of unsatisfied constraints required
to indicate a problem in the layout. The value for u is
changeable by the user.

In step 2, every constraint is checked on the cur-
rent layout. Satisfied constraints are used to compute,
for each overlap used in the layout, the number of
satisfied constraints that support the overlap. Unsatis-
fied constraints are partitioned into groups, where all
constraints in a group are associated with an unused
overlap or a pair of contigs. This is done as follows. For
each unsatisfied constraint that is satisfiable by unused

Figure 4 An unsatisfied constraint involving reads h and r with
a distance range of x to y bp. The orientations of reads h and r are
indicated by arrows. (A) The constraint is satisfiable by an unused
overlap from reads f to g, with x # d + e # y. (B) The constraint
serves as a link between two contigs, with d + e # y.

CAP3 Sequence Assembly Program

Genome Research 871
www.genome.org

overlaps, a unique overlap with the maximum score is
selected from the unused overlaps, and the constraint
is associated with the overlap. Additional criteria are
used to choose only one winner in the case that there
are two or more unused overlaps with the maximum
score. For each of the remaining unsatisfied con-
straints, if the constraint is a link between two contigs,
then the constraint is associated with the pair of con-
tigs.

In step 3, a group with the largest number of un-
satisfied constraints is selected for consideration. First
consider the case where the group is associated with an
unused overlap f → g. If the number of unsatisfied con-
straints in the group is greater than the sum of the
parameter u, the number of satisfied constraints sup-
porting the used overlap involving f, and the number
of satisfied constraints supporting the used overlap in-
volving g, then the layout is corrected by breaking the
used overlaps involving f and g, and joining f and g
with the overlap f → g. Next, consider the case where
the group is associated with a pair of contigs. If the gap
between the two contigs can be closed using reads from
other regions to make the unsatisfied constraints sat-
isfiable, then the gap closure is implemented. Reads
from other regions that are associated by constraints
with reads in the two contigs are used to close the gap.
If no correction is made to the current layout for the
selected group, then the selection process is repeated
with the remaining groups of constraints until a cor-
rection is made to the current layout or no more group
is available for selection.

In step 4, contigs are ordered using constraints as
links. Step 2 is performed to obtain groups of unsatis-
fied constraints that serve as links between contigs.
The groups are considered in decreasing order of group
size. Let integer v be the minimum number of con-
straints required to link two contigs. For each group of
constraints that are associated with a pair of contigs, if
the number of constraints in the group is not less than
the parameter v, and neither of the two contigs is al-
ready linked to other contigs at the corresponding end,
then a link between the contigs is established.

Construction of Alignments
and Consensus Sequences
A multiple sequence alignment of reads is constructed
for each contig. The construction is performed by re-
peatedly aligning the next read with the current align-
ment. The reads are considered in increasing order of
their positions in the contig. To produce an accurate
alignment, the base quality values of the reads are used
in the construction. After an alignment is constructed,
a consensus sequence along with a quality value for
each base is computed for the contig. For each column
of the alignment, a weighted sum of quality values is
calculated for each base type and the base type with

the largest sum of quality values is taken as the con-
sensus base for the column. The quality value for the
consensus base is the sum of quality values for the
consensus base type minus the sum of quality values
for every other base type. However, if the column con-
tains two base types, each with a very large sum of
quality values, then a very low quality value is assigned
to the consensus base. The assignment of the low qual-
ity value indicates a potential problem often caused by
polymorphism or collapsing of highly similar copies of
a repetitive element.

A weighted sum of quality values is calculated for
each base type as follows. The quality values for the
base type are partitioned into two groups, one for each
strand. It is assumed that quality values in one group
are independent of ones in the other group (Green
1996). The quality values in each group are sorted in
decreasing order. The ith value in each group is given a
weight of wi. Then a sum of all quality values multi-
plied by their weights is computed. The following
simple set of weights is currently used: w1 = 1.0 and
wi = 0.5 for i > 1. For example, consider computing a
weighted sum of four quality values 20, 40, 30, and 10
for a base type using the simple set of weights. Assume
that the values 20 and 30 are from the plus strand and
the values 40 and 10 are from the minus strand. Then
the weighted sum of quality values for the base type is
85, where the weight for the values 30 and 40 is 1.0 and
the weight for the values 20 and 10 is 0.5. CAP3 quality
values for consensus bases are related to estimated er-
ror rates for the bases. A proper set of weights will be
worked out in the future so that CAP3 quality values
accurately correspond to error rates.

We consider aligning one read with the current
alignment of reads. For clarity, the current alignment is
called a block. Although the block may be very long, a
major portion of the block remains unchanged for the
rest of the construction. Thus, only the 38 portion of
the block that gets changed is used for alignment. This
38 portion of the block is replaced by the resulting
alignment. In the following, the block means the 38

portion.
A scoring scheme is introduced that incorporates

base quality values into the score of an alignment of
the block and the read. In this scheme, several average
quality values are computed for each column of the
block. Then the average quality values are used along
with the quality values of the read to weight match and
difference scores. An alignment of the block and the
read consists of substitutions, deletion gaps, and inser-
tion gaps. In a substitution, a column of the block is
aligned with a base of the read. A deletion gap consists
of a number of columns of the block. An insertion gap
consists of a number of bases of the read.

Consider a column of the block. Let the column
consist of k nonblank characters ci, 1 # i # k. Each ci is

Huang and Madan

872 Genome Research
www.genome.org

in one of A, C, G, T, N, and 1, where N denotes any
base other than the four regular bases and 1 is a gap
symbol. Let qi be the quality value of ci. If ci is a gap
symbol, then qi is the quality value of the base imme-
diately before ci in the same row if such a base exists
and the quality value of the base immediately after ci

otherwise. Seven average quality values are computed
for the column: five for substitution, one for deletion,
and one for insertion. Each of the five values for sub-
stitution corresponds to one of the five base types. Let
qs(d) denote the average quality value for substitution
involving base type d of the read, let qd denote the
average quality value for deletion, and let qn denote the
average quality value for insertion. The values are de-
fined by the following formulas, where d is a regular
base.

qs(d) = FS (
1 # i # k and ci = d

qiD
− S (

1 # i # k and ci Þ d
qiDGYk,

qd = S (
1 # i # k and ci Þ −

qiDYk,

qn = S(
i = 1

k

qiDYk,

qs~N! = −qn

Note that the quality values of the gap symbols in
the column are excluded from the calculation of the
average quality value for deletion. Any substitution in-
volving base N is considered as a mismatch.

It should be pointed out that the current defini-
tion of the average quality values assumes that errors in
overlapping reads occur independently. This assump-
tion is not true in practice because the same error is
likely to occur in the same local context, and overlap-
ping reads contain many identical local contexts. A
refined definition can be developed by using read type
to address the dependence of errors, as suggested by
one referee. In this definition, the quality values in a
sum are partitioned into groups by sequencing chem-
istry and orientation, the quality values in each group
are sorted in descending order, and the quality values
in each group are given decreasing weights, respec-
tively. For example, the largest value in the group is
given a weight of 1.0, the second largest value a weight
of 0.5, and so on. We plan to work out a set of decreas-
ing weights for the group in the future.

The scores of a substitution, a deletion, and an
insertion are defined as follows. Consider a substitu-
tion involving the column of the block and a base d
of the read with quality value qr. If qs(d) > 0, then
the substitution is considered as a match and its score
is m * min[qs(d),qr], where the positive integer m is a

match score factor. If qs(d) # 0, then the substitution
is considered as a mismatch and its score is n *
min[1qs(d),qr], where the negative integer n is a mis-
match score factor.

The score of a gap is the gap open score plus the
gap extension score of each element in the gap. For
simplicity, the gap open score is a small negative
number independent of quality values. However, the
extension score depends on quality values. Let a posi-
tive number g be a gap extension penalty factor. The
extension score of a column with average deletion
quality value qd in a deletion gap is 1g * min(qd,qr),
where qr is the quality value of a base of the read im-
mediately before or after the gap. The extension score
of a base of the read with quality value qr in an inser-
tion gap is 1g * min(qn,qr), where qn is the average
insertion quality value of a column of the block imme-
diately before or after the gap. An example for calcu-
lation of scores of a match, a mismatch, a deletion, and
an insertion is given in Figure 5.

A global alignment of the block and the read with
the maximum score is computed in linear space using
a divide–conquer technique (Hirschberg 1975; Myers

Figure 5 An example for calculation of scores of a match, a
mismatch, a deletion, and an insertion. The quality values of
bases are shown next to the bases. In each case, the average
quality value of the column and the score are presented, where
positive integer m is the match score factor, negative integer n is
the mismatch score factor, and positive integer g is the gap ex-
tension penalty factor.

CAP3 Sequence Assembly Program

Genome Research 873
www.genome.org

and Miller 1988; Huang 1994). Because the pairwise
alignment computation is performed at most once for
each read, it is affordable to carry out the computation
over the entire dynamic programming matrix for best
results. The average quality values for the block are
precomputed so that each entry in the dynamic pro-
gramming matrix is calculated in a constant time.

RESULTS
The methods discussed in the previous section have
been implemented in the CAP3 program. Most of the
6700 lines of CAP3 code were newly written. CAP3
takes as input a file of sequence reads in FASTA format
and two optional files: a file of quality values in FASTA
format and a file of forward–reverse constraints. The
file of quality values must be named xyz.qual, and
the file of forward–reverse constraints must be named
xyz.con, where xyz is the name of the sequence file.
Each line of the constraint file specifies one forward–
reverse constraint of the form ReadA ReadB MinDis-
tance MaxDistance where ReadA and ReadB are the
names of two reads, and MinDistance and MaxDis-
tance are the lower and upper limits of a distance
range. Assembly results in CAP format go to the stan-
dard output and need to be directed to a file. CAP3 also
produces assembly results in ace file format (.ace). This
step allows CAP3 output to be viewed in CONSED
(Gordon et al. 1998). CAP3 reports the status of each
constraint in a separate file. CAP3 produces a number
of other output files as PHRAP. A version of CAP3 was
developed by Kathryn Beal for use in the GAP4 pro-
gram of the Staden package.

The CAP3 program was developed and tuned on
real data sets and artificial data sets generated by Gen-
Frag (Engle and Burks 1993). Those data sets were help-
ful in the identification of problems with the program.
Below, we present results of CAP3 on four real BAC
data sets. Although the program is under steady refine-
ment, no change or tuning was made to the program
on any of the four data sets.

Information on the four data sets is shown in
Table 1. All the data sets contain full-length reads with
low-quality regions and masked vector regions. Each
data set contains a file of reads and a file of quality
values produced by PHRED. Each data set was provided
with a consensus sequence. For each data set, a file of

forward–reverse constraints was produced by a pro-
gram named Formcon from the file of reads according
to the naming convention. The default values were
used for all the parameters of CAP3. All tests were per-
formed on a Sun Ultra 1 workstation.

Assembly results by CAP3 on the four data sets are
presented in Table 2. For each data set, the consensus
sequence produced by CAP3 was aligned by a program
named Check with the provided consensus sequence.
The number of differences between the CAP3 consen-
sus sequence and the provided consensus sequence
was computed.

CAP3 produced one large contig of 90,292 bp on
data set 203. The region of the CAP3 sequence from
base 516 to 90,292 (last base) is identical to the region
of the provided sequence from base 1 to 89,777. The
provided sequence contains two extra bases at the 38

end because CAP3 trimmed the two bases off its con-
sensus sequence. The CAP3 sequence is 515 bp longer
than the provided sequence at the 58 end. The 515-bp
region contains a 144-bp low-quality end region. The
515-bp region in the CAP3 sequence is the consensus
sequence of 38 end regions of 5 reads in forward orien-
tation. This suggests that the extra 515-bp region was
probably removed from the provided sequence. CAP3
made no corrections using constraints.

CAP3 produced one large contig of 132,057 bp on
data set 216. The region of the CAP3 sequence from
base 14 to 120,934 is highly similar to the region of the
provided sequence from base 3729 to 124,645 (last
base). In other words, the CAP3 sequence and the pro-
vided sequence have an overlap of about 120,920 bp.
The 3728-bp 58 end region of the provided sequence is
identical to the region of the CAP3 sequence from base
127,869 to 131,596. Both end regions (base 14–1828
and base 130,859–131,814) of the CAP3 sequence are
Alu sequences. Because of these Alu sequences, the
3728-bp 58 end region of the provided sequence was
put by CAP3 at a different place. The 6934-bp region of
the CAP3 sequence from base 120,935 to 127,868 is
not similar to any part of the provided sequence. Be-
cause the original assembly is not available, it is not

Table 2. Results of CAP3 on BAC Data Sets

Data set

Running
time
(min)

No. of
large

contigs

Length
of CAP3
sequence

No. of
differencesa

203 37 1 90,292 0
216 154 1 132,057 17
322F16 127 1 157,982 11
526N18 73 2 180,128b 10

aThe number of differences in highly similar regions of the
CAP3 sequence and the provided sequence.
bThe sum of the lengths of two large contigs produced by
CAP3.

Table 1. BAC Data Sets

Data set
GenBank

accession no.
No. of
reads

Average
length

of reads

Length of
provided
sequence

203 AC004669 1812 598 89,779
216 AC004638 2353 614 124,645
322F16 AF111103 4297 1011 159,179
526N18 AF123462 3221 965 180,182

Huang and Madan

874 Genome Research
www.genome.org

clear whether the 6934-bp region of the CAP3 se-
quence was removed from the provided sequence or
was in a separate contig in the original assembly. CAP3
made one correction using constraints. The correction
is supported by 11 constraints.

A total of 17 base differences were found in the
120,920-bp overlapping region between the CAP3 se-
quence and the provided sequence. The CAP3 align-
ment was examined at the positions of the 17 differ-
ences. Of the 17 differences, 7 occur in regions covered
by one or two reads, 1 appears to be an error in the
provided sequence, and 9 are errors in the CAP3 se-
quence due to stacking of two highly similar Alu copies
in a 58 end region of 550 bp.

CAP3 took much more time on data set 216 than
on set 203 because CAP3 computed a larger number of
overlaps on set 216. The number of overlaps for set 216
is about 6 times that for set 203. In general, an increase
in CAP3 running time is mainly due to an increase in
the number of overlaps computed by CAP3.

On data set 322F16, CAP3 produced one large con-
tig of 157,982 bp. The region of the CAP3 sequence
from base 22 to 157,982 (last base) is highly similar to
the region of the provided sequence from base 1218 to
159,179 (last base). The 21-bp 58 end region of the
CAP3 sequence is the consensus sequence of 58 end
regions of three oligonucleotide reads in reverse orien-
tation. The CAP3 sequence has no region similar to the
1217-bp 58 end of the provided sequence because CAP3
missed a short overlap of 42 bp between a short contig
of 1160 bp and the large contig of 157,982 bp.

A total of 11 differences were found in the highly
similar regions of the CAP3 sequence and the provided
sequence. Of the 11 differences, 2 are errors in the
CAP3 sequence, 4 are errors in the provided sequence,
and 5 are not clear as they occur in a region of low
coverage. CAP3 made two corrections using con-
straints. One correction is supported by 10 constraints
and the other by 9 constraints.

On data set 526N18, CAP3 produced two large
contigs of 27,875 bp and 152,253 bp, respectively.
CAP3 failed to use a weak overlap of 124 bp between
the two contigs, which has a percent identity of 84%.
However, CAP3 did report that the 38 end of the
152,253-bp contig and the 58 end of the 27,875-bp
contig are linked by five constraints. The entire
152,253-bp CAP3 sequence is almost identical to the
region of the provided sequence from base 78 to
152,332. The 77-bp 58 end region of the provided se-
quence is from a 58 end region of one read in the for-
ward orientation. This region was removed by CAP3
from its consensus sequence. The almost identical re-
gions contain four base differences: one is an error in
the provided sequence, and three are not clear because
of lack of consensus.

The entire 27,875-bp CAP3 sequence is highly

similar to the region of the provided sequence from
base 152,309 to 180,182 (last base). The highly similar
regions contain six base differences: one is an error in
the CAP3 sequence, and five are not clear because of
lack of consensus, which occur at bases of quality val-
ues less than 10. All the six differences occur in an
initial 66-bp region of the CAP3 sequence. CAP3 made
one correction using constraints. The correction is sup-
ported by 14 constraints.

Comparison of CAP3 and PHRAP
CAP3 and PHRAP were compared on two types of data:
low-pass data with forward–reverse constraints and
data of various coverage without forward–reverse con-
straints. The evaluation goal for the low-pass data (of
fivefold coverage) was to determine whether it was
possible to construct scaffolds with CAP3 and PHRAP.
The evaluation goal for the second type of data was to
assess the performance of CAP3 and PHRAP in terms of
the number and accuracy of contigs.

The low-pass data consist of seven BAC data sets
(shown in Table 3). Forward–reverse constraints were
obtained by sequencing both ends of every plasmid
subclone. We were able to construct scaffolds with
CAP3 in all of the seven BACs and with PHRAP in six of
them. Because CAP3 produces a partial order of contigs
by constraints, it was easier and faster to construct scaf-
folds with CAP3. The accuracy of each scaffold was
checked by comparing the scaffolded sequence against
the answer sequence. The details of this experiment
will be published elsewhere.

Shiaw-Pyng Yang at the Genome Sequencing Cen-
ter, Washington University, evaluated the perfor-
mance of CAP3 and PHRAP on a number of data sets
with various depths of coverage (S.-P. Yang, pers.
comm.). Those data sets were randomly generated for a
desired depth of coverage from a real data set named
H NH0018C09. The real data set was produced on
new capillary machines. PHRED was used to generate
quality values for all reads. The latest version of
PHRAP, the 3/19/99 version, was used in the evalua-
tion. No forward–reverse constraints were used.

Table 3. Ability to Construct Scaffolds with CAP3
and PHRAP

Data set

Length of
answer

sequence

No. of
reads
per kb

Ability
to make
scaffold

with CAP3

Ability
to make
scaffold

with PHRAP

188A7 112,773 10.6 yes yes
201G24 184,666 10.8 yes yes
213L3 135,545 10.3 yes yes
257P13 184,998 10.1 yes yes
488C13 187,237 11.1 yes yes
501I4 231,464 11.7 yes no
526N18 180,104 12.2 yes yes

CAP3 Sequence Assembly Program

Genome Research 875
www.genome.org

Four depths of coverage, 3, 5, 8, and 10, were se-
lected. For each depth of coverage, four data sets were
generated randomly by selection of reads from the real
data set. CAP3 and PHRAP were run on each of the 16
data sets, and the consensus sequences produced by
CAP3 and PHRAP were compared with the answer se-
quence of 167,358 bp. CAP3 and PHRAP performance
data are shown in Table 4. On those data sets, PHRAP
often produced longer contigs than CAP3, while CAP3
often produced fewer internal errors in consensus se-
quences than PHRAP. The CAP3 consensus sequences
contain more errors than the PHRAP sequences within

500 bases of sequence ends. The reason for this result
is that the 58 and 38 ends of each CAP3 consensus se-
quence were an end region of a raw read, which con-
tains a large number of errors. The problem has been
fixed by trimming the raw end region.

DISCUSSION
We have introduced a number of new features in the
CAP3 sequence assembly program. The features in-
clude fast identification of pairs of reads with an over-
lap, clipping of 58 and 38 poor regions of reads, efficient
computation and evaluation of overlaps, use of for-
ward–reverse constraints to correct errors in construc-
tion of contigs, and generation of consensus sequences
for contigs. These features allow CAP3 to take full-
length reads and produce more accurate sequences
than CAP2.

An unusual feature of CAP3 is the algorithm for
making use of constraints to correct assembly errors.
The algorithm is very tolerant of errors in constraints.
The algorithm makes a correction to the current assem-
bly only if the correction is supported by a sufficient
number of constraints. The random distribution of
subclones implies that errors in constraints are also
randomly distributed. Thus, it is very unlikely that a
sufficient number of wrong constraints all consistently
support a correction to the same region. The experi-
mental results indicate that CAP3 is able to make cor-
rections to contigs using constraints.

Because DNA sequence assembly is a difficult prob-
lem, it is beneficial to the genome sequencing commu-
nity to develop several sequence assembly programs.
These programs complement one another because they
use different approaches. CAP3 differs from the other
assembly programs in use of constraints to construct
contigs and use of quality values to construct multiple
sequence alignments. Below, we compare the CAP3
and PHRAP approaches to generation of consensus se-
quences for contigs.

CAP3 uses a multiple sequence alignment method
to generate a consensus sequence for a contig. The
multiple sequence alignment method is extended to
weight bases by their quality values. The accuracy of
this approach depends on the performance of the mul-
tiple sequence alignment method. If the bases of over-
lapping reads in a contig are properly aligned, then it is
likely that a consensus base occurs in each column of
the alignment, and an accurate sequence is generated
for the contig. On the other hand, if the bases of over-
lapping reads are improperly aligned, then it is likely
that conflicting bases occur in some columns and an
inaccurate sequence is generated for the contig. The
multiple alignment method may still work in the situ-
ation where the contig has a high depth of coverage,
but individual reads are not very accurate.

PHRAP uses a different approach to generate a se-

Table 4. Performance of CAP3 and PHRAP

Program
Data
seta

Length of
longest
contig

No. of
large

contigs

Total
length
of gaps

Total
no. of

internal
errorsb

CAP3 3XA 6189 57 52,885 443
PHRAP 3XA 6396 54 38,146 529

CAP3 3XB 12,368 44 71,761 71
PHRAP 3XB 13,116 47 60,436 228

CAP3 3XC 10,709 49 54,229 227
PHRAP 3XC 11,406 45 34,727 332

CAP3 3XD 11,408 43 67,586 115
PHRAP 3XD 11,350 49 60,312 240

CAP3 5XA 10,582 42 27,965 249
PHRAP 5XA 18,268 31 14,396 252

CAP3 5XB 26,034 17 10,405 100
PHRAP 5XB 33,693 18 7,322 115

CAP3 5XC 20,939 29 20,520 172
PHRAP 5XC 20,912 27 16,617 261

CAP3 5XD 14,219 35 23,635 46
PHRAP 5XD 14,696 33 17,113 129

CAP3 8XA 71,025 12 4,681 83
PHRAP 8XA 71,395 8 1,061 80

CAP3 8XB 53,127 8 883 59
PHRAP 8XB 53,078 7 542 36

CAP3 8XC 52,134 8 752 4
PHRAP 8XC 76,922 6 774 6

CAP3 8XD 72,690 7 1,241 35
PHRAP 8XD 102,523 6 648 60

CAP3 10XA 91,380 4 0 28
PHRAP 10XA 91,329 3 0 11

CAP3 10XB 167,655 1 0 5
PHRAP 10XB 138,551 2 0 7

CAP3 10XC 106,631 5 321 44
PHRAP 10XC 77,747 4 330 12

CAP3 10XD 79,900 4 468 2
PHRAP 10XD 79,978 3 346 2

aThe number in the name of a data set is the estimated depth
of coverage for the data set.
bAn error in a consensus sequence is internal if it is not within
500 bases of either sequence end.

Huang and Madan

876 Genome Research
www.genome.org

quence for a contig. The sequence is a mosaic of read
regions of the highest quality values. The mosaic ap-
proach does not make as full use of redundant coverage
as the multiple alignment approach, nor does it have
the problem of misaligning multiple bases that the
multiple alignment approach occasionally does. The
mosaic approach can work in the situation where the
contig has a low depth of coverage, but each region of
the contig is covered by a region of a read with high
quality values.

Finally, we address the question of when to use
CAP3 and PHRAP. If quality values are not available,
then the user may choose CAP3 as CAP3 is able to use
redundant coverage in construction of consensus se-
quences. The user may use CAP3 to make scaffolds on
low-pass data with forward–reverse constraints as
CAP3 uses forward–reverse constraints in assembly.
Otherwise the user may select PHRAP. PHRAP often
produces longer contigs than CAP3, whereas CAP3 of-
ten produces fewer errors in consensus sequences than
PHRAP. If affordable, the user may use both CAP3 and
PHRAP and compare their consensus sequences.

Availability
The CAP3 program is freely available for academic use
at huang@mtu.edu. The CAP3 program can be used in
the GAP4 program of the Staden Package (http://
www.mrc-lmb.cam.ac.uk/pubseq). The CAP3 program
can also be used together with the CONSED program.
Additional information on CAP3 can be obtained at
http://genome.cs.mtu.edu/sas.html.

ACKNOWLEDGMENTS
We thank Kathryn Beal for incorporating CAP3 in GAP4,
Rachel Dickhoff for help with low-pass data, Lee Hood and
Rodger Staden for suggesting use of forward–reverse con-
straints, Jun Qian for producing CAP3 output in ace format,
Bruce Roe, Lee Rowen, and Granger Sutton for discussions
and data sets, Shiaw-Pyng Yang for comparing CAP3 and
PHRAP, and the referees for constructive suggestions. This
project was supported in part by National Institutes of Health
grant R01 HG01502-03 from the National Human Genome
Research Institute.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman.

1990. Basic local alignment search tool. J. Mol. Biol.
215: 403–410.

Bonfield, J.K., K. Smith, and R. Staden. 1995. A new DNA sequence
assembly program. Nucleic Acids Res. 24: 4992–4999.

Chao, K.-M., W.R. Pearson, and W. Miller. 1992. Aligning two
sequences within a specified diagonal band. Comput. Appl. Biosci.
8: 481–487.

Engle, M.L. and C. Burks. 1993. Artificially generated data sets for
testing DNA fragment assembly algorithms. Genomics
16: 286–288.

Ewing, B. and P. Green. 1998. Base-calling of automated sequencer
traces using Phred. II. Error probabilities. Genome Res.
8: 186–194.

Ewing, B., L. Hillier, M.C. Wendl, and P. Green. 1998. Base-calling of
automated sequencer traces using Phred. I. Accuracy assessment.
Genome Res. 8: 175–185.

Gleizes, A. and A. Henaut. 1994. A global approach for contig
construction. Comput. Appl. Biosci. 10: 401–408.

Gordon, D., C. Abajian, and P. Green. 1998. Consed: A graphical
tool for sequence finishing. Genome Res. 8: 195–202.

Green, P. 1996.
http://bozeman.mbt.washington.edu/phrap.docs/phrap.html.

Hirschberg, D.S. 1975. A linear space algorithm for computing
maximal common subsequences. Commun. Assoc. Comput. Mach.
18: 341–343.

Huang, X. 1992. A contig assembly program based on sensitive
detection of fragment overlaps. Genomics 14: 18–25.

———. 1994. On global sequence alignment. Comput. Appl. Biosci.
10: 227–235.

———. 1996a. An improved sequence assembly program. Genomics
33: 21–31.

———. 1996b. Fast comparison of a DNA sequence with a protein
sequence database. Microb. Comp. Genomics 1: 281–291.

Kececioglu, J. D. and E.W. Myers. 1995. Combinatorial algorithms
for DNA sequence assembly. Algorithmica 13: 7–51.

Larson, S., M. Jain, E. Anson, and E.W. Myers. 1996. “An interface
for a fragment assembly kernel.” Technical report TR 96-04A,
Department of Computer Science, The University of Arizona,
Tucson, AZ.

Lawrence, C.B., S. Honda, N.W. Parrott, T.C. Flood, L. Gu, L. Zhang,
M. Jain, S. Larson, and E.W. Myers. 1994. The genome
reconstruction manager: A software environment for supporting
high-throughput DNA sequencing. Genomics 23: 192–201.

Myers, E.W. and W. Miller. 1988. Optimal alignments in linear
space. Comput. Applic. Biosci. 4: 11–17.

Pearson, W.R. and D. Lipman. 1988. Improved tools for biological
sequence comparison. Proc. Natl. Acad. Sci. 85: 2444–2448.

Peltola, H., H. Soderlund, and E. Ukkonen. 1984. SEQAID: A DNA
sequence assembling program based on a mathematical model.
Nucleic Acids Res. 12: 307–321.

Smith, T.F. and M.S. Waterman. 1981. Identification of common
molecular subsequences. J. Mol. Biol. 147: 195–197.

Smith, S., W. Welch, A. Jakimciu, T. Dahlberg, E. Preston, and D.
Van Dyke. 1993. High throughput DNA sequencing using an
automated electrophoresis analysis system and a novel sequence
assembly program. Biotechniques 14: 1014–1018.

Staden, R. 1980. A new computer method for the storage and
manipulation of DNA gel reading data. Nucleic Acids Res.
8: 3673–3694.

Sutton, G.G., O. White, M.D. Adams, and A.R. Kerlavage. 1995.
TIGR assembler: A new tool for assembling large shotgun
sequencing projects. Genome Sci. Technol. 1: 9–19.

Received February 2, 1999; accepted in revised form July 14, 1999.

CAP3 Sequence Assembly Program

Genome Research 877
www.genome.org

