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Preface
The main concern of the author while writing the first edition of A Textbook of Chemical
Engineering Thermodynamics was to provide a student-friendly book on the subject of
thermodynamics which was considered by many in the academic circles, as a difficult subject
consisting of abstract and difficult-to-conceptualize ideas, principles and variables. Within a very
short period after its publication, the book received wide acceptance among the faculty and students
of Chemical Engineering and related disciplines. This prompted the author to bring out this second
edition retaining the basic structure, sequence, philosophy and style of presentation.
Several changes and corrections were made in previous reprints of the first edition based on readers’
feedback. Suggestions have also been made to include more number of worked-out examples
illustrating the applications of the laws of thermodynamics. Therefore, in this edition, worked-out
examples have been added in almost all Chapters to make the abstract concepts of thermodynamics
more clear to the readers. More than 25 such worked-out numerical examples and a few exercise
problems are incorporated in the new edition. The Chapter on Phase Equilibria is revised recognizing
the importance that the Equations of State Approach and vaporization equilibrium constants for
solving vapour-liquid-equilibrium problems have attained recently due to the increased use of
simulation packages in the design of process units. More than 90 GATE questions with answers have
been added to the Appendix in Objective Type Questions on Chemical Engineering Thermodynamics,
taking the total number of such questions to 236, which will definitely be a boon to the candidates
preparing for competitive examinations.
The author believes that with the improvements made, the second edition will retain the strength of
the first edition that so many people have appreciated and commented. Many Universities have
accepted the earlier edition as a textbook or reference book for their course study in Chemical
Engineering or related branches of Engineering, such as Biotechnology and Biochemical Engineering,
Petroleum Engineering, Fire and Safety Engineering, Electrochemical Engineering, Polymer Science
and Engineering, Environmental Engineering etc. The author is grateful to all the academicians who
have shown interest in the book and the faculties who have come forward with valuable suggestions
for improvement and hope their continued patronage for the present work as well. He would also like
to acknowledge the valuable service of the editorial and marketing team at PHI Learning, Delhi for
making the work a commendable success.
The author is also grateful to the readers for their interest and hope that they will continue to make
suggestions for improvement of the book.

K.V. NARAYANAN



Preface to the First Edition
The field of chemical engineering is conventionally classified into two broad categories: the unit
operations and the unit processes. The former involves physical transformation and the latter
chemical changes. The chemical engineer, whether he is concerned with the unit operations or with
the unit processes has to evaluate the energy requirements for initiating these transformations, study
the energy changes involved in such processes, and determine the extent to which these
transformations can be carried out. The science of thermodynamics deals exactly with these problems
and a strong foundation in thermodynamics is therefore a must for the success of a chemical engineer
in his professional life.
Chemical engineering thermodynamics is one of the core courses in the undergraduate chemical
engineering curriculum. In this course, more emphasis is given to the treatment of properties of
solutions, phase equilibria and chemical reaction equilibria, all coming under the realm of ‘chemical
thermodynamics’ rather than on the thermodynamic analysis of heat engines and heat-power cycles.
The conventional textbooks on thermodynamics are, therefore, inadequate to meet these requirements.
Hence the need for a book on thermodynamics that deals exclusively with the theory and applications
of chemical engineering thermodynamics.
During the several years of my experience in teaching thermodynamics to the undergraduate students, I
have come across students who have strong ‘likes’ and ‘dislikes’ toward the subject. Unfortunately,
the latter frequently outnumber the former. The seemingly abstract nature of thermodynamic principles
is only partly to blame for this scenario. The major reason is the dearth of student-friendly textbooks
that help the student in providing a sound basis and act as catalysts for going deeper into the subject.
An unwilling student should not be compelled to studying the vast subject of thermodynamics, without
giving him or her a proper orientation. These inadequacies of the existing books on the subject have
been kept in mind while writing this book. An earnest attempt has been made to eliminate avoidable
rigour and intricacies that usually make the subject dry. Instead, the book tries to provide a firm
foundation in the theory through the application of the fundamentals to solve practically important
problems.
This book is intended to serve as a textbook for the undergraduate students in chemical engineering
and other related branches of engineering such as polymer engineering, petroleum engineering, and
safety and environmental engineering. Numerical examples given under each section would help the
student gain a better insight into the theory. In this text, only SI units used. Review questions at the end
of the chapters would help the student check his/her understanding of the topics discussed in each
chapter before going to the next. Each chapter is provided with a number of exercise problems, and
answers to all of them are given at the end of the book. A number of objective-type questions are
included in the Appendix: ‘An Aptitude Test in Chemical Engineering Thermodynamics’. The student
would find these very helpful in preparing for competitive examinations. Most of the questions
presented in this section are taken from earlier Graduate Aptitude Test in Engineering (GATE)
question papers.
This book is the outgrowth of the several lectures I have delivered to the chemical engineering
students in the Government Engineering College, Thrissur. The response from the students who
benefitted from these lectures was a major source of inspiration for writing this book. Valuable help



and suggestions at various stages in its evolution have contributed towards bringing it out in the
present form. My colleagues at the Government Engineering Colleges at Thrissur and Calicut
provided a helpful environment for undertaking this work and I am very grateful towards all of them. I
recall with gratitude the stimulating experience I spent at IIT Madras during my research work under
Prof. M.S. Ananth, which contributed much in sustaining my interest in the subject of thermodynamics.
I am thankful to the Director of Technical Education, Kerala and the Government of Kerala for
granting me permission to publish the book. And my special thanks are due to my wife Lakshmi for
her suggestions for improving the quality and content of the book as also for the cooperation in
accommodating the lengthy hours that I spent during the preparation of the manuscript. Thanks are also
due to my daughter Aparna for her patience and understanding even when I could not attend to her due
to my preoccupation in this book-writing project.
Comments, constructive criticism and suggestions for improving the quality of the book would be
gratefully accepted.

K.V. NARAYANAN



1

Introduction and Basic Concepts
The science of thermodynamics deals with energy and its transformation. It tells us about the direction
in which changes take place in nature. It also determines the conditions under which a proposed
change attains a state of equilibrium—a state in which no further change is possible under the given
conditions. Original thermodynamic formulae were applied to a limited class of processes such as
those occurring in heat engines. Thermodynamic analysis is now applied to a wide variety of
problems covering both physical and biological sciences. Thermodynamics finds extensive
applications in chemical engineering. The field of chemical engineering is commonly divided into
two: unit operations and unit processes. The former involves only physical transformation such as
gas absorption, distillation, heat transfer, and filtration, whereas the latter consists of the combination
of the physical changes with chemical processes such as oxidation, nitration, and catalysis. In
chemical processes, like the synthesis of ammonia from a mixture of nitrogen and hydrogen,
thermodynamics enables us to determine the maximum yield of ammonia obtained under given
conditions of temperature and pressure. In a unit operation like distillation, it predicts the minimum
reflux ratio provided in the fractionation column to achieve a specified separation. The fundamental
problems that a chemical engineer encounters, whether they are related to unit operations or to unit
processes, involve two basic aspects of a change—the equilibrium and the rate of change. The
strength and limitations of thermodynamics will become obvious when we try to find answers to these
problems.

1.1 SCOPE AND LIMITATIONS OF THERMODYNAMICS
The heat and work effects accompanying a physical or chemical process can be accurately 
predicted using thermodynamic calculations. What is the maximum work obtained from a specified
change in the state of the system? Or, what is the minimum work required to effect a certain change in
the system? What is the efficiency with which work is produced when a certain 
fuel is burned in a steam engine? The answers to these questions are readily provided by
thermodynamics.
Thermodynamics sets certain limits to the various processes occurring in nature. It also helps us to
determine a priori whether a proposed process is possible or not. Since it deals with the direction of
change and equilibrium, it enables one to calculate the equilibrium conditions for both physical and
chemical changes. For example, thermodynamics can predict the equilibrium yield in a chemical
reaction and also gives insight into the driving force for the change under the given conditions of
temperature and pressure. The equilibrium yield gives the engineer an ultimate value that he strives to
attain by trying improvements in the process. Attempts to cross these limits have all been futile as is
evident from the history of the evolution of blast furnace technology for iron making.
In the blast furnaces, iron is produced by reduction of iron oxide by carbon monoxide.

Fe2O3 + 3CO � 2Fe + 3CO2



In the early years of the development of blast furnace technology, the presence of carbon monoxide in
the effluent gases was thought to be due to insufficient contact time in the furnace. To improve the
time of contact of coal with the ore, furnaces as tall as 30 to 40 m were built, but the conversion
could not be improved. The concept of equilibrium conversion was not recognised at that time. Later,
with the application of thermodynamics to chemical reaction equilibrium, it became clear that in a
chemical reaction conversions above the equilibrium value could never be attained in practice. Apart
from predicting the equilibrium yield, thermodynamics also helps us to derive information on the
possible side reactions and methods of eliminating undesired products. It can also help us in selecting
the optimum conditions for the reaction such as the temperature, pressure, concentration of reactants,
etc.
Though thermodynamics can tell us whether a chemical reaction is possible or not, it cannot say
whether a possible reaction will actually occur or not. The rate of any process may be written as the
ratio of the driving force to resistance. Thermodynamics can tell us about the driving force, but
resistance to flow of energy or material introduces questions of mechanisms that are outside its scope.
Consequently, it cannot say at what rate the system approaches equilibrium. That is, thermodynamics
cannot predict whether a specified change will take place in a reasonable period of time or not. As an
example, consider the unit operation of gas absorption. The driving force for the absorption of a gas
in a liquid, the energy requirements, the minimum amount of absorbing liquid required, etc., could be
determined from thermodynamic considerations. But the rate of absorption is influenced by many
other factors that are alien to thermodynamics. Thermodynamics can predict the minimum work
required in a process, but the actual work requirement can be determined only if we know the losses
like friction that are unavoidable.
Not withstanding these limitations, thermodynamics remains a powerful and universal tool with the
engineer. It enables us to calculate the maximum amount of work a given fuel can produce in a steam
engine, the maximum efficiency of a turbine or a refrigerator and the maximum yield in a given
chemical reaction. It also helps us in establishing the optimum range of temperatures and pressures
that are to be used in a chemical or physical process and it guides us in the choice of solvent to be
used in such separation operations as gas absorption and liquid extraction.

1.2 DEFINITIONS AND FUNDAMENTAL CONCEPTS
1.2.1 Systems and Processes
System. In thermodynamics, a substance or group of substances in which we have special interest is
called a system. It is that part of the universe which is set apart for our special consideration. It may
be a reaction vessel, a distillation column, or a heat engine.

Process. The changes taking place within the system is referred to as a process. Thus, hydrocarbon
fuel and oxygen in a combustion chamber constitute the system and the combustion of fuel to form
water and carbon dioxide constitutes a process.

Surroundings. The part of the universe outside the system and separated from the system by
boundaries is called surroundings. The boundaries may be either physical or imaginary; they may be
rigid or movable. For practical reasons, the surroundings are usually restricted to that portion of the
universe which is in the immediate vicinity of the system and are affected by changes occurring in the



system. For example, when the steam condensing in a shell-and-tube heat exchanger is treated as the
system, the cooling water to which the latent heat of vaporisation is transferred may be treated as the
surroundings.

1.2.2 Homogeneous and Heterogeneous Systems
Homogeneous system. This system is also called a phase. Here the properties are the same
throughout or the properties vary smoothly without showing any surface of discontinuity. Liquid water
in a beaker and a column of dust-free air above the earth’s surface are examples of homogeneous
system.

Heterogeneous system. This is a system which consists of two or more distinct homogeneous
regions or phases. There is a sudden change in properties at the phase boundaries. A liquid mixture of
benzene and water forms a heterogeneous system made up of two immiscible liquid phases. Water
and water vapour taken in a closed container is another example of a heterogeneous system. Systems
consisting of only gases and vapours are always homogeneous. With liquids, two phases are common,
and with solids any number of different phases are possible.

1.2.3 Closed and Open Systems
Closed system and open system. Systems that can exchange energy with the surroundings but
which cannot transfer matter across the boundaries are known as closed systems. Open systems, on
the other hand, can exchange both energy and matter with their environment. In a multiphase system,
each phase is open since material is free to enter and leave each phase, although the system as a
whole may be closed to the flow of matter. A batch reactor is a closed system while a tubular flow
reactor is an open system. Cyclical processes, like power and refrigeration cycles are closed systems
when considered as a whole, whereas each component of the cycle such as compressor, pump, and
heat exchanger is open.

Isolated system. This is a system, which is totally unaffected by the changes in its environment.
Neither energy nor matter can cross the boundaries of an isolated system. A closed system 
is thermally isolated, when the enclosing walls are impervious to the flow of heat; it is 
mechanically isolated, when enclosed by rigid walls, and is completely isolated, when neither
material nor energy in any form can be added to it or removed from it. A perfectly isolated 
system is an ideal concept that cannot be attained in practice. The system and surroundings
considered together constitute an isolated system. Thus, the universe can be treated as an isolated
system.

1.2.4 State and Properties
Certain specifications such as pressure, volume, and temperature are necessary to define the
conditions of a given system. The condition defined by such specifications is called the state of the
system. The variables used to define the state are called the state functions or the properties of the
system. The minimum number of such variables required to represent the state uniquely depend on the
number of phases constituting the system and the number of distinct chemical species present in the
system (see the phase rule). The properties generally used to represent the state of a homogeneous
system consisting of a single substance are the pressure, the volume, and the temperature. However,



any one of these three properties depends upon the other two. Thus, if two properties, say, pressure
and the temperature are specified, all other physical properties, 
e.g. density, viscosity, refractive index are thereby definitely fixed. Thus, thermodynamic properties
serve to define the state of a system completely.

1.2.5 Intensive and Extensive Properties
The extensive properties depend on the quantity (or extent) of matter specified in the 
system. Mass and volume are extensive properties. The total value of any extensive property 
is the sum of the values of the property of individual components into which the system can 
be subdivided. An intensive property is independent of the size of the system. Pressure, 
temperature, specific volume, density, etc., are intensive properties. Some intensive properties 
are derived from the extensive properties by specifying the unit amount of the substance 
concerned. Examples are specific volume, specific heat, and density. Heat capacity is an extensive
property, while specific heat is an intensive property. As the intensive properties are independent of
the amount of the substance, they describe specific characteristics of a substance in a given state.

1.2.6 State and Path Functions
State functions. Properties of a substance describe its present state and do not give a record of its
previous history. They are state functions in the sense that they are fixed for a particular state of the
system and do not in any way depend upon the past history or the path by which the state was arrived
at. When a system is considered in two different states, the difference in property between the two
states depends solely upon those states themselves and not upon the manner in which the system
changes from one state to the other. For example, DM, the change in some property M of the system as
it changes from state 1 to state 2, is always the same regardless of the process by which the change is
brought about. For a cyclic process, the initial and final states are the same and the change in the
property DM will be zero.

Path functions. The values of heat and work accompanying a given change in state vary with the
path from the initial to the final state. For example, some mass of hydrocarbon may be completely
burnt in air at constant volume in a combustion chamber. All the energy lost by the system appears as
heat, no work being done. In contrast, a large part of the energy of the hydrocarbon-air system is
converted to mechanical work and only the remainder into heat in 
an internal combustion engine. It means that the heat and work involved in a given change 
of state are not to be determined solely by the initial and final states; they also depend on 
the manner in which the change is carried out. Heat and work are therefore not thermo-
dynamic properties of the system. They are properties of the process and are called path 
functions.

1.3 FORCE, PRESSURE AND ENERGY
1.3.1 Force
According to Newton’s second law of motion, the force acting on a body is directly proportional to
the time rate of change of momentum. For a body of constant mass, Newton’s law reduces to



F = cma
where F is the force, m is the mass of the body, a is the acceleration, and c is a proportionality
constant. In the SI system, the constant c is unity and we have

F = ma………(1.1)

When a body of mass 1 kg is accelerated by 1 m/s2, the force acting on the body is 1 kg m/s2, which
is designated as 1 newton or (1 N).
EXAMPLE 1.1 A man circling the earth in a spaceship weighed 300 N at a location where the local
gravitational acceleration was 4.5 m/s2. Calculate the mass of the man and his weight on the earth
where the gravitational acceleration is 9.81 m/s2.
Solution Force is equal to the product of mass and acceleration, i.e.

F = ma
or

300 = m � 4.5
Therefore,

The weight on the earth is the force acting on the object on the earth.
F = 66.67 � 9.81 = 654 N

1.3.2 Pressure
Pressure is defined as the normal component of the force per unit area exerted by the fluid on a real
or imaginary boundary. The unit of pressure in the SI system is newton per square metre (N/m2), also
called the pascal (Pa). A multiple of pascal, called the bar, is also used as a unit of pressure.

1 bar = 105 Pa = 105 N/m2

The pressure exerted by the atmosphere is called the atmospheric pressure  and it varies with
location and elevation on the earth’s surface. One standard atmospheric pressure abbreviated as atm
is used in all system of units as an empirical unit of pressure. It is the average pressure exerted by the
earth’s atmosphere at sea level. Pressure is sometimes expressed in terms of the height of the column
of mercury, which it will support at a temperature of 273 K in a standard gravitational field. At
standard atmospheric pressure this height is 0.76 m (760 mm or 760 torr) with density of mercury
taken as 13.5951 � 103 kg/m3.

1 standard atmosphere (atm) = 1.01325 bar = 1.01325 � 105 Pa

= 1.01325 � 105 N/m2 = 760 mm Hg

EXAMPLE 1.2 A special manometer fluid has a specific gravity of 2.95 and is used to measure a
pressure of 1.15 bar at a location where the barometric pressure is 760 mm Hg. What height will the
manometer fluid indicate?



Solution If h is the height of the manometer fluid, the mass of the fluid is
m = hrA

where r is the density of the liquid and A is the area of cross-section of the column of liquid. The
force exerted by the fluid is

F = ma = hrAg
where g is the acceleration due to gravity.
The pressure exerted by the fluid is

This should be equal to the difference in pressures between the two ends of the manometer (DP)
when the manometer indicates a steady reading.

DP = hrg………(1.2)
Here,

DP = P1 – P2

P1 = 1.15 bar = 1.15 � 105 N/m2

P2 = 760 mm Hg = 1.01325 bar = 1.01325 � 105 N/m2

DP = 1.15 � 105 – 1.01325 � 105 = 0.13675 � 105 N/m2

Therefore,

0.13675 � 105 = hrg = h(2.95 � 103) � 9.8067
Thus,

1.3.3 Energy
Work. Energy is expended in the form of work when a force acts through a distance. Thus,

dW = F dZ………(1.3)
where W is the work done, F is the force acting, and Z is the displacement. The unit of work in the SI
system is N m (newton metre) or J (joule).
Let us consider the expansion or compression work in a cylinder, an important quantity in engineering
thermodynamics. Assume that a gas is confined in a cylinder and let the pressure of the gas be P and
volume V. If the surface area of the piston exposed to the gas is A, the force acting on the piston is

F = PA………(1.4)
The displacement of the piston in the direction of the force dZ is related to the change in volume dV of
the gas as

………(1.5)



Substituting Eqs. (1.4) and (1.5) in Eq. (1.3), we get
dW = P dV………(1.6)

If the volume of the gas changes from the initial value V1 to the final value V2, Eq. (1.6) may be
readily integrated to get the work done on the face of the piston:

………(1.7)
The pressure–volume history of the gas undergoing the change in state is illustrated on the 
P-V diagram of Fig. 1.1. The integral of the Eq. (1.7) is given by the area under the curve between the
limits V1 and V2. The area, and hence the work done in the compression or expansion of the gas
depend on the shape of the PV curve, thus establishing that the work done in a process is a path
function.

Heat. It is that quantity which is transferred between bodies due to the difference in temperatures
existing between them. In the early years of the development of the science of thermodynamics, this
quantity was thought of as a substance called calorie. Heat is now recognised as a form of energy that
cannot be stored as such within the system. Heat is manifest only during a change of state of the
system; it is energy in transit, like work. Heat exchanged in a process depends on the way in which
the process is carried out, as pointed out earlier. Therefore, just as work, heat is a path function. And
like work, it is expressed in joules. Two other units used for heat are the calorie and the BTU (the
British thermal unit).

1 calorie = 4.1868 J; 1 BTU = 1055.04 J



Energy. It is a quantity that can be stored within the system and can be exchanged between 
the system and the surroundings. The exchange of energy occurs either as heat or as work. 
Heat and work are called energy in transit; they cannot be stored within the system. Energy possessed
by the system due to its position above some arbitrary reference plane is referred to as its potential
energy (PE). If mass m is at an elevation z above the ground, the potential energy of the mass is

PE = mgz………(1.8)
where g is the acceleration due to gravity. The energy possessed by the body by virtue of its motion is
called its kinetic energy (KE). If a body of mass m is moving at a velocity u, the kinetic energy of the
body is

As is obvious, the kinetic energy and potential energy are not thermodynamic properties of the system.
They do not change with change in the temperature or pressure of the body. In contrast, the internal
energy, which a system possesses by virtue of the molecular configuration and motion of molecules,
is a thermodynamic property of the system. Internal energy will be discussed in detail in Chapter 2.
The unit of energy in SI system is joule (J).

1 J = 1 N m = 1 kg m2/s2

Power. It is defined as the time rate of doing work. Its unit in the SI system is J/s, commonly
designated as W (watts). In engineering calculations, power is sometimes expressed as horsepower
(hp). Hence, 1 hp = 745.7 W.
EXAMPLE 1.3 The potential energy of a body of mass 10.0 kg is 1.5 kJ. What is the height of the
body from the ground? If a body of mass 10 kg is moving at a velocity of 50 m/s, what is its kinetic
energy?
Solution The potential energy (PE) is given by Eq. (1.8).

PE = mgz

1.5 � 103 = 10 � 9.8067 � z
z = 15.3 m

Thus the elevation z = 15.3 m.
Kinetic energy (KE) is given by Eq. (1.9).

EXAMPLE 1.4 A man whose weight is 600 N takes 2 min for climbing up a staircase. What is the
power developed in him, if the staircase is made up of 20 stairs each 0.18 m in height?

Solution Total vertical displacement = 20 � 0.18 = 3.6 m
Work done = Force � Displacement = 600 � 3.6 = 2160 N m (= 2160 J)
Power developed = Work done/Time



EXAMPLE 1.5 Nitrogen gas is confined in a cylinder and the pressure of the gas is maintained by a
weight placed on the piston. The mass of the piston and the weight together is 50 kg. The acceleration
due to gravity is 9.81 m/s2 and the atmospheric pressure is 1.01325 bar. Assume frictionless piston.
Determine:

(a) The force exerted by the atmosphere, the piston, and the weight on the gas if the piston is 100
mm in diameter.

(b) The pressure of the gas.
(c) If the gas is allowed to expand pushing up the piston and the weight by 400 mm, what is the

work done by the gas in J?
(d) What is the change in the potential energy of the piston and the weight after the expansion in

part (c)?
Solution

(a) Force exerted by the atmosphere = Pressure � Area

= 1.01325 � 105 �  � (100 � 10–3)2

= 795.805 N
Force exerted by the piston and weight = m � g = 50 � 9.81 = 490.5 N
Total force acting on the gas = 795.805 + 490.5 = 1286.305 N

(b) Pressure = Force/Area =  = 1.6378 � 105 N/m2 (=1.6378 bar)
(c) Work done = Force � Displacement = 1286.305 � (400 � 10–3) = 514.5 J
(d) Change in the potential energy, D(PE) = mgDz = 50 � 9.81 � (400 � 10–3) = 196.2 J

EXAMPLE 1.6 A spherical balloon of diameter 0.5 m contains a gas at 1 bar and 300 K. The gas is
heated and the balloon is allowed to expand. The pressure inside the balloon is found to vary linearly
with the diameter. What would be the work done by the gas when the pressure inside reaches 5 bar?
Solution Since the pressure varies linearly with the diameter of the balloon,

P/D = constant
where P is the pressure inside the balloon and D is the diameter. Since these are respectively, 
1 � 105 N/m2 and 0.5 m initially, P/D = 2 � 105 or P = 2 � 105D. As the final pressure is 
5 � 105 N/m2, the final diameter would be 5 � 105/2 � 105 = 2.5 m.



1.4 EQUILIBRIUM STATE AND THE PHASE RULE
1.4.1 Steady State
The distinction between steady state and the equilibrium state must be clear at the outset. A system,
which is interacting with the surroundings, is said to have attained a steady-state condition when the
properties at a specified location in the system do not vary with time. Consider the walls of a furnace,
the inside surface of which is exposed to hot combustion gases and the outside surface to the
atmospheric air. Heat transfer occurs from the inside of the furnace to the outside and the temperature
at a specified location in the wall varies with time. When the wall has attained steady state with
respect to heat transfer, the temperature at any given point remains constant and does not vary with
time. However, the temperatures at different points in the wall would be different. It is obvious that a
system in the steady state exchanges mass, heat, or work with the surroundings, even when exhibiting
time invariance for the properties.

1.4.2 Equilibrium State
A system is said to be in a state of equilibrium if the properties are uniform throughout and 
they do not vary with time. By properties we mean the properties on a macroscopic scale and 
do not exclude the probability of individual molecules having different values for the properties. A
system is in thermal equilibrium, when no heat exchange occurs between various points 
within the system and the temperature is uniform throughout. In a system which is in mechanical
equilibrium, the pressure is uniform. Even under the conditions of uniform temperature and pressure,
transfer of mass may occur between the various phases constituting the system, or chemical reaction
may occur between the various components present in the system. In a system, which is in a state of
thermodynamic equilibrium, in addition to the absence of heat and work exchange, there would be no
mass transfer between the phases, no diffusion of mass within the phase, and no chemical reaction
between the constituents. A state of equilibrium implies, therefore, a state at rest. Since all such
changes are caused by driving forces of some kind, the state of equilibrium may also be treated as the
one in which all forces are in exact balance. The state of equilibrium will be retained by the system
after any small, but short mechanical disturbance in the external conditions.

1.4.3 Phase Rule
The concept of equilibrium is important in thermodynamics, because, properties have any real
meaning only in the equilibrium state. The state of an equilibrium system consisting of a pure fluid is
uniquely determined by specifying any two intensive variables, as observed earlier. 



Thus, when we say that CO2 gas is contained in a vessel at a pressure of 2 bar and temperature of
300 K, the intensive state of the system is completely determined. The number of independent
variables necessary to define the state of equilibrium uniquely is known as the number of degrees of
freedom. This number will be different for different equilibrium states. For example, for water and
water vapour in thermodynamic equilibrium, only one independent variable needs to be specified to
define the state uniquely. The number of degrees of freedom in this case is just one. That is, when we
say that this system is at a pressure of one standard atmosphere, the temperature gets automatically
specified as 373 K, the normal boiling point of water. Thus, the specification of pressure determines
the temperature and all other intensive thermodynamic properties of the system. In fact, there exists a
definite relationship between the number of degrees of freedom (F), the number of distinct chemical
species constituting the system (C) and the number of phases present at equilibrium (p). This is given
by the Gibbs phase rule,

F = C – p + 2
The phase rule will be discussed in detail in Chapters 8 and 9.

1.5 TEMPERATURE AND ZEROTH LAW OF THERMODYNAMICS
1.5.1 Zeroth Law
Let a body A be brought in thermal contact with another body B. Heat flows from one to the other and
eventually thermal equilibrium is established between A and B. If another body C is also in thermal
equilibrium with B, then it is experimentally observed that A and C are also in thermal equilibrium.
This observation although appears as frivolous, cannot be explained using known scientific
principles. Hence, it has come to be accepted as a law of nature. It is known as the zeroth law of
thermodynamics, as it precedes the first and second laws in the logical hierarchy of thermodynamic
principles. It may be stated thus: If body A is in thermal equilibrium with B and B is in thermal
equilibrium with C, then C is also in thermal equilibrium with A.

1.5.2 Temperature
The temperature measures the degree of hotness or coldness of a body. Since the physiological
sensation of hotness or coldness does not give a quantitative measure of the temperature, we should
device some methods for defining and measuring it. The zeroth law of thermodynamics forms the
basis for the measurement of temperature. When two bodies are in thermal equilibrium, we say that
the temperatures of both the bodies are equal. The zeroth law allows us to build thermometers which
are devices that indicate the change in temperatures by the changes in some physical properties of the
thermometer fluid. Such properties are called the thermometric properties. Commonly used
thermometric properties include:

1. Volume of gases and liquids (thermometers)
2. Pressure of gases at constant volume (constant-volume gas thermometers)
3. Electrical resistance of solids (thermistors)
4. Electromotive forces of two dissimilar metals (thermocouples)
5. Intensity of radiation (pyrometers)

Suppose the body B in the previous illustration is a glass capillary filled with mercury, which we



may call a thermometer. When it is in thermal equilibrium with body A, it has a certain height for the
mercury column in the capillary that depends on the temperature of A. If the thermometer, when
brought in contact with body C, indicates the same height for the column of mercury, we say that the
bodies A and C are at the same temperature. To assign numerical values to the temperature, there
should be some reference states, the temperatures of which are known. The reference states chosen
are the ice point and the normal boiling point of water. In the Celsius scale of temperature, these
reference states are arbitrarily assigned values 0°C and 100°C, respectively. The interval between
these two reference points is divided into 100 equal parts and each part is designated as one degree
Celsius.
In the above method of temperature measurement, we have utilised the relative expansion 
of the glass and mercury, with temperature as the thermometric property. The variation of the
thermometric property used for temperature measurement should be linear with temperature;
otherwise, different thermometers will indicate same readings only at the fixed points. To 
circumvent this difficulty, a temperature scale that does not depend on the nature of the thermometric
fluid is desired. The ideal gas thermometer provides, in a sense, such an absolute temperature scale.

1.5.3 Ideal Gas Temperature Scale
A detailed discussion of ideal gas is given in Chapter 3. Here it suffices to treat an ideal gas as one
in which the distance between the molecules is so large that the inter-molecular forces are negligible
and the volume occupied by the molecules is only a negligible fraction of the total volume. It follows
from kinetic theory that for such a fluid the product of pressure and volume varies linearly with
temperature. This is stated mathematically by the ideal gas equation 
PV = RT, where R is a constant known as the ideal gas constant and V is the molar volume of the gas.
All real gases behave ideally as pressure is reduced to zero. Thus, regardless of the nature of gas, the
PV product approaches the same value at a given temperature for all gases, as P tends to zero. Thus,
the quantity PV can be used as a thermometric property to measure the temperature, regardless of the
nature of the substance. Suppose, a low-pressure gas is confined in a constant-volume gas
thermometer as shown in Fig. 1.2. It is brought into contact with the system whose temperature is to
be measured. By raising or lowering the tube containing mercury, the volume of the gas in the bulb
can be maintained constant at the level M indicated in the figure.



The height h of the mercury column indicates the pressure P of the gas. If the thermometer is now
brought into contact with a system at the reference state, and the pressure P* measured, then

The reference temperature chosen is the triple point of water, i.e. the temperature at which the solid,
liquid, and vapour phases of water coexist in equilibrium and it is assigned a value of 273.16 K.
Here, K is the abbreviation for degree Kelvin, the SI unit for temperature. Thus, by bringing the
thermometer in contact with the system and by measuring the pressure P of the gas, the temperature T
is given by

where P* is the pressure indicated by the thermometer in equilibrium with the triple state of water.



The temperature scale based on this principle is referred to as the ideal gas temperature scale. The
temperature indicated by this scale is found to be identical to the absolute thermodynamic 
temperature that follows from the second law of thermodynamics which will be discussed in Chapter
4. Hence, the ideal-gas temperature has been accepted as an absolute temperature.
The triple-point temperature of water is found to be 0. 01 K higher than the ice point of water, the
latter in Celsius scale being 0∞C. Thus, to convert the temperature measured in ∞C to the absolute
temperature in K, we use:

T (K) = t (∞C) + 273.15
where T is in K and t is in ∞C.
In the FPS system of units the Fahrenheit scale is used to measure temperature. On this scale, the ice
point is assigned a temperature 32∞F and the normal boiling point of water a temperature 212∞F.
The interval between these two fixed points is divided into 180 equal parts, each part indicating one
degree Fahrenheit. The relationship between the temperature in degree Celsius and degree Fahrenheit
is:

t (∞F) = 1.8t (∞C) + 32
The absolute scale that corresponds to the Fahrenheit scale is called the Rankine scale. The
temperature in degree Fahrenheit (t) is related to the temperature in degree Rankine (T) as:

T (R) = t (∞F) + 459.67
The Rankine scale is related to the Kelvin scale by

T (R) = 1.8T (K)

1.6 HEAT RESERVOIRS AND HEAT ENGINES
1.6.1 Heat Reservoir
A thermal reservoir is a sufficiently large system in stable equilibrium from which finite amount of
heat can be transferred without any change in its temperature. A heat source is a high temperature
reservoir (HTR) from which heat is transferred and heat sink is a low temperature reservoir (LTR) to
which heat is transferred.

1.6.2 Heat Engine
A heat engine is a thermodynamic system operating in a cycle to which heat is transferred and from
which work is extracted. The thermal efficiency of a heat engine is defined as the ratio of work
output to the heat input.
Figure 1.3 shows an engine that receives heat Q1, delivers work W and rejects heat Q2 to the sink.
The thermal efficiency (h) of the engine is defined as the ratio of work output (W) to the heat supplied
(Q1).

………(1.10)



1.6.3 Heat Pump
A heat pump is a thermodynamic system operating in a cycle that removes heat from a low
temperature body and delivers it to a high temperature body. External energy in the form of work is
necessary to accomplish this. Figure 1.4 shows a heat pump which receives heat Q2 from the sink and
delivers heat Q1 to the high temperature reservoir utilising external work W. The coefficient of
performance (COP) of heat pump is defined depending upon the primary purpose for which it is used.
When used as a refrigerator, the primary purpose is the removal of heat from a low temperature
system. The COP of a refrigerator is the ratio of heat transferred from low temperature reservoir (Q2)
to the work-input (W). For refrigerator,



1.7 REVERSIBLE AND IRREVERSIBLE PROCESSES
Processes occur when there exists a driving force for a change of state between the parts of the
system or between the system and the surroundings. If this driving force is finite, the process is
irreversible and if it is infinitesimal in magnitude, the process is reversible.
All spontaneous processes occurring in nature are irreversible. They cannot be reversed without the
use of external energy. If the system undergoing an irreversible process were to be brought back to its
initial state, the surroundings would have to undergo some change through heat or work interactions.
In short, as a result of the processes in the forward and reverse directions, if changes remain in the
surroundings or in the system itself, the process would be irreversible. The free expansion of a gas is
a highly irreversible process. When a gas at a high pressure is expanded by passing through a valve,
it undergoes an irreversible change, because it cannot be compressed back to the original pressure
without resort to energy from an external source like, say, a compressor. The natural processes like
diffusion of a solute from a concentrated solution to a dilute one, the transfer of heat from a hot body
to a cold body, rusting of iron in the presence of atmospheric oxygen, mixing of two pure gases, are
all irreversible.
In contrast, the direction of a reversible process can be changed by an infinitesimal change in the
forces acting on the system. A system undergoing a reversible process can be brought back to its
original state, leaving no change in the surroundings. Consider water and water vapour in equilibrium
contained in a cylinder provided with a frictionless piston. The external force on the piston is kept
equal to the force due to the vapour pressure of water at the given temperature. By increasing the
force acting on the piston by an infinitesimally small amount, the vapour will condense; and
decreasing it slightly will make water to vaporise. The process is very close to a reversible process
as the work required to condense a certain amount of water vapour would be equal to that required to
vaporise the same quantity of water.
As another example of a reversible process consider the chemical reaction occurring in a galvanic
cell in which the electrodes made of zinc and platinum are immersed in an aqueous solution of
hydrochloric acid. The following reaction occurs:

Zn + 2HCl � ZnCl2 + H2



The electrodes are connected through an external circuit to a potentiometer. The system is in
equilibrium when the applied potential difference is balanced by the e.m.f. produced by the cell. By
increasing or decreasing the potential difference slightly, the reaction can be carried out in the
forward or reverse direction. Similarly, heat transfer between two bodies may be made nearly
reversible by bringing down the temperature difference between them to a very small value.
We see that in a reversible process the driving and opposing forces are in exact balance so that by
increasing or decreasing the forces by an infinitesimal amount, the process can be made to reverse the
direction. Since the driving force differs from the opposing force by not more than a differential
amount, it takes an infinite time for a reversible process to go to completion. Since we engineers
would like to carry out the processes in a finite time, reversible processes are never attained in
practice. Although such processes never occur in nature, they may be regarded as the limit of
realisable processes.
If all naturally occurring processes are irreversible, then why should we introduce the concept of
reversible processes? The answer to this question can be provided by considering a simple example.
A gas at high pressure is confined in a piston–cylinder arrangement. The piston is held in position by
placing a suitable weight W over it. The pressure of the gas is balanced by the atmospheric pressure
and the weight of the piston that includes the weight placed on it. Assume that the piston and cylinder
neither absorb nor transmit heat and that the piston moves 
within the cylinder without friction. Now, suppose that the mass W is removed by sliding it 
into a compartment on the side. Due to the force imbalance, the piston rises up as indicated in Fig.
1.5.

The work done by the gas on expansion against the atmosphere is not available for restoring the gas to



its initial state. If the gas returns to its original state, work would be done on the system, in which
case, the surroundings undergoes some change. Therefore, the process is clearly an irreversible one.
On the other hand, if the weight is raised to a higher level due to the expansion of the gas, the
potential energy of the surroundings would increase and by utilising the increment in the potential
energy, the state of the system can be restored. But, this is not happening here, because the weight
removed from the piston is at the same level as it was before the expansion of the gas. It can be easily
shown that the work appearing in the surroundings by the irreversible expansion of the gas cannot be
measured as

W = P dV
The work of expansion done by the gas against the atmosphere is measured as the product of the force
and the displacement of the piston. If F is the force acting downwards and dz is the displacement of

the piston, then the work done against the atmosphere is w = F dz. When the force acting
downwards and the gas pressure are in exact balance, F = PA, where A is the area of the piston and

the work done by the gas against the atmosphere is . Here, dV is the increase in
volume due to expansion. Once the weight W is removed from the piston, the forces are out of
balance; that is, the force exerted by the gas and the downward force are not equal. In this case, it is

incorrect, if the work appearing in the surroundings is evaluated as . It is only for a
reversible process, the forces are always in exact balance and the work done by the system is

evaluated from the properties of the system. Thus W =  is applicable only for a reversible
process. The calculation of work appearing in the surroundings using the properties of the system is
possible only if the process is reversible.
The above process can be carried out reversibly if the weight on the piston is replaced by infinitely
large number of fine particles together weighing W. Refer Fig. 1.6. If the particles were removed one
at a time, the pressure of the gas would never be out of balance with the downward forces. When the
entire weight is removed from the piston, the potential energy of the surroundings is increased, as is
evident from the height of the pile obtained on the side. The system does maximum useful work on the
surroundings. The weights can be replaced one by one on the piston and the piston can be made to
retrace its path without using any extra energy from the surroundings. This is a reversible process, as
the process can be reversed at any instant by an infinitesimally small increase in the downward forces
and the original state of the system is restored without any change in the surroundings. The work done

by the gas during expansion can be calculated from the properties of the gas as . It may also
be noted that the reversible work is the maximum work obtainable if the process is expansion of the
gas and the minimum work required if the process is compression.



In the above process, we have assumed a frictionless piston. Though friction between the walls of the
cylinder and the piston can be reduced in practice, it can never be completely eliminated. In the
presence of friction, the work done by the gas in expanding from a high pressure to a lower value will
be greater than the work appearing in the surroundings by the amount needed to overcome the effect of
friction. In a similar manner, more work would have to be done by the surroundings to restore the
system to the original state than that resulted from the forward process. It means that the presence of
friction, however small it may be, eliminates the chances of achieving a reversible process in actual
practice. Friction is not the only factor that causes irreversibility. Processes involving dissipative
effects such as fluid flow, convective heat transfer, etc., can never be carried out reversibly.
Reversible process is an idealised concept introduced in thermodynamics to compare the
performance of actual processes. It represents a limiting case that can be approached, but never
attained.
In conclusion, we may summarise the characteristics of a reversible process as follows:

1. In a reversible process, the driving and opposing forces are in exact balance, and an
infinitesimal change in the external conditions would cause a reversal in the direction of the
process.

2. For reversible process to occur, friction, turbulence, and other dissipative effects should be
absent.

3. It takes an infinite time for its completion.
4. A reversible process occurring in a work-producing machine delivers the maximum amount of

work and that occurring in a work-requiring machine requires the minimum amount of work.
5. A reversible process is an idealised and imaginary concept and may be used for the comparison

of the performance of actual systems and for indicating the efficiency of processes.

EXAMPLE 1.7 Two kilograms of CO2 gas is contained in a piston–cylinder assembly at a pressure

of 6.5 bar and a temperature of 300 K. The piston has a mass of 5000 kg and a surface area of 1 m2.
The friction of the piston on the walls is significant and cannot be ignored. The atmospheric pressure



is 1.01325 bar. The latch holding the piston in position is suddenly removed and the gas is allowed to
expand. The expansion is arrested when the volume is double the original volume. Determine the
work appearing in the surroundings. Will it be the same as the work done by the gas?
Solution The initial volume of the gas is evaluated assuming that the gas follows the ideal gas
equation, PV = nRT.

Number of moles of the gas n = Mass/Molecular Weight = 2/44 = 0.0455 kmol

Initial volume, V = nRT/P = 0.0455 � (8.314 � 103) � 300/6.5 � 105 = 0.1746 m3

Final volume = 2V = 0.3492 m3

Change in the volume, DV = 2V – V = 0.1746 m3

Pressure on the surroundings = Atmospheric pressure + Pressure due to the weight of the
piston

= 1.01325 � 105 + 5000 � 9.8067

= 1.50359 � 105 N/m2

Work done on the surroundings = PDV = (1.50359 � 105) � 0.1746 = 0.2625 � 105 J

Since the pressure of the gas is changing continuously, the work done by the gas cannot be evaluated

as . This work would be greater than the work appearing in the surroundings because of the
irreversible nature of the process.

EXAMPLE 1.8 A gas which occupies a volume of 0.2 m3 at a pressure of 1 bar is expanded to a
final pressure of 7.0 bar. The pressure of the gas varies according to the relation P = 1200 V + b,
where P is in kPa, V is in m3 and b is a constant. Calculate the work done by the gas.

Solution Initial conditions are P1 = 1 bar = 100 kPa and V1 = 0.2 m3.
The pressure and volume of the gas are related by

P = 1200 V + b
Therefore,

P1 = 1200 V1 + b

100 = 1200 � 0.2 + b
or

b = –140 kPa
Therefore, the pressure-volume relationship is P = 1200 V – 140
The final pressure P2 = 7.0 bar = 700 kPa. Therefore, the final volume V2 is given by

700 = 1200 V2 – 140

or

V2 = 0.7 m3



The work done by the gas is given by

200 kJ of work is done by the gas during the expansion.

SUMMARY
Thermodynamics deals with energy and its transformation. The heat and work effects accompanying a
process can be accurately predicted by thermodynamics. It imposes certain restrictions to all
naturally occurring processes. The limits set by thermodynamics, such as the equilibrium yield in a
chemical reaction, are the best that can be attained in a given situation. An important limitation of
thermodynamics is its inability to predict the mechanisms of changes and hence, the rate of the
process. An attempt is made in this chapter to introduce certain basic concepts that are frequently
employed in any thermodynamic analysis. The classification of systems as closed and open is based
on whether matter can be exchanged between the system and the surroundings or not. The properties
are classified as intensive and extensive on the basis of their dependence on the quantity of matter
involved. Thermodynamic quantities are classified as path functions and state functions, based on
whether they are dependent on the past history of the system or not. Heat and work were defined and
were shown as examples of path functions. The SI units used for measuring some other
thermodynamic quantities such as force, energy, temperature, and pressure were also given along with
their definitions. The principle of measurement of temperature is based on the zeroth law of
thermodynamics. An ideal-gas thermometer can be used to measure the absolute temperature,
independent of the thermometer fluid.
The equilibrium state is one in which all forces are exactly balanced and any tendency for changes on
a macroscopic scale is absent. The minimum number of intensive properties required to define such a
state was provided by the phase rule, which links this number to the number of components and the
number of phases constituting the system. All naturally occurring processes were shown to be
irreversible. A system undergoing a reversible process can be brought back to its original state
without any changes in the surroundings. Reversible process is an idealised concept that can be used
for comparing the performance of actual processes.

REVIEW QUESTIONS
1. Can thermodynamics help us to determine the maximum yield of a specified product in a

chemical reaction?
2. Using thermodynamic principles, can you determine the rate of a chemical reaction? Why?
3. It is suggested that by increasing the size of the furnace and thereby providing sufficient reaction

time, the CO content in the effluent gases leaving a blast furnace can be reduced to zero.
Comment on this suggestion.

4. Distinguish between system and surroundings.
5. What do you understand by homogeneous system and heterogeneous system? Is the system

consisting of an equimolar mixture of water and benzene at room temperature and pressure,
homogeneous or heterogeneous?



6. Distinguish between closed system and open system. Say whether the following systems are
closed or open:
(a) A tubular reactor
(b) A batch reactor
(c) Individual phases in a multiphase system.

7. How would you define extensive and intensive properties? State whether the following
properties are intensive or extensive: (a) volume, (b) density, (c) specific volume, (d) heat
capacity, (e) specific heat, (f) potential energy, (g) pressure, (h) temperature.

8. Distinguish between state function and path functions with examples. A cyclic process may be
defined as the one in which after a series of changes, the system is brought back to its initial
conditions. What would be the change in a state function in a cyclic process?

9. Why don’t we treat the potential energy and kinetic energy of a system as its thermodynamic
properties?

10. What is zeroth law of thermodynamics? How is it helpful in measuring temperature?
11. Is it true that the temperature indicated by different devices would be the same only at the fixed

points used for calibrating them? Why?
12. What is the importance of the ideal-gas temperature scale?
13. How are the efficiency of a heat engine and the COP of a heat pump defined?
14. What do you understand by thermal reservoirs?
15. Distinguish between steady state and equilibrium state.
16. The work done by the gas during expansion can be calculated from the properties of the gas as 

. Is it applicable to irreversible processes?
17. ‘A reversible process is never attained in practice. It can only be approached.’ What are the

factors that make this statement true?
18. What do you mean by the number of degrees of freedom? What is the number of degrees of

freedom when a binary liquid mixture is in equilibrium with its vapour?

EXERCISES
(In all the following problems, unless otherwise specified, take the gravitational acceleration to
be 9.80671 m/s2.)

1.1 A man circling the earth in a spaceship weighed 300 N at a location where the local
gravitational acceleration was 3.35 m/s2. Calculate the mass of the man and his weight on the
earth, where the gravitational acceleration is 9.81 m/s2.

1.2 If a man weighs 600 N at a place where the local acceleration due to gravity is 9.81 m/s2, what
would be his weight on the moon, where the acceleration due to gravity is 1.67 m/s2?

1.3 A special manometer fluid has a specific gravity of 3.65 and is used to measure a pressure of
1.25 bar at a location where the barometric pressure is 760 mm Hg. What height will the
manometer fluid register?

1.4 A mercury manometer used for pressure measurement indicates 500 mm. The density of



mercury is 13.56 � 103 kg/m3 and acceleration due to gravity is 9.81 m/s2. Express the
pressure indicated in bar.

1.5 What is the pressure exerted on a skin diver who has descended to 20 m below the surface of
the sea, if the atmospheric pressure is 1 bar at the sea level and the specific gravity of the sea
water is 1.03?

1.6 A mercury manometer used to measure pressure inside a vessel indicates 400 mm. 
One end of the manometer is exposed to the atmosphere. The atmospheric pressure is 1.01325
bar. Density of mercury is 13.56 � 103 kg/m3 and g = 9.81 m/s2. What is the absolute pressure
in the vessel in N/m2?

1.7 The potential energy of a body of mass 20 kg is 3.5 kJ. What is the height of the body from the
ground? If a body of mass 20 kg is moving at a velocity of 50 m/s, what is its kinetic energy?

1.8 A car having a mass of 1200 kg is running at a speed of 60 km/h. What is the kinetic energy of
the car in kJ? What is the work to be done to bring the car to a stop?

1.9 A body of mass 50 kg is lifted through a distance of 15 m. What is the work done? If it took 2
min for lifting the mass, calculate the power.

1.10 A man whose weight is 700 N takes 2.5 min for climbing up a staircase. What is the power
developed in him, if the staircase is made up of 20 stairs each 0.18 m in height?

1.11 The steam supplied to an engine liberates 5000 J of heat. If the engine efficiency is only 40
per cent, to what height a body of mass 10 kg can be lifted using the work output from the
engine?

1.12 Nitrogen gas is confined in a cylinder and the pressure of the gas is maintained by a weight
placed on the piston. The mass of the piston and the weight together is 100 kg. The acceleration
due to gravity is 9.81 m/s2 and the atmospheric pressure is 1.01325 bar. Assume frictionless
piston. Determine:
(a) The force exerted by the atmosphere, the piston and the weight on the gas if the piston is 200

mm in diameter.
(b) The pressure of the gas.
(c) If the gas is allowed to expand pushing up the piston and the weight by 500 mm, what is the

work done by the gas in kJ?
(d) What is the change in the potential energy of the piston and the weight after the expansion in

part (c)?
1.13 A spherical balloon of diameter 0.5 m contains a gas at 1 bar and 300 K. The gas is heated

and the balloon is allowed to expand. The pressure inside the balloon is directly proportional to
the square of the diameter. What would be the work done by the gas when the pressure inside
reaches 5 bar?

1.14 A body of mass 20 kg is dropped from a height of 15 m. What is the potential energy of the
body at the time of its release? Assume that the potential energy gets converted into kinetic
energy when the body strikes the ground. At what velocity does it strike the ground?

1.15 A balloon which was originally empty is being filled with hydrogen from a cylinder at a
constant temperature of 300 K. The atmospheric pressure is 1.01325 bar. What is the work done
by the balloon–cylinder system when the balloon attains a spherical shape 



6 m in diameter?
1.16 Five kilograms of CO2 gas is contained in a piston–cylinder assembly at a pressure of 

7.5 bar and a temperature of 300 K. The piston has a mass of 6000 kg and a surface area of 1
m2. The friction of the piston on the walls is significant and cannot be ignored. The atmospheric
pressure is 1.01325 bar. The latch holding the piston in position is suddenly removed and the
gas is allowed to expand. The expansion is arrested when the volume is double the original
volume. Determine the work done in the surroundings.



2

First Law of Thermodynamics
2.1 GENERAL STATEMENTS OF FIRST LAW OF THERMODYNAMICS
The idea of designing an engine that would produce mechanical work continuously without drawing
energy from external sources and without undergoing a change had been a great fascination for
scientists and engineers. The failure to construct such a perpetual motion machine (PMM) formed the
basis for the law of conservation of energy (H. von Helmholtz, 1847). The fundamental implication of
this law is that “although energy may be converted from one form to another, it cannot be created
or destroyed”. Whenever a quantity of one form of energy is produced, an exactly equivalent amount
of another kind must be used-up.
When the law of conservation of energy was proposed, heat was not considered to be a form of
energy. It was a series of experiments conducted by Joule between 1843 and 1847 that established
heat as a form of energy. A known quantity of water taken in an insulated container was agitated by
means of a paddle wheel. The resulting temperature rise was noted. It was found that an exact
proportionality existed between the amount of work expended on the water and the rise in
temperature. The same proportionality was obtained by the following different methods of
transforming work into heat:

1. The mechanical work was converted to electricity and the electric current was passed through
coils immersed in water.

2. A gas confined in a cylinder immersed in water was compressed mechanically.
3. Two metal pieces immersed in water were rubbed against each other by mechanical work.

The use of a given amount of work on a quantity of adiabatically enclosed water gave the same
temperature rise regardless of the way in which the process was carried out. Joule’s experiments
established a quantitative relationship between heat and work thus rejecting the earlier theory that
treated heat as a substance. The recognition that heat and internal energy are forms of energy led to
their inclusion in the law of conservation of energy along with work, potential energy, and kinetic
energy and the law came to be known as first law of thermodynamics.
The first law of thermodynamics is a generalisation based on our experiences like the failure to
construct a perpetual motion machine, the constancy of mechanical equivalent of heat, etc. It is stated
in a number of ways, but precisely it means that energy is indestructible. Any loss or gain of energy
by the system must be exactly equivalent to the gain or loss of energy of the surroundings. For an
isolated system—a combination of the system and the surroundings—the total energy therefore,
remains constant, although it may be changed from one form to another. The universe can be treated as
an isolated system and therefore we can say, “the energy of the universe is conserved”.

2.2 FIRST LAW OF THERMODYNAMICS FOR CYCLIC PROCESS
Consider a static system undergoing a cycle of changes. Work is done on the system by forces acting
from the surroundings, or vice versa, and heat is transferred between the system and the surroundings



during the process. Then, according to the first law of thermodynamics, the algebraic summation of all
work effects exactly equals the summation of all heat effects. Let Q denote the heat added to the
system and W the work done by the system (Q is negative when heat is rejected by the system and W
is negative when work is done on the system) and if both are measured in consistent units,

S W = S Q
If the units chosen for heat and work are different, the above equation can be written as

S W = J S Q
J is the mechanical equivalent of heat if the work is mechanical, and electrical equivalent of heat if
the work is electrical.

2.3 INTERNAL ENERGY
Heat and work represent energy in transit. Energy exchange between the system and the surroundings
occurs either as heat or as work. Heat and work are thus external effects of changes occurring within
the system or are external manifestations of stored energy. What happens to the state of the system
after heat is supplied to it and before work is extracted from it? The system undergoes a change
because energy gets stored within it. The energy stored in the system by virtue of the configuration
and motion of the molecules constituting the system is called its internal energy. It is a definite
property of the system and is denoted by U.
The energy due to the mass motion of the system as a whole (the kinetic energy), and that due to its
external position in a gravitational, electrical, or magnetic field (the potential energy) are not
included in the internal energy, U, as these forms of energy are not properties of the system. The
molecules constituting the system possess kinetic energy of translation, rotation, and vibration. They
also possess potential energy due to the forces of attraction existing among them. These molecular
potential and kinetic energies contribute to the internal energy of the system. The addition of heat to
the system results in the increase of its molecular kinetic energy and thus increases the internal energy
of the system.
A given system under a given set of conditions has a definite internal energy. In a cyclic process, the
internal energy of the system after a series of changes remains the same as it was before. The heat and
work involved in a non-cyclic process are not equal. Consequently, some energy gets stored in the
system or some stored energy gets removed from the system during a non-cyclic process. These
changes in the stored energy are measured as the change in the internal energy of the system. It should
be borne in mind that it is impossible to measure the total internal energy of a substance and therefore
absolute values of internal energy are not known. This is not a serious limitation because it is the
changes in internal energy and not the absolute values that are usually needed in thermodynamic
analysis.
It can be shown that internal energy is a thermodynamic property of the system and is solely
determined by the thermodynamic state and not by the path by which that state was arrived at.
Consider a system undergoing a series of changes from state 1 to state 2 along path a as shown in Fig.
2.1. Let the initial conditions be restored along path b . If the surroundings remain unchanged, the
change in internal energy (DU) along path a must be exactly equal but opposite in sign to that along
path b. On the other hand, if DU along path b were less than that along path a, there would be a
residuum of energy resulting from this cyclic operation. Energy would have been created without loss



of an equivalent amount of another kind, or in short, a PMM would have been possible. As this is
contrary to the first law, the energy changes along paths a and b should be numerically equal. By the
same reasoning, it can be shown that DU along paths c and d also should be numerically equal but
opposite in sign to DU along path a. Here, paths b, c, and d are different routes for changing the state
of the system from state 2 to state 1. This means that the internal energy change accompanying a given
change of state depends only on the end states and not on the path followed; that is, internal energy is
a state function.

2.4 FIRST LAW OF THERMODYNAMICS FOR NON-FLOW PROCESS
The first law of thermodynamics requires that the change in the total energy of the system be
compensated by an equal but opposite change in the total energy of the surroundings, so that, there is
no net change in the energy in any process. The change in the total energy of the surroundings occurs
only through the exchange of heat or work with the system. Then the change in the total energy of the
surroundings, (DE)sur, must be equal to the energy transferred to or from it as heat and work. Since Q
is the heat transferred to the system and W is the work extracted from it during the process,

(DE) sur = – Q + W………(2.1)

For a closed system undergoing only changes in the kinetic, potential, and internal energies, the total
energy change of the system (DE)sys is given by

(DE)sys = D(KE) + D(PE) + DU………(2.2)

Since (DE)sys = – (DE) sur, we can combine Eqs. (2.1) and (2.2) as follows.

D(KE) + D(PE) + DU = Q – W………(2.3)
In the above equations D(KE) and D(PE) denote changes in kinetic energy and potential energy
respectively. Equation (2.3) means that the total energy change in a closed system is equal to the heat
added to the system minus the work done by the system. For a steady-state non-flow process in which
there are no changes in the kinetic energy and potential energy, the above equation simplifies to



EXAMPLE 2.1 A system consisting of some fluid is stirred in a tank. The rate of work done on the
system by the stirrer is 2.25 hp. The heat generated due to stirring is dissipated to the surroundings. If
the heat transferred to the surroundings is 3400 kJ/h, determine the change in internal energy
Solution The work done on the system can be obtained as:

– W = 2.25 hp = 2.25(745.7) = 1677.825 W = 1677.825 J/s
Heat transferred to the surroundings is

– Q = 3400 kJ/h = 3400 � 103/3600 = 944.444 J/s
By Eq. (2.4),

DU = Q – W = – 944.444 – (– 1677.825) = 733.381 J/s
The internal energy of the system increases by 733.381 J in one second.
EXAMPLE 2.2 Iron filings are contained in a cylinder in an atmosphere of oxygen. It combines with
oxygen according to the following reaction.

2 Fe + (3/2) O2 � Fe2O3
The pressure inside the cylinder is maintained at 101 kPa. The temperature is kept constant at 
298 K by removing heat. For 2 mol iron reacted, calculate Q, W, and DU given that 831.08 kJ of heat
is liberated in the process.

Solution The heat liberated when 2 mol iron reacts with oxygen is 831.08 � 103 J. Therefore,

Q = – 831.08 � 103 J
Neglecting the volume occupied by the solids, the volume change accompanying the process is equal
to the change in the volume of oxygen. Assuming ideal gas behaviour for the gas,

PDV = (Dn) RT
where DV is the volume change and Dn, the increase in the number of moles accompanying the
reaction. Here Dn = – 1.5. Therefore, the work done by the system,

W = PDV = (Dn)RT = – 1.5 RT = – 1.5(8.314) 298 = – 3716.4 J
The change in the internal energy is

DU = Q – W = – 831.08 � 103 – (– 3716.4) = – 827.364 � 103 J
EXAMPLE 2.3 A car riding downhill at a speed of 20 m/s was applied brake when it was at a height
of 30 m vertically above the bottom of a hill. When the car comes to a halt at the bottom of the hill,



how much energy as heat must be dissipated by the brakes, if wind and other frictional effects are
neglected? The car weighed 1400 kg.
Solution The first law of thermodynamics is given by Eq. (2.3):

D(KE) + D(PE) + DU = Q – W
Here D(KE) and D(PE) are the changes in kinetic energy and potential energy of the car respectively.
The kinetic energy of the car is (1/2) mu2 and the potential energy is mgz. The kinetic energy and
potential energy of the car when it comes to a stop at the bottom are both equal to zero. Therefore, the
changes in kinetic energy and potential energy are the negative of their respective initial values.
Noting that m is the mass, u is the velocity and z is the elevation above the bottom of the hill,

D(KE) = – (1/2) mu2, = – (1/2) 1400 (202) = – 2.8 � 105 J

D(PE) = – mgz, = – 1400 (9.81) 30 = – 4.12 � 105 J
Therefore,

Q = (– 2.8 � 105) + (– 4.12 � 105) = – 6.92 � 105 J

Hence, heat dissipated by the brakes = 6.92 � 105 J.
EXAMPLE 2.4 A system consisting of a gas confined in a cylinder is undergoing the following series
of processes before it is brought back to the initial conditions:
Step 1: A constant pressure process when it receives 50 J of work and gives up 25 J of heat.
Step 2: A constant volume process when it receives 75 J of heat.
Step 3: An adiabatic process. (Note: In adiabatic process there is no heat exchange between system
and surroundings.)
Determine the change in internal energy during each step and the work done during the adiabatic
process.
Solution The process is shown in Fig. 2.2. Step AB is a constant pressure process.

Internal energy change for this step is calculated as
(DU)AB = QAB – WAB = – 25 + 50 = 25 J



During step BC, no work is done, as it is a constant volume process. Change in internal energy is
(DU)BC = QBC = 75 J

Step CA being an adiabatic process, QCA = 0. Therefore,

(DU)CA = – WCA
For a cyclic process, the net change in internal energy is zero. That is,

(DU)AB + (DU)BC + (DU)CA = 0

(DU)CA = – [(DU)AB + (DU)BC] = – (25 + 75) = – 100 J

Therefore, WCA, the work done during the adiabatic process = – (DU)CA = 100 J.

EXAMPLE 2.5 A gas is undergoing a change of state from A to B along path ACB in which the total
heat supplied to the system is 80 J and the work done by the system is 30 J (Fig. 2.3). The cycle is
completed by bringing the system back to the initial state along the curved path BA for which work of
40 J is done on the system.

Determine the following:
(a) The heat transferred if the initial process were carried out along path ADB as shown in the figure.
(b) The heat quantity involved in the process AD and DB, if the internal energy of the system at state

D is greater than that at state A by 40 J.
(c) The heat supplied or removed in the process along path BA.
Solution For the process occurring along ACB, Q = 80 J, W = 30 J. Q is positive since heat is
supplied to the system and W is positive since work is done by the system.
The first law of thermodynamics gives

DU = Q – W
Therefore, the change in internal energy for the process ACB is

DU = 80 – 30 = 50 J
(a) Internal energy being a state function, for the process occurring along path ADB also 



DU = 50 J. The work done is calculated as pressure times the change in volume. Since the
volume change is zero for process AD and the pressure for process DB is three times that of
process AC, the work done along ADB will be 3 times the work done along path ACB.
Therefore, W = 3 � 30 = 90 J. Heat involved is calculated as

Q = DU + W = 50 + 90 = 140 J
That is, 140 J of heat is supplied to the system.

(b) No work is involved in process AD since it is a constant volume process. The change in
internal energy in process AD is given to be DU = 40 J. Therefore, heat involved in this process
is

Q = DU + W = 40 + 0 = 40 J (Heat is supplied to the system.)
Change in internal energy between states B and A is calculated to be 50 J. Now,

DUAB = DUAD + DUDB
or

DUDA = DUAB – UAB = 50 – 40 = 10 J

Work done by the system in process DA is 3 times the work done along path AC = 
90 J. Therefore, heat quantity involved is

Q = DU + W = 10 + 90 = 100 J (Heat is supplied to the system.)
(c) For the return path along BA, W = – 40 J, DU = – 50 J (negative of the change in internal energy

for the process from A to B.)
Q = DU + W = –50 – 40 = –90 J (Heat is given out by the system.)

EXAMPLE 2.6 A rigid tank is divided into two equal parts by a partition. Initially one of the
partitions is filled with 10 kg water at 300.15 K and 101.3 kPa and the other part is evacuated. The
partition is then removed and the water is allowed to fill the entire tank. The water 
attains the temperature of 300.15 K by exchanging heat with the surroundings. From steam 
tables, the specific volume of saturated water and water vapour at 300.15 K are found to be 
1.003 × 10–3 m3/kg and 38.81 m3/kg, respectively and the internal energy values of saturated liquid
and saturated vapour are 113.1 and 2412.6 kJ/kg, respectively. Determine (a) the volume of the tank,
(b) the final pressure in the tank and (c) the heat transferred.
Solution (a) The saturation temperature of water at 101.3 kPa is 373.15 K. Initially, at 300.15 K and
101.3 kPa, water is a subcooled liquid. Assuming that the specific volume of water at this condition
is the same as the specific volume of saturated water at 300.15 K, we can take the specific volume of
water at this condition to be 1.003 � 10–3 m3/kg. Therefore, 10 kg water occupies a volume of
1.003 � 10–3 � 10 = 1.003 � 10–2 m3. Since water occupies half the volume of the container,
volume of the container = 2 � 1.003 � 10–2 m3 = 2.006 � 10–2 m3.
(b) Assume that the tank and the water contained in it constitute the system. It is a closed system and
when the partition is removed, no work is done as the boundary of the system is 
rigid. In the final state, 10 kg water occupies a volume of 2.006 � 10–2 m3 at a temperature 



of 300.15 K. Specific volume of water at this condition is 2.006 � 10–3 m3/kg. Since the 
specific volume of saturated liquid and saturated vapour are, respectively, 1.003 � 10–3 m3/kg and
38.81 m3/kg, water in the final state is a mixture of saturated liquid and saturated vapour. When
saturated liquid and vapour phases coexist at equilibrium at 300.15 K, the pressure should be the
saturation pressure at this temperature.
Therefore, the final pressure attained is 3.564 kPa.
(c) Let x be the fraction of the mixture that is vapour. Then

Since no work is exchanged between the system and the surroundings, W = 0 and the first law leads to
Q = DU. The heat transferred is equal to the change in internal energy.
Internal energy of water initially is U1 = 113.1 kJ/kg.
Internal energy in the final state is U2 = Ul + x(Uv – Ul), where Ul and Uv are the internal energy of
saturated liquid and saturated vapour, respectively, at 300.15 K. It is given that Ul and Uv are,
respectively, 113.1 and 2412.6 kJ/kg. Therefore,

U2 = 113.1 + 2.6 � 10–5(2412 – 113.1) 113.16 kJ/kg

DU = U2 – U1 = 113.16 – 113.1 = 0.05 kJ/kg

For 10 kg water total change in internal energy is DU = 0.5 kJ.
It means that 0.5 kJ heat is transferred during the process.

2.5 ENTHALPY
For a system kept at constant volume in which no work of expansion or any other kind of work is
done, the change in internal energy is equal to the heat supplied to it. When the system is free to
change its volume against a constant external pressure, the change in internal energy is no longer
equal to the energy supplied as heat. In effect, a part of the energy supplied is utilised by the system
for occupying a new volume; the energy thus utilised is equal to the work required to ‘push’ the
surroundings against a constant pressure. Consequently, DU < Q. However, the heat supplied at
constant pressure can be measured as the change in another thermodynamic property of the system
which we call the enthalpy. Enthalpy is denoted by H and is perhaps the most widely used of all
thermodynamic functions. It is defined as

H = U + PV………(2.6)
Here U is the internal energy of the system, P the absolute pressure and V the volume of the system.



Since U, P, and V are all state functions, any combination of them also must be a state function.
Enthalpy is, therefore, a state function.
The product, PV, in Eq. (2.6) represents the work that must have been done against an environmental
pressure P to create a volume V occupied by the system, or rather, the energy that the system
possesses because of it occupying a space. Thus, enthalpy may be treated as ‘total energy’, because it
includes both the intrinsic energy it possesses (U) and the energy due to the expansion possibilities of
the system (PV). In differential form, Eq. (2.6) can be written as

dH = dU + d(PV)………(2.7)
Since all the terms in Eq. (2.7) are state functions, it can be readily integrated to give

DH = DU + D(PV)………(2.8)
Equation (2.8) is applicable for any finite change occurring in the system.
We can show that the change in enthalpy for a mechanically reversible, non-flow process at constant
pressure is equal to the heat supplied. Equation (2.7) can be expanded as

dH = dU + P dV + V dP………(2.9)
Substituting Eq. (2.5) into Eq. (2.9), we get

dH = dQ – dW + P dV + V dP
Noting that dW = P dV for a reversible non-flow process and V dP = 0 for constant pressure process,
the above equation simplifies to

dH = dQ (for constant pressure process)………(2.10)
That is, when a system is heated at constant pressure, and only expansion work occurs, the change in
enthalpy is equal to the heat supplied. On the other hand, for a process occurring at constant volume,
work of expansion is zero and Eq. (2.5) reveals that the change in internal energy is equal to the heat
supplied.

dU = dQ (for constant volume process)………(2.11)
EXAMPLE 2.7 Calculate DU and DH in kJ for 1 kmol water, as it is vaporised at the constant
temperature of 373 K and constant pressure of 101.3 kPa. The specific volumes of liquid and vapour
at these conditions are 1.04 � 10–3 and 1.675 m3/kmol respectively; 1030 kJ of heat is added to
water for this change.
Solution The expansion work done by the system during vaporisation is

W = PDV = 101.3 � 103 (1.675 – 0.00104) � 10–3 = 169.57 kJ

Q = 1.03 � 103 kJ
DU = Q – W = 860.43 kJ
DH = DU + D(PV)

For constant pressure process, this becomes

DH = DU + PD(V) = 1.03 � 103 kJ

EXAMPLE 2.8 Liquid CO2 at 233 K has a vapour pressure of 1.005 � 103 kPa and a specific



volume of 0.9 � 10– 3 m3/kg. Assume that CO2 is a saturated liquid at these conditions and its
enthalpy is zero. Latent heat of vaporisation of CO2 is 320.5 kJ/kg and the specific volume of

saturated vapour is 38.2 � 10–3 m3/kg. Calculate the internal energy of saturated liquid, and internal
energy and enthalpy of saturated vapour.
Solution The internal energy of saturated liquid is obtained as

UL = HL – PVL
where HL is the enthalpy of saturated liquid and VL is its specific volume.

UL = 0 – (1.005 � 103)(0.9 � 10–3) = – 0.9045 kJ/kg

Denoting the latent heat of vaporisation by DHV, we get

HV = HL + DHV = 0 + 320.5 = 320.5 kJ/kg

UV = HV – PVV = 320.5 – (1.005 � 103) (38.2 � 10–3) = 282.11 kJ/kg

EXAMPLE 2.9 An electric current of 0.5 A from a 12 V supply is passed for 5 minutes through a
resistance in thermal contact with saturated water at 1 atm. As a result, 0.798 g of water is vaporised.
Assuming that the water vapour behaves ideally, calculate the molar internal energy change and
enthalpy change during this process.
Solution The electrical energy supplied to the heater enters the water as heat. Since the vaporisation
is occurring at constant pressure, the heat supplied to the water equals the change in its enthalpy, Eq.
(2.10).
The electric energy supplied = 0.5(12) (5 � 60)/(103) = 1.8 kJ

DH = 1.8/0.798 kJ/g = 1.8/(0.798/18) = 41 kJ/mol
Referring to Eq. (2.9), for constant pressure process,

DH = DU + PDV
Assuming the molar volume of saturated liquid to be negligible compared to that of saturated vapour,
DV is approximately equal to the molar volume of the vapour. Since vapour behaves ideally, PDV =
RT, where R is the ideal gas constant. Therefore,

DU = DH – RT = 41 – (8.314 � 10–3) 373 = 37.9 kJ/mol

EXAMPLE 2.10 A piston–cylinder device contains 0.1 kg of saturated water vapour that is
maintained at a constant pressure of 400 kPa. Heat is supplied by means of a resistance heater
provided within the cylinder. A current of 0.2 A from a 230-V source is passed continuously for 10
min. Heat loss from the system is estimated to be 15.41 kJ. Making use of steam tables, determine the
final temperature of the steam.
Solution Heat supplied by means of the electric heater:

VI � t = 230 � 0.2 � 10 � 60 = 27600 J = 27.6 kJ
Heat lost from the system = 15.41 kJ
Net heat supplied, Q = –15.41 + 27.6 = 12.19 kJ.



In a constant pressure process, the heat supplied goes to increase the enthalpy of the system. That is,
Q = DH = 12.19 kJ.
The enthalpy of 0.1 kg of water vapour increases by 12.19 kJ or for unit mass the change in enthalpy
is

Initially the system consists of saturated water vapour at 400 kPa. From steam tables (saturated
steam), the enthalpy at this condition is (H1) = 2738.6 kJ/kg.
Since the enthalpy increase DH = 121.9 kJ/kg, enthalpy in the final state is

H2 = H1 + DH = 2738.6 + 121.9 = 2860.5 kJ/kg.

The enthalpy of superheated steam at 400 kPa is 2860.5 kJ/kg. From the tables of properties of
superheated steam, the temperature of steam is found to be 473.15 K.

2.6 FIRST LAW OF THERMODYNAMICS FOR FLOW PROCESS
The steady-state flow through an equipment is of considerable importance industrially, as material
flow through equipment such as pumps, fans, compressors, turbines, nozzles, heat exchangers,
reactors, etc. The term steady state requires that the conditions at all points in the apparatus are
independent of time. For this to be true, there should be no accumulation or depletion of material or
energy within the equipment and all rates must be constant. The total mass flow rates at all points
along the path of the fluid must be the same.
Consider an idealised flow system as shown in Fig. 2.4. A fluid is flowing through the apparatus from
section 1 to section 2. The velocity, specific volume, pressure, and height above the datum are
represented by u, V, P, and Z respectively. The suffix 1 indicates conditions at section 1 and suffix 2
the conditions at section 2. Heat Q is added per unit mass of the fluid by means of the heat exchanger
and shaft work Ws is extracted by means of a turbine or any other suitable device.



According to the first law of thermodynamics, the total energy with which the fluid is entering at
section 1 plus the energy imparted to the fluid while it is in the system must be equal to the total
energy with which the fluid is leaving the system at section 2.
The contributions to the total energy at section 1 are:
Internal energy: Each unit mass of the fluid brings with it a certain amount of internal energy U1. The
incoming internal energy is mU1.

Potential energy: The fluid has a potential energy above the reference plane equal to the work done
against gravity in raising it to a height Z1. The potential energy of the fluid at section 1 
is mgz1.

Kinetic energy: It is due to the velocity of the fluid and at section 1, its value is (1/2) .
Entrance work: A mass of fluid entering the system is being pushed by the fluid behind it by a certain
force. This force multiplied by the distance through which the force acts is equal to the flow energy or
entrance work. The force acting on the fluid equals the product of the pressure and the cross-
sectional area of the tube. Since a unit mass of the fluid at pressure P1 occupies a volume V1, the
distance through which the force acts in order to move the fluid into the system is equal to V1/A,
where A is the cross-sectional area of the tube. This work which is equal to P1V1 for unit mass of the
fluid is done by the flowing fluid and therefore is called ‘flow energy’. The flow energy at section 1
is mP1V1.

Total energy at section 1 = mU1 + mgZ1 + (1/2)  + mP1V1
The energy at section 2 is also made up of similar quantities. The force at section 1 does work on the
system, while at section 2, it is in the opposite direction and represents work done by the system on
the surroundings.

Total energy at section 2 = mU2 + mgZ2 + (1/2)  + mP2V2
The energy imparted to the fluid within the system is determined by knowing the amount of heat
exchanged between the system and the surroundings and the total work done by the system or work
done on the system. That is,

Total energy imparted to the fluid is = mQ – mWs
Combining the preceding three results, we see that for unit mass of fluid the energy balance gives

or

DU + D(PV) + gDZ + Du2 = Q – Ws………(2.12)

Substituting Eq. (2.8) into Eq. (2.12), we get



EXAMPLE 2.11 A steam turbine using steam at 1368 kPa and 645 K and discharging saturated steam
at 137 kPa is used to generate power for certain chemical plant. The turbine acts adiabatically and the
feed and discharge velocities may be considered equal. Determine the theoretical horsepower
developed by the turbine if it uses 1650 kg steam per hour. From the steam tables, enthalpy 
of superheated steam at 1368 kPa and 645 K = 3200 kJ/kg and enthalpy of saturated steam at 
137 kPa = 2690 kJ/kg.
Solution Refer Eq. (2.13). Since the process is adiabatic, Q = 0. Assuming that the inlet and
discharge of the turbine are at the same level, DZ = 0. Feed and discharge velocities being equal,
Du2 = 0. Equation (2.13) reduces to

Ws = – DH = – (H2 – H1) = H1 – H2 = 3200 – 2690 = 510 kJ/kg

Since the steam consumption rate is 1650 kg/h,

work done by the turbine = (510 � 103) 1650/3600 = 233750 J/s
= 233750/745.7 = 313.46 hp

EXAMPLE 2.12 A liquid mixture containing 50 mol percent each of benzene and toluene at 
313 K is to be continuously flash vaporised so that 60 mol percent of the feed is vaporised. The
residual liquid product contains 35 mol percent benzene. If the enthalpies per mole of feed, distillate
and the residue are respectively 5, 30 and 2 kJ/mol, calculate the heat added in kJ per mole of vapour
product.
Solution Basis: 1 mol vapour product.
The vapour produced being 60 percent of the feed, feed = 1/0.6 = 1.667 mol and the residue is 1.667
– 1.00 = 0.667 mol.
The process is represented as shown in Fig. 2.5. Let F be the moles of the feed which is being flash
vaporized in unit time, D be the moles of vapour produced and W be the moles of liquid produced in
unit time.



Here F = 1.667 mol, D = 1 mol and W = 0.667 mol.
The first law applicable for the system is given by Eq. (2.14).

DH = Q – Ws
Since no work is exchanged between the system and the surroundings, Ws = 0 and Eq. (2.14) reduces
to

Q = DH
where Q is the heat added and DH is the change in enthalpy.
Denoting the enthalpy of the vapour by HD, enthalpy of the liquid by HL and enthalpy of the feed by
HF, the change in enthalpy is

DH = DHD + WHW – FHF
Here, HD = 30 kJ/mol, HW = 2 kJ/mol and HF = 5 kJ/mol.
Therefore,

DH = DHD + WHW – FHF
= 1 � 30 + 0.667 � 2 – 1.667 � 5 = 23.0 kJ

Since Q = DH, the heat supplied = 23.0 kJ/mol product.
EXAMPLE 2.13 Water at 368 K is pumped from a storage tank at the rate of 25 m3/h. The motor for
the pump supplies work at the rate of 2 hp. The water passes through a heat exchanger, where it gives
up heat at the rate of 42000 kJ/min and is delivered to a second storage tank at an elevation of 20 m
above the first tank. What is the temperature of the water delivered to the second storage tank?
Assume that the enthalpy of water is zero at 273 K and the specific heat of water is constant at 4.2
kJ/kg K.
Solution

The mass flow rate of water = 25 � 103 kg/h

Work done per kg of water pumped = 2(745.7 � 10–3) 3600/(25 � 103) = 0.2148 kJ/kg



Heat given out per kg of fluid = (42000) 60/(25 � 103) = 100.8 kJ/kg

Change in potential energy, D(PE) = mgDZ = 20 (9.81)10–3 = 0.1962 kJ/kg
Here, Q = – 100.8 kJ/kg and Ws = – 0.2148 kJ/kg. Assume that there is no change in the kinetic energy
of water. Substituting these in Eq. (2.13),

DH = – 100.8 + 0.2148 – 0.1962 = – 100.78 kJ/kg
H2 – H1 = – 100.78 kJ/kg

Therefore,
H2 = H1 – 100.78 kJ/kg

But,
H1 = CP(T – T0) = 4.2 (368 – 273) = 399 kJ/kg

Hence,
H2 = 399 – 100.78 = 298.22 kJ/kg

Let T be the temperature of water at the second storage tank. Then,
4.2 (T – 273) = 298.22

or
T = 298.22/4.2 + 273 = 344.0 K

EXAMPLE 2.14 Water is flowing in a straight horizontal insulated pipe of 25 mm i.d. There is no
device present for adding or removing energy as work. The upstream velocity is 10 m/s. The water
flows in a section where the diameter is suddenly increased. (a) What is the change in enthalpy if the
downstream diameter is 50 mm? (b) What is the maximum enthalpy change for a sudden enlargement
in pipe?
Solution Since Q and Ws are both equal to zero, Eq. (2.13) becomes



EXAMPLE 2.15 Steam at 1800 kPa and 673.15 K steadily enters a nozzle at a rate of 5 kg/s and
leaves the nozzle at 1400 kPa with a velocity of 300 m/s. The inlet area of the nozzle is 
0.02 m2. Heat losses from the nozzle per unit mass of the steam are estimated to be 3.3 kJ/kg.
Determine the exit temperature of the steam.
Solution: A nozzle is a device for converting thermal or mechanical energy into kinetic energy by
changing the cross-sectional area available for flow (see Chapter 5). Flow through a nozzle is
schematically represented in Fig. 2.6.

The first law of thermodynamics for a steady flow process is given by
DH + DKE + DPE = Q – Ws………(i)

Here DPE = 0, since the inlet and exit of the nozzle are assumed to be at the same level.
Ws = 0, since no work is exchanged between the system and the surroundings.

Q = –3.3 kJ/kg (negative because, heat is lost)



, where v1 and v2 are the velocities of steam at the inlet and exit of the nozzle.
The velocity of steam at the inlet (v1) can be calculated knowing the mass rate , area of nozzle at
the inlet (A1) and the specific volume of steam (V1).

Enthalpy at the inlet of the nozzle H1 = 3250.9 kJ/kg (from superheated steam tables).

DH = H2 – H1 = H2 – 3250.9

where H2 is the enthalpy of steam at the nozzle exit.
Substituting DKE and DH into Eq. (i) and noting that DPE = 0 and Ws = 0, we get

H2 – 3250.9 + 44.113 = –3.3

or
H2 = 3250.9 – 44.113 – 3.3 = 3203.5 kJ/kg

Since the exit steam is at 1400 kPa, the temperature of superheated steam having enthalpy of 3203.5
kJ/kg at 1400 kPa is found to be 648.15 K from steam tables.
Temperature of exit steam = 648.15 K.

2.7 HEAT CAPACITY
The heat capacity of a substance is the quantity of heat to be supplied to effect a temperature rise of
one degree. Thus

dQ = C dT
where C is known as heat capacity of the substance. Heat capacity of unit mass of a substance is also
known as specific heat of the substance. The heat capacity depends on the way in which heat is
supplied. When heat is supplied to a system at constant volume, the system is unable to do any work



and the quantity of heat required is given by
dQ = CV dT (constant volume)………(2.15)

where CV is known as the heat capacity at constant volume. Thus,

If heat is supplied to a substance at constant pressure, it is free to expand doing work against the
constant pressure. A part of the heat supplied to the system is utilised for the work of expansion and
more heat will be required to raise the temperature than that required in a constant volume process for
the same temperature change. The amount of heat required is related to the temperature rise as

dQ = CP dT (constant pressure)………(2.18)

where CP is called the heat capacity at constant pressure. Thus,

………(2.19)
For a constant pressure process, Eq. (2.5) becomes

dU = dQ – P dV
or dQ = dU + P dV = dH (constant pressure)
Equation (2.19) may be written as

………(2.20)
Since for a given temperature change, the heat required is more in a constant pressure process than
that in a constant volume process, CP > CV. However, the difference between CP and CV for solids
and liquids are very small compared to that for gases, as the change in volume of solids and liquids
during heating is not very significant.
Equations (2.17) and (2.20) give

dU = CV dT (constant volume)………(2.21)

dH = CP dT (constant pressure)………(2.22)

For a constant volume process, change in the internal energy is given by Eq. (2.21). Since internal
energy is a state function, Eq. (2.21) should give the change in internal energy in any process,
provided the initial and final volume are the same irrespective of the path along which this change is



brought about. However, Eq. (2.15) gives the heat required only for a process where the volume
undergoes no change. Similarly, the change in enthalpy in a constant pressure process or a process in
which the initial and final pressures are the same, can be evaluated by Eq. (2.22) whereas 
Eq. (2.18) determines the heat supplied in a true isobaric process only.
EXAMPLE 2.16 Hydrogenation of an oil is carried out in a reactor at a pressure of 136.8 kPa and a
temperature of 453 K. The hydrogen gas at 293 K is heated to 453 K by passing through a coil where
it experiences a pressure drop of 300 kPa. Hydrogen behaves like an ideal gas and its heat capacity at
constant pressure is 29.4 kJ/kmol. Neglecting kinetic energy effects determine the heat transfer rate in
the coils per 1000 kg hydrogen.
Solution The hydrogen gas at the inlet of the coils is at T = 293 K and P = 300 + 136.8 = 436.8 kPa
and the hydrogen at the exit is at T = 453 K and P = 136.8 kPa. It is assumed that there is no pressure
drop between the coil exit and the reactor.
Neglecting the kinetic and potential energy changes the general first law equation, Eq. (2.13), reveals
that the heat supplied is equal to the change in enthalpy of the gas. The enthalpy being a state function
change in enthalpy can be calculated by assuming the actual process to be occurring through a number
of steps. Let us assume that in step 1, the pressure of the gas is being reduced from 436.8 kPa to 136.8
kPa isothermally at 293 K, and in step 2, the gas is heated from 293 K to 453 K at a constant pressure
of 136.8 kPa.
The enthalpy of an ideal gas is dependent only on temperature. Thus, DH for step 1 = 0. For step 2,

DH = mCP DT = (1000/2.02) 29.4 (453 – 293) = 2328.7 kJ

Heat transferred in the coils,
Q = DH = 0 + 2328.7 = 2328.7 kJ

EXAMPLE 2.17 Heat is transferred to 10 kg of air which is initially at 100 kPa and 300 K until its
temperature reaches 600 K. Determine the change in internal energy, the change in enthalpy, the heat
supplied, and the work done in the following processes:

(a) Constant volume process
(b) Constant pressure process.

Assume that air is an ideal gas for which the P-V-T relationship is PV = nRT, where n is the number
of moles of the gas and R is the ideal gas constant. R = 8.314 kJ/kmol K. Take CP = 29.099 kJ/kmol
K, CV = 20.785 kJ/kmol K and molecular weight of air = 29.

Solution Number of moles of the gas = 10/29 = 0.3448 kmol. P1 = 100 kPa, T1 = 300 K.



EXAMPLE 2.18 The P-V-T behaviour of nitrogen is represented by the ideal gas equation 
PV = nRT, where n is the number of moles of the gas and R the ideal gas constant (R = 8.314 kJ/kmol
K). The heat capacities of the gas are CV = 20.8 and CP = 29.1 kJ/kmol K. The gas initially at 10 bar
and 280 K is undergoing a change of state to the final condition of 1 bar and 340 K. Determine the
change in internal energy and the change in enthalpy.
Solution Take a basis of 1 kmol ideal gas. The initial conditions of the gas are represented by suffix



1 and the final conditions by suffix 2. P1 = 10 bar, T1 = 280 K. Therefore,

V1 = nRT1/P1 = 8.314 (280)/1000 = 2.328 m3

P2 = 1 bar, T2 = 340 K, Therefore,

V2 = nRT2/P2 = 8.314 (340)/100 = 28.268 m3

Since the changes in the state functions depend only on the terminal conditions and not on the path
followed, we can assume that the actual change is carried out in different steps for which DH and DU
are easily evaluated. Since the changes in U and H along a constant volume and constant pressure
paths are easily calculated using CV and CP, we may assume that the proposed change in state is
occurring along the following two-step process:
1 . A constant volume process in which the pressure is reduced to the final value P 2 and the
temperature gets reduced to T�.
Let P� and V� denote the pressure and volume of the system after this step. Then

P� = P2, V� = V1
T� = P�V�/nR = 100 (2.328)/8.314 = 28 K

For this constant volume process,
DU = CVDT = 20.8(28 – 280) = – 5241.6 kJ

DH = DU + D(PV) = DU + VDP = – 5241.6 + 2.328(100 – 1000) = – 7336.8 kJ
W = 0
Q = DU = – 5241.6 kJ

2. A constant pressure process in which the gas is heated to the final temperature T 2 and the final
volume V2.
For this constant pressure process,

DH = CPDT = 29.1(340 – 28) = 9079.2 kJ

DU = DH – D(PV) = DH – PDV = 9079.2 – 100 (28.268 – 2.328) = 6485.2 kJ
Q = DH = 9079.2 kJ
W = Q – DU = 9079.2 – 6485.2 = 2594 kJ

For the actual process, the changes in U and H are obtained as the sum of the respective values in the
two-step process.

DU = – 5241.6 + 6485.2 = 1243.6 kJ
DH = – 7336.8 + 9079.2 = 1742.4 kJ

SUMMARY
The essence of the first law of thermodynamics is contained in the statement: “The energy of the
universe is conserved” (Section 2.1). Mathematical expressions for the first law were developed for



a static system undergoing a cycle of changes (Section 2.2), for a non-flow process (Section 2.4), and
for a flow process (Section 2.6). The internal energy U is a thermodynamic property arising by virtue
of the configuration and motion of the molecules constituting the system (Section 2.3). Enthalpy H is
defined as the sum of the internal energy that the system possesses and the product PV, the latter being
the energy of the system by virtue of it occupying a space (Section 2.5). It was shown that for a cyclic
process, the difference between the algebraic summation of all the heat effects and the summation of
all the work effects is zero, whereas for non-flow processes, in general, the difference between the
heat supplied to the system and the work done by the system is equal to the change in its internal
energy. The application of the first law of thermodynamics to the steady-state flow through an
equipment, in which the changes in the kinetic and potential energies were negligible, revealed that
the difference between the heat and work effects accompanying the process could be measured by the
enthalpy change in the process.
Section 2.7 was devoted to the definitions of two very important thermodynamic properties used for
the determination of the heat requirements in a process: the heat capacities at constant pressure and at
constant volume, CP and CV, respectively. The heat requirement under the constant volume restriction
is different from that in a constant pressure process, since in the latter, a part of the heat supplied is
utilised for maintaining the pressure and is not available for increasing the temperature (Section 2.7).

REVIEW QUESTIONS
1. What is the significance of Joule’s experiments in the formulation of the first law of

thermodynamics?
2. “Energy can neither be created nor be destroyed”. How does this statement lead to the statement

“The energy of the universe is conserved”?
3. What do you mean by a cyclic process? State and explain the first law for a cyclic process.
4. Distinguish between internal energy, kinetic energy, and potential energy of a system.
5. What is the change in internal energy in a cyclic process? What is it in a static non-flow

process?
6. Prove that the internal energy is a state function.
7. What is enthalpy of a system? How is it related to the internal energy?
8. Prove that the heat supplied is equal to the change in internal energy for a constant volume

process and the change in enthalpy for a constant pressure process.
9. What is meant by ‘entrance work’ in flow systems?
10. How do you state mathematically the first law of thermodynamics that can be used for solving

steady-state fluid flow problems?
11. Why is the specific heat at constant pressure, CP, always greater than that at constant volume,

CV?
12. For all processes, where the initial and final pressures are the same, dQ = dH = CP dT. Do you

agree? If not, why?

EXERCISES
2.1 Water is being heated in a closed container provided with a paddle agitator. 50 kJ of 



heat is supplied and 10 kJ lost to the surroundings. The work done by the paddle-wheel is 750 N
m. What is the change in internal energy of the contents of the vessel?

2.2 An insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains
5 kg of an ideal gas at 1 MPa and 400 K and the other part is evacuated. The partition is now
removed and the gas expands into the entire tank. Determine the final temperature and pressure
in the tank.

2.3 An elevator with a mass of 2500 kg rest at a level of 7.5 m above the base of the elevator shaft.
It is raised to 75 m when the cable holding it breaks. It falls freely to the base where it is brought
to rest by a strong spring. Assume that the acceleration due to gravity is 9.81 m/s2. Neglecting
the effect of friction, Calculate: (a) The potential energy of the elevator in its initial position. (b)
The potential energy of the elevator in its highest position. (c) The work done in raising the
elevator. (d) The kinetic energy and velocity of the elevator just before it strikes the spring. (e)
The potential energy of the spring when the elevator rests on it.

2.4 Consider 1 kg of water in a waterfall which is flowing down from a height of 100 m. At the
bottom of the fall it joins a river the downstream velocity of which may be assumed negligible.
Neglecting any energy exchange between the water and the surroundings, calculate: (a) The
potential energy at the top of the falls. (b) The kinetic energy just before the water strikes the
bottom. (c) The change in temperature of the water when it enters the river.

2.5 A 10 g lead ball at 300 K is dropped from a height of 10 m. Calculate: (a) the kinetic energy
and speed of the ball as it reaches the ground and (b) the temperature rise of the ball if all its
kinetic energy is transformed into internal energy as the ball is suddenly stopped after 10 m,
given that the specific heat of lead is 125.6 J/kg K and its volume change is negligible.

2.6 A mixture of saturated steam and saturated water is contained in a rigid tank of volume 0.1 m3
at a pressure of 2 bar. The liquid occupies 10% of the total volume. How much heat must be
added in order that the tank contains only saturated steam? What will be the pressure in the tank?
The specific volumes of saturated liquid and saturated vapour are 1.061 � 10–3 m3/kg and
0.8857 m3/kg respectively. The internal energy of saturated liquid and saturated vapour are
respectively 504.5 kJ/kg and 2529.5 kJ/kg.

2.7 Iron reacts with hydrochloric acid at 300 K according to
FeS (s) + 2HCl (aq) Æ FeCl2 (aq) + H2 (g)

Determine the work done when 0.1 kg iron reacts with HCl in (a) a closed vessel, (b) an open
vessel.

2.8 A vessel of volume 1 m3 initially contains one per cent by volume saturated liquid water and
the rest saturated vapour at 1 bar. How much heat is to be supplied so that the vessel gets filled
with vapour? Take data from steam tables.

2.9 Liquid water at 373 K and 101.3 kPa has an internal energy of 420 kJ/kg on an arbitrary basis.
The specific volume at these conditions is 1.04 � 10– 3 m3/kg. The water is brought to the
vapour state at 473 K and 700 kPa. At this condition, its specific volume is 
0.3 m3/kg and its enthalpy is 2844 kJ/kg. Calculate the enthalpy of the liquid and the changes in
internal energy and enthalpy accompanying the vaporisation process.



2.10 A sample of 10 g of liquid benzene at its boiling point is vaporised using a 12 V, 
0.5 A electric supply. The normal boiling point and latent heat of vaporisation of benzene are
353.2 K and 30.8 � 103 kJ/kmol respectively. Determine: (a) the change in internal energy, (b)
the time required for complete vaporisation.

2.11 A cylinder fitted with a piston has a volume 0.1 m3 and contains 0.5 kg of steam at 
500 kPa. How much heat is to be supplied to bring the temperature of the steam to 
823 K keeping the pressure constant? What is the work done in the process?

2.12 A 5-kg saturated liquid water contained in a piston-cylinder arrangement at 200 kPa is heated
by passing a current of 8 A through an electric resistance heater kept within the cylinder for 46
min. Water is stirred by a paddle wheel which does a work of 500 kJ. If one-half of the liquid is
evaporated at constant pressure, what is the voltage of the electric source?

2.13 A steam boiler of volume 2.3 m3 initially contained 1.7 m3 liquid water in equilibrium with
0.6 m3 of vapour at 100 kPa. The boiler is heated keeping the inlet and discharge valves closed.
The relief valve is set to lift when the pressure in the boiler reaches 
5500 kPa. Determine the amount of heat supplied to the contents in the boiler before the relief
valve lifts.

2.14 A gas expands from an initial volume of 0.2 m3 to a final volume of 0.4 m3 in a reversible
steady flow process. During the process, the pressure varies with the volume as

P = 5 � 105 V + 7 � 104

where P is in N/m2 and V is in m3. The inlet line is 4 m below the outlet line and the gas enters
with a negligible velocity. The internal energy of the gas decreases by 30 kJ during the process.
Determine the heat transferred.

2.15 A trial run on a steam turbine power plant gave the following results

2.16 The work required for compressing a gas from an initial condition of 100 kPa and 
300 K to a final pressure of 300 kPa is found to be 280 kJ/kg of the gas. The compressed gas is
admitted to a nozzle where its velocity is increased to 700 m/s. If the gas enters the compressor
with negligible velocity and leaves the nozzle at 100 kPa and 300 K, what is the heat removed
during compression?

2.17 In a test of water-jacketed air compressor, it was found that the shaft work required to drive
the compressor was 150 kJ/kg air compressed. The enthalpy of air leaving the compressor was
found to be greater than that of the air entering the compressor by 
80 kJ/kg and the heat removed by the cooling water was 100 kJ/kg of air. Determine the amount
of energy that must have been dissipated as heat to the atmosphere from the bearings, cylinder



walls, etc.
2.18 Water at 200 kPa and 355 K (H = 343.3 kJ/kg) enters a straight horizontal pipe at a velocity 3

m/s where it is heated by flue gases from the outside. Steam leaves the system at 100 kPa and
423 K (H = 2776.3 kJ/kg) at a velocity of 200 m/s. How much heat must have been supplied per
kg of water flowing?

2.19 A steam-jet ejector is used to entrain saturated water vapour at 25 kPa (H = 2618.2 kJ/kg)
leaving an evaporator, by high pressure saturated steam at 1000 kPa (2778.1 kJ/kg). It is
estimated that with every kg of high-pressure steam 0.75 kg of the vapour from the evaporator
can be entrained. If the mixed stream leaving the ejector is at 100 kPa what is its temperature?

2.20 Air at 80 kPa, 300 K, and 250 m/s enters a diffuser at a rate of 2.5 kg/s and leaves at 320 K.
The exit area of the diffuser is 0.04 m2. The air is estimated to lose heat at a rate of 20 kJ/s
during this process. Assume air to be an ideal gas with average molecular weight of 29 and
average heat capacity, CP of 1.0068×103 J/kg K under the stated conditions. Determine (a) the
exit velocity and (b) the exit pressure of the air.

2.21 Superheated steam at 2 MPa and 673 K is expanded to a pressure 15 kPa in an adiabatic
turbine, the power output of which is 5 MW. The steam enters at a velocity of 50 m/s and leaves
at 180 m/s as a two-phase mixture consisting of 90% vapour. The inlet and exit of the turbine are
at elevations of 10 m and 6 m from the datum. Determine the work done per unit mass of the
steam flowing through the turbine and the mass flow rate of the steam.

2.22 A compressor receives air at 101.3 kPa at a steady rate of 0.5 kg/s and delivers at 
700 kPa. At the inlet, the velocity and specific volume of air are 6 m/s and 0.83 m3/kg,
respectively and those at the exit are 4 m/s and 0.15 m3/kg, respectively. The internal energy of
compressed air is greater than that of inlet air by 90 kJ/kg. Heat is removed from the cylinder at
a rate of 60 W by the circulating cooling water. Determine the power required to drive the
compressor.

2.23 Turbines in a hydroelectric power plant receive water from a 100-m high dam, generate
power and discharge water through a 6-m diameter pipe at a velocity of 15 m/s into a river
below the dam. Assume that the dam and the surroundings are at the same temperature. What is
the power output from the plant?

2.24 A pump which supplies water at the rate of 200 cubic metre per hour is driven by a 
20-kWh electric motor having an efficiency of 80%. The pressures at the inlet and exit of the
pump are 100 and 316 kPa, respectively and the potential energy change across the pump is
negligible. The inlet and exit pipes are of the same diameters. Determine the mechanical
efficiency of the pump.

2.25 The turbine in a hydroelectric power plant receives water at a rate of 120 m3/s from an
elevation of 150 m. If the combined efficiency of the turbine-generator system is 80%, determine
the power output from the plant in MW. Neglect frictional losses in the piping.

2.26 Oil flows at a rate of 1000 kg/min from an open reservoir at the top of a hill 400 m in height to
another reservoir at the bottom of the hill. Heat is supplied to the oil on its way at the rate 1800
kJ/min and work is supplied by a 1 hp pump. Take the mean specific heat of oil to be 3.35 kJ/kg
K. Determine the temperature change of the oil.



2.27 A gas initially at 100 bar is undergoing a reversible process in which its pressure gets
doubled at a constant volume of 0.5 m3. If the total internal energy (U�) of the gas in kJ is
related to the pressure P in bar and total volume (V�) in m3 according to U� = 
2.0 PV�, calculate the change in enthalpy and the heat supplied.

2.28 (a) Three kilo mole nitrogen gas (CP = 29.1 kJ/kmol K and CV = 20.8 kJ/kmol K) at 
350 K is taken in a rigid container and is heated to 550 K. How much heat must be supplied, if
the mass of the vessel is 100 kg and its specific heat is 0.5 kJ/kg K?
(b) Two kilo mole nitrogen is taken in a piston/cylinder arrangement at 500 K. Determine the
quantity of heat extracted from the gas to cool it to 350 K at constant pressure if the heat capacity
of the container is negligible.

2.29 An insulated rigid container contains air at 5 bar and 375 K. The volume of the container is 1
m3. Air may be assumed to behave as an ideal gas so that the P-V-T relationship is PV = nRT,
where R = 8.314 kJ/kmol K. The specific heat CV of air is 20.785 kJ/kmol K. The temperature
of the air is increased by a rotating paddle wheel. Calculate the work done to raise the
temperature of the air to 425 K.

2.30 Assume that the P-V-T relationship for nitrogen gas can be approximated by the ideal 
gas equation PV = nRT, where R = 8.314 kJ/kmol K. The heat capacities are CV = 
20.786 kJ/kmol K and CP = 29.1 kJ/kmol K. Nitrogen which was initially at 1 bar and 280 K, is
compressed to 5 bar and 280 K by two different reversible processes:
(a) Cooling at constant pressure followed by heating at constant volume
(b) Heating at constant volume followed by cooling at constant pressure.

For each of the above paths, determine the conditions at the intermediate state and DU, DH, Q
and W.

2.31 One kilo mole of a gas for which PV = nRT, where R = 8.314 kJ/kmol K is originally at 300 K
and 1 bar. It is then heated at constant pressure to a temperature of 400 K and compressed
isothermally to a volume equal to its initial volume. Assume that CP = 
30 kJ/kmol K. Find DU, DH, Q and W.



3

P-V-T Behaviour and Heat Effects
3.1 P-V-T BEHAVIOUR OF PURE FLUIDS
The thermodynamic state of a pure fluid can be described in terms of two independent properties.
Consider the thermodynamic state of a one component system, for example, water, which is
represented in Fig. 3.1 as a function of pressure and volume. The figure shows the variation in molar
volume with pressure at various constant temperatures. Assume that the initial state of the system is
represented by point a. The change in volume of water with pressure at a constant temperature T1 is
along the isotherm a-b-d-e. Since liquid water is almost incompressible, the reduction in pressure for
the change of state from a to b produces only negligible increase in volume. When point b is reached,
vaporisation begins and this results in a rapid increase in volume. From b to d, the two phases, liquid
and vapour, are in equilibrium. The temperature and pressure remain constant during the phase change
as indicated by the horizontal portion of the isotherm b-d. The saturated liquid state is represented by
point b and the saturated vapour state by point d. The relative amounts of the vapour and liquid
phases in equilibrium change with continued vaporisation, and at point d, the entire liquid has been
vaporised. The vapour and liquid coexisting in equilibrium are called saturated phases. Points along
the horizontal line 
b-d represent all possible mixtures of liquid and vapour, with point b representing saturated liquid
state (100% liquid) and point d saturated vapour state (100% vapour). The pressure at which the
liquid and vapour phases coexist in equilibrium is called the saturation pressure,  and the
temperature corresponding to this pressure is called the saturation temperature. Further reduction in
pressure increases the volume of the system along the curve d-e. When the pressure over the system is
brought down to a value less than the saturation pressure at constant temperature or when the
temperature is increased above the saturation temperature at constant pressure, the vapour gets
superheated.



We see that the P-V isotherm has two discontinuities in its slope at points b and d. The isotherm at a
higher temperature T2 will be similar to that at temperature T1, but the length of the horizontal section
joining the saturated liquid and vapour phases will be smaller. The locus of the saturated phases is
represented by the dome-shaped curve b-c-d. The area under this dome represents the two-phase
region, the area to the left of curve a-c is the liquid region, and the area to the right of curve c-d is the
vapour region.
When the temperature of the system is increased to TC, the critical temperature, the discontinuities in
the isotherm disappear indicating that, at the critical temperature, the saturated liquid and saturated
vapour phases become indistinguishable. The liquid state changes to vapour state without any
discontinuity at the critical point represented by point c in the figure. The properties of the substance
at the critical point are known as critical properties. The critical properties of water are TC = 647.3

K , PC = 220.5 bar and VC = 56 � 10–6 m3/mol. The critical temperature and critical pressure
represent the highest temperature and pressure respectively, at which a pure material can exist in
vapour–liquid equilibrium. If the temperature is less than the critical temperature, the substance to the
right of the saturated vapour line is called a vapour and, if the temperature is above the critical
temperature, the substance is called a gas. A vapour can be condensed to a liquid by compression at
constant temperature or by cooling at constant pressure whereas a gas can be condensed by a
reduction of temperature at constant pressure only. It cannot be condensed by compression at constant
temperature. If the temperature and pressure are greater than TC and PC respectively, the substance is
in the fluid region and it can neither be condensed by any of the above methods nor can it be
vaporised by reduction in pressure as is possible with liquids. The substance in this state is neither a
gas nor a liquid.
The phase behaviour of pure fluids can be represented on PT diagram as in Fig. 3.2, which includes
the solid region also. Consider unit mass of ice at pressure and temperature corresponding to point p



in the figure. When it is heated at constant pressure, the temperature increases and at point q ice starts
to melt. The temperature corresponding to point q is the fusion temperature. The fusion line represents
the state of the system at which the solid is in equilibrium with the liquid. If transfer of heat is
continued, the temperature remains constant till the entire solid is liquefied. The fusion temperature is
a function of the pressure only. If heating is continued, the substance enters the liquid region, and
when it attains the temperature corresponding to point r lying on the vaporisation curve, the liquid
begins to vaporise. When all liquid has been vaporised, temperature increases along the line r-s in
the vapour region. Heating beyond the critical temperature TC takes the substance into the gas region.
The fusion curve and the vaporisation curve meet at the triple point where the three phases coexist in
equilibrium. According to the phase rule, the triple point is invariant. For water at the triple point, T
= 273.16 K and P = 6.1 � 10–3 bar. If the pressure of the system is below the triple point pressure,
the heating of the solid results in sublimation, i.e. the transformation of solid directly into vapour.
The sublimation curve in Fig. 3.2 represents the state of the system in which the vapour is in
equilibrium with solid. It may be noted that the fusion curve extends up to infinity whereas the
vaporisation curve terminates at the critical point.

3.2 EQUATIONS OF STATE AND THE CONCEPT OF IDEAL GAS
The thermodynamic state of a single homogeneous fluid may be specified by properties such as
pressure, temperature, and volume. An equation of state is a functional relationship between these
three variables and it may be written as

f(P, V, T) = 0………(3.1)
The most simple equation of state is the one applicable for ideal gases.
On a molecular level, an ideal gas may be treated as the one for which (a) the size of the molecules is
very small compared to the distance between them so that the volume of the molecules is negligible in
comparison with the total volume of the gas and (b) the intermolecular forces are negligibly small.



Thermodynamics characterises an ideal gas as the one for which the following properties are
applicable:
1. For one mole of an ideal gas the equation of state is given by

PV = RT………(3.2)
where R is known as the ideal gas constant. Its value is 8.314 J/mol K.
2. The internal energy of an ideal gas depends only on temperature. It is independent of pressure and
volume.

The increase in temperature of an ideal gas results in increased kinetic activity of the molecules,
which is manifested as an increase in its internal energy. When the gas is compressed at constant
temperature, it will offer no resistance and consequently results in no change in its energy, as there
are no intermolecular forces to overcome.
3. The Joule-Thomson coefficient (m) is zero for an ideal gas.

The Joule-Thomson coefficient is defined as the change in temperature resulting from the expansion of
a gas between two constant pressures under adiabatic condition and with no exchange of work with
the surroundings. The adiabatic condition (Q = 0) and no exchange of work (W = 0) ensure that the
enthalpy H is constant (dH = dQ – dW) during Joule-Thomson expansion. Hence, the Joule-Thomson
coefficient is denoted by (∂T/∂P)H.
Gases, like hydrogen, helium, nitrogen, and oxygen at room temperatures, follow the perfect gas law
very closely and they can be treated as ideal gases. However, the only state at which the real gases
follow ideal behaviour is at zero pressure. For engineering purposes, all gases in the neighbourhood
of atmospheric pressure are treated as ideal.

EXAMPLE 3.1 Assuming air to behave as ideal gas, calculate the molar volume of air at 
350 K and 1 bar.

Solution Temperature T = 350 K and pressure P = 1 bar = 105 N/m2. According to Eq. (3.2), one
mole of air at the stated conditions will have a volume V, where

Thus, the molar volume of air at 350 K and 1 bar = 2.91 � 10–2 m3/mol.

3.3 PROCESSES INVOLVING IDEAL GASES
3.3.1 Constant Volume Process



From the general mathematical statement of the first law of thermodynamics for nonflow process [see
Eq. (2.5)],

dU = dQ – dW
Consider one mole of an ideal gas undergoing a constant volume process. Since the volume remains
constant, there is no work of expansion and dW = 0; the heat supplied is equal to the product of heat
capacity and rise in temperature, i.e. dQ = CV dT. CV is the heat capacity at constant volume. It is the
heat required to increase the temperature of unit mass of a substance by unity when the volume of the
substance undergoes no change. Substituting these two results into Eq. (2.5), we get

irrespective of how the process is carried out. This is a consequence of the property of the ideal gas
that its internal energy is a function of temperature alone. Consider the change of state of an ideal gas
from state 1 at which the temperature is T1, to state 2 at which the temperature is T2. The internal
energy in the initial state is U1 and that in the final state it is U2. These are determined by specifying
the temperatures T1 and T2 respectively. When the gas is undergoing a constant volume process
between state 1 and state 2, the change in internal energy according to Eq. (3.5) is

DU = U2 – U1 = CV dT

Now consider any other process occurring between the same temperature limits T1 and T2. Internal
energy being a state function, the change in its value depends only on the terminal conditions.
However, for ideal gases, U depends only on the temperature of the gas, and the temperatures at the
initial and final states of this process, are the same as those in the constant volume process.
Therefore, the change in internal energy in this process is U2 – U1, same as that resulted in the
constant volume process. It means that the internal energy change in any process involving an ideal
gas is given by Eq. (3.6). However, since the heat interaction in a process depends on the way in
which the process is carried out, Eq. (3.5) is applicable only for a process satisfying the constant-
volume restriction.
It can be shown that CV for an ideal gas is independent of pressure and volume and depends on
temperature only. The same is true for CP also. These will be proved in Chapter 6.

3.3.2 Constant Pressure Process
Consider the reversible expansion of an ideal gas in a cylinder. The pressure inside the cylinder is
kept constant at P by maintaining a constant force over the piston. The heat supplied is the product of
heat capacity and rise in temperature: dQ = CP dT, where CP is the heat capacity at constant
pressure. The work involved is the work of expansion done against the surrounding atmosphere,



which, for a reversible process is given by dW = P dV. Substituting these expressions for dQ and dW
into Eq. (2.5), we get the mathematical statement of the first law of thermodynamics in the following
form.

dU = CP dT – P dV

or
dU + P dV = CP dT………(3.7)

Enthalpy is defined as H = U + PV. For a constant pressure process, the change in enthalpy is
dH = dU + P dV

Equation (3.7) can now be rewritten as
dH = CP dT………(3.8)

Thus, for the process occurring at constant pressure, we have the following general result applicable
for all gases whether ideal or not.

dH = dQ = CP dT………(3.9)

Since for an ideal gas, H = U + PV = U + RT, and U is a function of temperature only, 
the enthalpy of an ideal gas depends only on temperature. Assume that the gas is initially at
temperature T1 and let its enthalpy be H1. As long as the temperature is constant at T1, the enthalpy is
constant, irrespective of the pressure. Let the gas expand under constant pressure to a final state
where the temperature is T2 and enthalpy is H2. According to Eq. (3.9), the change in enthalpy is

DH = H2 – H1 = CP dT………(3.10)

If the change occurred along any path other than the constant pressure path, but, between the same
terminal temperatures, the enthalpy change should be the same: DH = H2 – H1. For constant pressure

path, this is shown to be equal to CP dT. Therefore, for any process occurring between the same

temperature levels, the change in enthalpy is CP dT. In general, for an ideal gas,

However, it should be noted that dQ = CP dT is applicable only for an isobaric process.

EXAMPLE 3.2 Show that CP – CV = R for an ideal gas.

Solution Enthalpy is defined as
H = U + PV

Therefore,
dH = dU + d(PV)

For ideal gas, PV = RT, and hence,
dH = dU + R dT

Substituting Eqs. (3.6) and (3.11) into the above equation, we obtain



CP dT = CV dT + R dT

Rearranging this equation, we get

3.3.3 Constant Temperature Process
Internal energy of an ideal gas will change only if the temperature changes. In an isothermal process
involving an ideal gas, the change in internal energy and the change in enthalpy would be zero. Put dU
= 0 in Eq. (2.5), so that

dW = dQ………(3.13)
The above equation can be integrated to determine the heat and work effects in an isothermal process
involving ideal gases.

Q = W = P dV
Since P = RT/V, the above equation gives

3.3.4 Adiabatic Process
In an adiabatic process, there is no heat interaction between the system and the surroundings. dQ is
zero in Eq. (2.5) so that we have

dU = – dW = – P dV………(3.17)
for an adiabatic reversible process. Later in this section it is shown that, in an adiabatic process the

pressure and volume are related as PVg = constant, where g = CP/CV, which is assumed constant for
an ideal gas. It is already proved that CP – CV = R, a constant. If the ratio and the difference between
two quantities are constant then the quantities themselves should be constant. Therefore, the
assumption of constant g implies that both CP and CV are constant. For the common monatomic and
diatomic gases at low temperatures and pressures, it is found that the assumption of constant heat



capacities introduces no serious error.
Using Eq. (3.6) in Eq. (3.17), we see that

dW = P dV = – CV dT………(3.18)

By the ideal gas equation, P = RT/V and Eq. (3.18) yields

Let the pressure, volume, and temperature are respectively P1, V1, and T1 in the initial state of the
gas and P2, V2 and T2 respectively be the corresponding values in the final state after the adiabatic
process. Equation (3.21) on integration between the initial and final conditions gives

which on rearrangement leads to the following relation between temperature and volume in an
adiabatic operation:





3.3.5 Polytropic Process
In a polytropic process, the relationship between pressure and volume is assumed to be 
PVn = constant, where n is a constant. If n = 0, the process is isobaric; if n = 1, the process become
isothermal; and if n = �, the process is isochoric (constant volume). If n = g, the process is an
adiabatic process. Generally the value of n lies between 1 and g, indicating that the process lies
between isothermal and adiabatic. In this case, the heat and work involved in the process are to be
calculated using the first law of thermodynamics and the relationships applicable for ideal gases.
Equations (2.5), (3.6) and (3.11) may be used for this purpose along with the expression dW = PdV
which gives the work of expansion in any reversible process.

dU = dQ – dW………(2.5)
dU = CV dT………(3.6)

dH = CP dT………(3.11)

EXAMPLE 3.3 An ideal gas is undergoing a series of three operations: The gas is heated at constant
volume from 300 K and 1 bar to a pressure of 2 bar. It is expanded in a reversible adiabatic process
to a pressure of 1 bar. It is cooled at constant pressure of 1 bar to 300 K. Determine the heat and
work effects for each step. Assume CP = 29.3 kJ/kmol K.

Solution The difference between CP and CV of an ideal gas is equal to R, the ideal gas constant.
Hence CV is given by

CV = CP – R = 29.3 – 8.314 = 20.986 kJ/kmol K

Step 1: Volume remains constant. Therefore, work done is zero and heat supplied is CV (T2 – T1).
Also, T2/T1 = P2/P1 = 2; That is,

T2 = 2 � 300 = 600 K



where T2 is the final temperature attained. Heat supplied is

20.986 � (600 – 300) = 6295.8 kJ/kmol
Step 2: The process is adiabatic. Therefore, heat supplied is zero. The work done is given by Eq.
(3.25) as

W = CV (T1 – T2)

where T1 and T2 are the initial and final temperatures in the adiabatic process which are related to
the initial and final pressures by Eq. (3.23):

W = 20.986 (600 – 492.2) = 2262.3 kJ/kmol
Since W is positive, work is done by the system.
Step 3: The process is isobaric. Heat supplied is calculated as

CP (T2 – T1) = 29.3 (300 – 492.2) = – 5631.5 kJ/kmol

(Heat is given out by the system).
DU = CV(T2 – T1) = 20.896(300 – 492.2) = – 4016.2 kJ/kmol

First law states that DU = Q – W. Hence,
W = Q – DU = – 5631.5 + 4016.2 = – 1615.3 kJ/kmol

So, work is done on the system.

EXAMPLE 3.4 Calculate the change in internal energy, change in enthalpy, work done, and the heat
supplied in the following processes:

(a) An ideal gas is expanded from 5 bar to 4 bar isothermally at 600 K.
(b) An ideal gas contained in a vessel of 0.1 m3 capacity is initially at 1 bar and 298 K. It is heated

at constant volume to 400 K.
(Assume that CP = 30 J/mol K.)

Solution (a) Since the internal energy and enthalpy of ideal gas depend only on temperature, in an
isothermal process, they remain constant. DU = DH = 0. Equation (3.16) is used to calculate the work
done and heat supplied.

Q = W = RT ln  = 8.314 � 600 � ln  = 1113.13 kJ/kmol
(b) Number of moles of the gas is



n = PV/RT = (1 � 105) 0.1/(8.314 � 298) = 4.04 mol
CV = CP – R = 30 – 8.314 = 21.686 J/mol K

DU = CV (T2 – T1) = 21.686 (400 – 298) = 2212 J/mol = 2212 (4.04) = 8936 J

DH = CP (T2 – T1) = 30(400 – 298) = 3060 J/mol = 3060(4.04) = 12362 J

Being a constant volume process, W = 0, and
Q = DU + W = DU = 8936 J

EXAMPLE 3.5 Twenty kilograms of air is compressed from 1 bar, 300 K to 5 bar in a single stage
compressor. The process is polytropic with n = 1.25. The specific heat of air at constant pressure in
kJ/kmol K is:

CP = 27.4528 + 6.1839 � 10–3 T – 8.9932 � 10–7 T2

Determine:
(a) The work done by the compressor per cycle and
(b) The amount of heat transferred to the surroundings.

Solution Molecular weight of air may be taken as 29. Dividing the mass of air by the molecular
weight, the number of moles can be determined.

(a) Work done:



Therefore,

W = – 0.7456 (3.5028 � 106) = – 2.612 � 106 J
That is, 2612 kJ of work is required by the compressor.
(b) Amount of heat:

The actual process is occurring along a polytropic path from the initial state at which the conditions
are P = 1 bar, V = 17.21 m3 and T = 300 K to the final state where P = 5 bar, V = 4.75 m3, and T =
414 K. This process may be assumed to occur in two steps:

1. A constant temperature process at 300 K whereby the pressure is increased from 1 bar to 5 bar,
2. A constant pressure process at 5 bar by which the temperature is increased from 300 K to 414 K.

The change in the internal energy for the actual process is equal to the sum of the internal energy
changes in these two steps. The step 1 being an isothermal process DU = 0. For step 2,

3.4 EQUATIONS OF STATE FOR REAL GASES
Perfect gas law is inadequate to explain the behaviour of real gases. For real gases to behave ideally,
the molecular interactions should be negligible. At low molar volumes or high pressures, molecules
come very close to each other and molecular interactions cannot be neglected. The perfect gas law
may be viewed as an approximation to describe the behaviour of real gases at ordinary pressures or
as the limiting behaviour of real gases at low pressures. Many equations of state have been proposed
to explain the actual behaviour of gases.



3.4.1 Limiting Conditions
An equation of state, in general, should satisfy certain limiting conditions. They are:

1. All equations reduce to the ideal gas equation at low pressures. That is,
PV = RT as P � 0

2. The slope of the PV isotherm against P may be equal to, greater than, or less than zero as
pressure tends to zero. This is true for the slope of the compressibility factor versus P curve
also. That is, either

3. The P-V curve at constant temperature should exhibit a point of inflection at the critical point.

4. The P-T curves are linear except at very high densities.

This inequality means that the P-T curves are convex upward from the T-axis. A few of the commonly
used equations of state are discussed in the following sections.

3.4.2 van der Waals Equation
van der Waals proposed the following equation to explain the P-V-T behaviour of real gases.

where a and b are called van der Waals constants. This equation is cubic in volume and below the
critical temperature, there are three real roots. The largest is the vapour volume and the smallest the



liquid volume. The intermediate root has no physical significance. When P is the saturation pressure,
the smallest and the largest roots correspond to molar volumes of saturated liquid and saturated
vapour respectively.
The perfect gas equation fails to explain the P-V-T behaviour of real gases as the volume occupied by
the molecules of a real gas and the forces of interaction between them are not negligible as in an ideal
gas. van der Waals equation takes into account these two features of a real gas by incorporating
certain correction factors in the pressure and volume terms of the ideal gas equation. In order to find a
correction term to compensate for the attractive forces between molecules, consider the forces of
attraction on a molecule hitting the wall of the container. When the molecule hits the wall it
experiences a net attractive force towards the surrounding molecules, thereby, reducing the pressure
that would have been exerted by the molecule on the wall in the absence of intermolecular attraction.
This attractive force is directly related to the number of molecules per unit volume and the frequency
of molecular collision, the latter in turn being proportional to the number of molecules per unit
volume. In short, the net attractive force is proportional to 1/V2 where V is the molar volume of the
gas. The actual pressure, P, of the gas is less than the ideal pressure calculated by kinetic theory by
a/V2, where a is a constant. Or, the pressure term in the ideal gas equation should be replaced by P +
(a/V2).
The centres of two identical molecules are at a distance equal to the molecular diameter at the instant
of their collision with each other. The molecular separation at collision cannot be smaller than this
distance. Since each molecule is surrounded by a forbidden volume that cannot be penetrated by
another molecule, the effective volume of the gas will be less than the actual volume. The volume
term in the ideal gas equation is replaced by V – b, where b indicates the forbidden volume per mole
of the gas. Equation (3.29) results by incorporating these corrections to P and V terms in the ideal gas
equation PV = RT.

EXAMPLE 3.6 One kilo mol CO2 occupies a volume of 0.381 m3 at 313 K. Compare the pressures
given by



(a) Ideal gas equation
(b) van der Waals equation

Take the van der Waals constants to be a = 0.365 Nm4/mol2 and b = 4.28 � 10–5 m3/mol.
Solution The molar volume of CO2 is

V = 0.381 � 10–3 m3 /mol

(a) Ideal gas equation: P = RT/V = 8.314 (313)/(0.381 � 10–3) = 68.30 � 105 N/m2 = 
68.30 bar

(b) van der Waals equation: Equation (3.29) may be rearranged as

EXAMPLE 3.7 Calculate the volume occupied by one mole of oxygen at 300 K and 100 bar using
(a) The ideal gas law
(b) The van der Waals equation.

Take a = 0.1378 N m4/mol2 and b = 3.18 � 10–5 m3/mol.
Solution (a) Using the ideal gas equation,

V = RT/P = 8.314 (300)/(1 � 107) = 0.249 � 10–3 m3

(b) Volume can be determined using Eq. (3.29) by a trial and error procedure. Assume a value for V
and evaluate the left hand side of the van der Waals equation. If the value assumed is the correct one,
D in the following equation will be zero.

Otherwise, repeat the calculation till D becomes equal to zero. The ideal gas volume may be chosen
for the first trial. The results of a few such calculations are given below:

V, m3 0.22 � 10–3 0.24 � 10–3 0.23 � 10–3

D –76 + 85.9 4

The molar volume of oxygen by the van der Waals equation  0.23 � 10–3 m3/mol.

3.4.3 Redlich–Kwong Equation
The Redlich–Kwong equation (1949) is a two-parameter equation of state widely used in engineering
calculations.



The constants a and b are evaluated using the limiting condition Eq. (3.28), as we have evaluated the
van der Waals constants using Eq. (3.28).

3.4.4 Redlich–Kwong–Soave Equation
Soave (1972) proposed a modification to the Redlich–Kwong equation. The Soave modification is
given below:

where a�(T) = aa, where a and b are constants similar to the constants in Eq. (3.31) with the only
change that the exponent of TC is 2 instead of 2.5 in Eq. (3.32). a depends on the temperature and the
acentric factor.
[Note: For simple fluids, it has been observed that at temperature equal to 7/10 of the critical
temperature, the reduced vapour pressure closely follows the following empirical result:

For simple fluids, the acentric factor = 0; for more complex fluids, the acentric factor > 0. The
acentric factors are listed in standard references. See, e.g. Prausnitz, J.M., Molecular
Thermodynamics of Fluid Phase Equilibria, Prentice Hall Inc., 1986].

3.4.5 Peng–Robinson Equation
Proposed in 1976, the equation is developed on the same lines as Eq. (3.33).

where a, b are constants and a is a function of reduced temperature Tr and acentric factor w.

3.4.6 Benedict–Webb–Rubin Equation



This equation of state was proposed in 1940. Being a multi-parameter model it is complex, but, more
accurate than the cubic equations of state discussed above. Despite its complexity, it is widely used
in petroleum and natural gas industries for determining the thermodynamic properties of light
hydrocarbons and their mixtures.

where A0, B0, C0, a, b, c, a and g are constants.

3.4.7 Virial Equation
It has been observed experimentally that the product PV for a gas or vapour along an isotherm is
almost constant and it equals RT, as pressure tends to zero or volume tends to infinity. This suggests
the possibility of expressing PV/RT as a power series in P or 1/V. The ratio PV/RT, which is the ratio
of the volume of a real gas (V) to the volume if the gas behaved ideally at the stated temperature and
pressure (RT/P) is called the compressibility factor and is denoted by Z. Virial equations express the
compressibility factor of a gas or vapour as a power series expansion in 
P or 1/V.

Equations (3.37) and (3.38) are known as virial equations and the constants B, C, D and B�, C�,
D� are known as virial coefficients. B and B� are called second virial coefficients; C and C� are
called third virial coefficients, and so on. For a given gas, these coefficients are functions of
temperature only. The virial equation finds its greatest application at low to moderate pressures
where it can be truncated after the second term without much error. Because it can be derived from
kinetic theory, it has got a sound theoretical basis and is free from arbitrary assumptions. This feature
makes virial equations distinct from other equations of state. The coefficients also can be given
physical interpretation. The virial coefficients account for the molecular interactions. The second
virial coefficients take into account deviations from ideal behaviour which results from interactions
between two molecules. The third virial coefficients take into account the deviations from ideal
behaviour that results from the interactions of three molecules, and so on.
The two sets of virial coefficients are related as:

EXAMPLE 3.8 Find the second and third virial coefficients of the van der Waals equation when
expressed in the form of Eq. (3.38).
Solution The van der Waals equation [Eq. (3.29)] can be expanded as



Equation (3.29) gives P as

EXAMPLE 3.9 Calculate the compressibility factor and molar volume for methanol vapour at 
500 K and 10 bar by using the following equations. Experimental values of virial coefficients are, B
= – 2.19 � 10–4 m3/mol; C = – 1.73 � 10–8 m6/mol2. The critical temperature and pressure of
methanol are 512.6 K and 81 bar.

(a) Truncated form of virial equation, Eq. (3.38)
(b) Redlich–Kwong equation.

Solution (a) The virial equation truncated to three terms is



Volume is determined by trial. Use the ideal gas volume,

V = RT/P = 4.157 � 10–3 m3

as the initial guess value. Put this on the right-hand side of Eq. (i). Then V on the left-hand side is
3.934 � 10–3 m3. Since the volumes are different, the calculations are repeated with a new value of
V.
For V = 3.934 � 10–3 on the right-hand side, V on the left-hand side = 3.921 � 10–3 m3 and for V =
3.921 � 10–3 on the right-hand side, V on the left-hand side = 3.920 � 10–3 m3. Since for V = 3.92
� 10–3 m3, both sides gave the same result, this value may be accepted as the molar volume of
methanol. The compressibility factor may now be evaluated as

Z = PV/RT = 0.943
(b) The constants in the Redlich–Kwong equation are evaluated first.

Assume values for V, starting with the ideal gas volume, on the right-hand side of this equation.



Calculate V. The calculations are continued until the difference between the assumed and calculated
values is very small.

Put V = 4.157 � 10–3 m3 (ideal gas volume). Then, calculated volume = 3.974 � 10–3 m3

Put V = 3.974 � 10–3 m3. Then, calculated volume = 3.964 � 10–3 m3

Put V = 3.964 � 10–3 m3. Then, calculated volume = 3.963 � 10–3 m3

We see that by the third trial, the difference between the calculated and assumed values has almost
vanished. Therefore,

V = 3.963 � 10–3 m3 and Z = 0.953

3.5 COMPRESSIBILITY CHARTS
As pointed out earlier, the compressibility factor measures the deviation of a real gas from ideal
behaviour. It is defined as Z = PV/RT. It is the ratio of the volume of a real gas at a set of specified
temperature and pressure to the volume occupied by the gas at the same temperature and pressure if it
were an ideal gas. The compressibility factor of a perfect gas has a value of unity at all conditions.
Since a real gas behaves ideally as pressure is reduced, the compressibility factor of a real gas
approaches unity as the pressure is reduced to zero.

Figure 3.3 schematically shows a plot of compressibility factor of nitrogen at 273 K and carbon
dioxide at 323 K plotted against pressure. The compressibility factor may be less than or more than
unity depending on the temperature and pressure of the gas.

3.5.1 Principle of Corresponding States
Compressibility charts as shown in Fig. 3.3 can be drawn for different substances. The use of such
charts for practical applications is very cumbersome and they serve little useful purpose when
compared with a generalised chart applicable for all gases. In fact, such generalised compressibility



charts are made correlating the P-V-T behaviour of all fluids, based on the principle of corresponding
states. This principle states that all gases when compared at the same reduced temperature and the
reduced pressure, have approximately the same compressibility factor and all deviate from the
ideal behaviour to the same extent.
The critical properties are used as basis for setting up a scale for comparing the properties of
substances. The reduced variables are obtained by dividing the actual variables by the corresponding
critical constants. Thus the reduced pressure Pr = P/PC, the reduced temperature Tr = T/TC, and the
reduced volume Vr = V/VC. Any two gases have the same reduced properties if they depart from the
corresponding critical points by the same degree. Accordingly, methane (TC = 191 K, PC = 46 bar)
at temperature of 382 K and pressure of 69 bar is expected to have the same compressibility factor as
nitrogen (TC = 126 K, PC = 34 bar) at a temperature of 
252 K and a pressure of 51 bar. This is, because both gases at the specified temperature and pressure
have the same reduced properties (Tr = 2, Pr = 1.5) or they are removed from the respective critical
states by the same extent. The compressibility factor of any single component substance is thus a
function of only two properties, usually the reduced temperature and reduced pressure. The principle
of corresponding states can be stated mathematically as

Z = f(Tr, Pr)………(3.42)

It is to be noted that this principle is only an approximation and works the best for gases composed of
spherical molecules; for non-spherical or polar molecules it fails. Its significance is that it enables
one to coordinate the properties of a range of gases to a single diagram such as the generalised
compressibility chart discussed below.

3.5.2 Generalised Compressibility Charts
The generalised compressibility chart (Fig. 3.4) is constructed based on the principle of
corresponding states. On these charts, the compressibility factor, Z, is plotted as a function of reduced
temperature and reduced pressure. The generalised compressibility charts provide one of the best
means of expressing the deviation from ideal behaviour. When precise equation of state is not
available, these charts provide a convenient method for the evaluation of compressibility factor. The
average deviation of the values from the experimental results is within 5%.



3.6 HEAT EFFECTS ACCOMPANYING CHEMICAL REACTIONS
Energy changes are involved in the course of a chemical reaction where heat is either absorbed or
evolved. The reactions in which heat is absorbed are called endothermic reactions and those in
which heat is evolved are called exothermic reactions. Knowledge of the heat effects accompanying
chemical reactions and the influence of the operating parameters on these energy changes is essential
for the proper design and operation of reaction vessels.

3.6.1 The Standard Heat of Reaction
By heat of reaction we mean the change in enthalpy of the system for the reaction proceeding at
constant temperature. It is the difference between the enthalpy of products and the enthalpy of
reactants and is denoted by DH. Thus, positive values of DH indicate increase in the enthalpy and
therefore represent endothermic reactions, and, negative values of DH mean decrease in enthalpy and
so exothermic reactions.
The standard heat of reaction  at a temperature T is the enthalpy change accompanying a reaction
when both the reactants and products are at their standard states at temperature T. It is represented by
the symbol , the superscript ‘0’ indicates that the heat of reaction refers to the standard
conditions. By convention, the standard heats of reaction are reported at a temperature of 298 K and

are represented by . A standard state is determined by specifying the pressure, composition, and
the state of aggregation, or the physical state of the species. The standard state pressure is 1 standard
atmosphere by convention. The choice of 1 bar as the standard state pressure is now widely accepted.
The species are assumed to be pure components in the standard state. The physical state of the
components are: for gases, the pure substances in the ideal gas state at 1 bar; for solids and liquids,
the pure substances in the solid or liquid state respectively at 1 bar.
Consider the reaction:

2 C (s) + O2 (g) � 2 CO (g);  = – 221.2 kJ



The above equation means that 2 mol solid carbon reacts with 1 mol gaseous oxygen both at their
standard state of 1 bar giving 2 mol gaseous carbon monoxide, also at the standard state of 
1 bar, the temperature being kept constant at 298 K. During this reaction 221.2 kJ of heat is liberated.
The heat evolved or absorbed in a chemical reaction corresponds to the stoichiometric numbers of the
reacting species as written in the chemical equation. For example, when the reaction is written as
follows the standard heat of reaction is just half of the value in the previous equation.

3.6.2 The Standard Heat of Combustion
When the reaction under consideration is a combustion reaction, the heat of reaction is known as heat
of combustion. Or, the ‘heat of combustion of a substance’ is the heat of reaction when a substance is
oxidised with molecular oxygen. The standard heat of combustion at temperature T is the enthalpy
change when the substance at its standard state and temperature T undergoes combustion, yielding
products also at their standard state and temperature T. The standard heat of combustion of liquid

acetaldehyde at 298 K, , is – 1168.12 kJ/kmol. The heat of combustion is usually expressed
per mole of substance reacted.

CH3CHO (1) + O2 (g) � 2CO2 (g) + 2H2O (1);  = – 1168.12 kJ

The negative of the heat of combustion of a fuel is sometimes referred to as its heating value. This is
the energy exchanged with the surroundings when unit mass of fuel is burnt in oxygen. The heat of
combustion of a fuel is a negative quantity, whereas the heating value is positive. When water formed
during combustion is in the liquid state, the energy liberated will be more than the energy liberated
when the combustion products contain water in the vapour-state. The heating value in the former case
is known as gross heating value, and that in the latter is known as net heating value.

3.6.3 The Standard Heat of Formation
The change in enthalpy accompanying the formation of 1 mol of a substance from the constituent
elements is termed the heat of formation. When the reactants and products are at their standard states,
the heat of formation is called standard heat of formation. The standard heat of formation of carbon

monoxide gas at 298 K, , is – 110.6 kJ/mol. The standard heat of formation at 298 K for
methyl chloride is –82 kJ.

3.6.4 Hess’s Law of Constant Heat Summation
Heat of reaction represents the difference between enthalpy of products and enthalpy of reactants.
Enthalpy, as we know, is a state function and the heat of reaction, therefore, depends only on the
initial and final states, no matter how the change from this initial to the final state is achieved. The net
heat evolved or absorbed in a chemical reaction is the same whether the reaction takes place in a



single step or in a series of steps. This is known as Hess’s law . Hess’s law permits us to treat all
thermochemical equations as algebraic equations. Using this, we can calculate the heat of formation
of a compound from a series of reactions not involving the direct formation of the compound from its
elements. For example, the heat of formation of a compound can be calculated, if the heat of
combustion data of all the species involved in the formation reaction are known. Similarly, if the data
on the heat of formation of all the substances taking part in a chemical reaction are available, the heat
of reaction may be readily calculated. The standard heats of formation of elements are taken as zero.
It can be shown that the standard heat of reaction is the difference between the algebraic sum of the
standard heat of formation of products and that of the reactants.

EXAMPLE 3.10 Calculate the heat of formation of methane gas from the following heat of
combustion data:

(a) CH4 (g) + 2O2 (g) � CO2 (g) + 2H2O (l);  = – 890.94 kJ

(b) C (s) + O2 (g) � CO2 (g);  = – 393.78 kJ

(c) H2 (g) + O2 (g) � H2O (l);  = – 286.03 kJ

Solution Consider the operation: Eq. (c) � 2 + Eq. (b) – Eq. (a). This gives

C (s) + 2H2 (g) � CH4 (g);  = – 2 � 286.03 + (– 393.78) – (– 890.94) = – 74.9 kJ

The above equation represents the formation of methane gas from the elements. The heat of formation
is –74.9 kJ/mol.
The heat of formation may be obtained directly by using Eq. (3.44) as well. Sum of the heat of
combustion of reactants is

– 393.78 + 2 (– 286.03) kJ = – 965.84 kJ
Sum of the heat of combustion of products is –890.94 kJ. By Eq. (3.44),

 = – 965.84 + 890.94 = – 74.9 kJ

EXAMPLE 3.11 Using Hess’s law, calculate the heat of formation of chloroform (CHCl3) with the
following given data:

(a) CHCl3 (g) + O2 (g) + H2O (l) � CO2 (g) + 3 HCl (g);  = – 509.93 kJ

(b) H2 (g) + O2 (g) � H2O (l);  = – 296.03 kJ



(c) C (s) + O2 (g) � CO2 (g);  = – 393.78 kJ

(d) H2 (g) + Cl2 (g) � HCl (g);  = – 167.57 kJ

Solution Apply the following operation:

3.6.5 Effect of Temperature on Standard Heat of Reaction
Consider the reaction

aA + bB � lL + mM
Here, a, b, l, m are called stoichiometric coefficients. This reaction may be written as

lL + mM – aA – bB = 0
in which – a, – b, l, m are called stoichiometric numbers. Denoting the stoichiometric numbers of the
species taking part in a chemical reaction by ni, a chemical reaction in general may be represented by

………(3.45)
Here ni is positive for products and negative for the reactants. For a chemical reaction represented by
such general equation, how would you determine the standard heat of reaction at temperature T if the
standard heat of reaction is given at temperature T1? The actual reaction occurring at temperature T,

for which the standard heat of reaction is , may be treated as occurring in three steps as depicted
in Fig. 3.5.



The reactants are cooled from temperature T to T1. The enthalpy change for this step is

The standard heat of reaction at temperature T, is obtained by adding the preceding three equations.

The summation in the above equation is overall species taking part in the reaction. Let the heat
capacity of the substances be represented by the following equation.



CP = a + bT + gT2………(3.50)

Utilising Eq. (3.50), Eq. (3.49) can be written as

The constant DH� in the above equation can be evaluated if the heat of reaction at a single
temperature is known. Equation (3.54) can now be used for the evaluation of the standard heat of
reaction at any temperature T.

EXAMPLE 3.12 The heat of reaction at 300 K and one atmosphere pressure for the following gas-
phase reaction:

A + 3B � C
is –200 kJ per mol of A converted. Data on the molar heat capacity at constant pressure 
(kJ/mol K) for the various components are: CP for A = –1.7 � 10–3 + 3.4 � 10–4 T, where T is in
K, CP for B = 0.03 and CP for C = 0.1. Calculate the heat of reaction at 500 K and at a pressure of
100 kPa.

Solution Assume that the reactants initially at 500 K are cooled to 300 K (enthalpy change = DH1).

The reaction is then allowed to take place at 300 K (heat of reaction = ). The products of the
reaction are heated to 500 K (enthalpy change = DH2).



By Eq. (i),

EXAMPLE 3.13 Pure CO is mixed with 100% excess air and burnt. Only 80% of the CO burns. The
reactants are at 373 K and the products are at 573 K. Calculate the amount of heat added or removed
per kmol of CO fed to the reactor.
Mean molal specific heats between 298 K and T K in kJ/kmol K are:

Gas T = 373 K T = 573 K

CO 29.22 30.61

CO2 — 43.77

O2 29.84 30.99

N2 29.17 29.66

Standard heats of formation at 298 K in kJ/mol are CO = –110.524 and CO2 = –393.514.

Solution Basis: 1 kmol CO fed to the reactor.



EXAMPLE 3.14 For the following reaction the standard heat of reaction at 298 K is –164.987 kJ.
CO2 (g) + 4 H2 (g) � 2 H2O (g) + CH4 (g)

The constants in the heat capacity (J/mol K) equation, Eq. (3.50), are given below:

a b g
CO2 26.75 42.26 � 10–3 – 14.25 � 10–6

H2 26.88 4.35 � 10–3 – 0.33 � 10–6

H2O 29.16 14.49 � 10–3 – 2.02 � 10–6

CH4 13.41 77.03 � 10–3 – 18.74 � 10–6

Calculate the standard heat of reaction at 773 K.

Solution Equation (3.54) relates the heat of reaction to temperature.
Da = 2 � 29.16 + 13.41 – 26.75 – 4 � 26.88 = – 62.54



Db = (2 � 14.49 + 77.03 – 42.26 – 4 � 4.35) � 10–3 = 46.35 � 10–3

Dg = (– 2 � 2.02 – 18.74 + 14.25 + 4 � 0.33) � 10–6 = – 7.21 � 10–6

Equation (3.54) gives

EXAMPLE 3.15 Pure CO is mixed with 100 per cent excess air and completely burned at constant
pressure. The reactants are originally at 400 K. Determine the heat added or removed if the products
leave at 600 K. The standard heat of reaction at 298 K is 283.028 kJ per mol CO burned. The mean
specific heats applicable in the temperature range of this problem are 29.10, 29.70, 29.10, and 41.45
J/mol K respectively for CO, O2, N2, and CO2 respectively.

Solution Basis: 1 mol CO reacted.

Oxygen theoretically required = 0.5 mol
Oxygen supplied = 1 mol (100 per cent excess)
Nitrogen in the air supplied = 1 � 79/21 = 3.76 mol

Let DH1 be the enthalpy of cooling the reactants from 400 K to 298 K. The reactants stream contains
1 mol oxygen, 3.76 mol nitrogen, and 1 mol CO.

DH1 = (1 � 29.70 + 3.76 � 29.10 + 1 � 29.10)(298 – 400) = – 17.158 kJ

Let DH2 be the enthalpy of heating the products from 298 K to 600 K. The product stream contains 1
mol CO2, 0.5 mol oxygen, and 3.76 mol nitrogen.

DH2 = (1 � 41.45 + 3.76 � 29.10 + 0.5 � 29.70)(600 – 298) = 50.046 kJ

DH = DH1 +  + DH2 = – 17.158 – 283.028 + 50.046 = – 250.14 kJ

Heat removed = 250.14 kJ.

3.6.6 Temperature of Reaction
A reaction is termed an adiabatic reaction if there is no heat interaction between the reaction mixture
and the surroundings. If the reaction is exothermic, the heat liberated during the reaction will be
utilised to increase the enthalpy of the products, as no heat is removed to maintain the temperature
constant. The products get heated up and the temperature attained is termed the temperature of the



reaction. When a fuel is burned in air or oxygen under adiabatic conditions the temperature attained
by the system is known as the adiabatic flame temperature. The maximum adiabatic flame
temperature is attained when the fuel is burned in theoretically required amount of pure oxygen. The
adiabatic flame temperature attained when the fuel is burned in air or excess oxygen, is less than the
theoretical maximum flame temperature attained in oxygen.
Denoting as before, the enthalpy of cooling the reactants from temperature T1 to 298 K by DH1 and
the enthalpy of heating the products from 298 to T, the adiabatic flame temperature, by DH2, we can
write

DH = DH1 +  + DH2
Here DH is the difference between the enthalpy of products and the enthalpy of reactants, or simply,
the heat added or removed during the reaction. For an adiabatic reaction, this quantity is zero, and
therefore,

DH2 = – DH1 – ………(3.55)

Equation (3.55) may be used to evaluate the temperature attained in an adiabatic reaction.

EXAMPLE 3.16 Calculate the theoretical flame temperature for CO when burned with 100% excess
air when both the reactants are at 373 K. The heat capacities (J/mol K) may be assumed constant at
29.23 for CO, 34.83 for O2, 33.03 for N2, and 53.59 for CO2. The standard heat of combustion at
298 K is – 283.178 kJ/mol CO.
Solution Basis: 1 mol CO.

Reactants:
O2 = 1 mol; N2 = 3.76 mol; CO = 1 mol

Products:
O2 = 0.5 mol; N2 = 3.76 mol; CO2 = 1 mol

DH1 = (1 � 34.83 + 3.76 � 33.03 + 1 � 29.23)(298 – 373) = – 14119 J

DH2 = (0.5 � 34.83 + 3.76 � 33.03 + 1 � 53.59)(T – 298) = 195.20 T – 58169

where T is the adiabatic flame temperature.
Using Eq. (3.55), we get

195.20 T – 58169 = 14119 + 283178
Solving this, we get the theoretical flame temperature as T = 1821 K.

EXAMPLE 3.17 Dry methane is burned with dry air. Both are at 298 K initially. The flame
temperature is 1600 K. If complete combustion is assumed, how much excess air is being used? The
reaction is

CH4 + 2O2 � CO2 + 2H2O



The standard heat of reaction is –8.028 � 105 J/mol of methane reacted. Mean molal specific heats
of gases between 298 K and 1600 K are in J/mol K:

CO2 = 51.66; H2O = 40.45; O2 = 34.01 and N2 = 32.21

Solution For a basis of one mole of methane, let x be the moles of oxygen supplied. Nitrogen in the
air supplied is x(79/21) mol.
The products of combustion consist of:

CO2 : 1 mol, H2O : 2 mol, O2 : x – 2 mol, N2 : x(79/21) mol.

For adiabatic combustion reaction,

Since the reactants are initially at the temperature of reaction (298 K), DH1 = 0 and the above
equation reduces to

Oxygen theoretically required = 2 mol. Oxygen supplied = 3.56 mol

Percent excess of air supplied = 
EXAMPLE 3.18 A feed at 1298 K, consisting of flue gas (CO2, O2 and N2) and air, is passed
through a bed of pure carbon. The two reactions that occur both go to completion.

The combustion is adiabatic and the product gases exit at 1298 K. Calculate the required moles of
CO2 per mole of oxygen in the feed stream, so that the net heat generated is zero and the bed
temperature remains at 1298 K. The mean molal heat capacities (kJ/mol K) are 0.02 for C, 
0.03 for O2, 0.03 for CO and 0.05 for CO2.



Solution Let x mol CO2 be present per mol of oxygen in the feed stream. x mol CO2 reacts according
to the first reaction producing 2 mol CO and 1 mol O2 reacts according to the second reaction
producing 2 mol CO. Therefore, the products of reaction contains 2x + 2 mol CO.
Enthalpy of cooling the reactants from 1298 K to 298 K,

DH1 = [x � 0.05 + 1 � 0.03 + (x + 2) � 0.02] (298 – 1298)

= – (70x + 70) kJ
As the enthalpy of heating the nitrogen present in the reactant stream and the enthalpy of cooling the
nitrogen in the product stream are equal and they would cancel in an energy balance, they are not
included in the calculations.

Standard heat of reaction at 298 K =  = 170 x – 220.4 kJ
Enthalpy of heating the products from 298 K to 1298 K:

DH1 = [(2x + 2) � 0.03] (1298 – 298)

= (60x + 60) kJ
The enthalpy change during the actual reaction:

–70 – 70x + 170x – 220.4 + 60 + 60x = 0
Therefore, x = 1.44 mol or 1.44 mol CO2 should be present per each mol of oxygen.

SUMMARY
The general P-V-T behaviour of fluids, the physical significance of the triple point and the critical
point and the process of fusion, sublimation and vaporisation were discussed with the help of a PV
diagram and a PT diagram for a pure fluid (Section 3.1). An equation of state is the functional
relationship between pressure, volume, and temperature of the fluid. The most simple of such
equations (PV = RT) is obeyed by ideal gases. The salient features of an ideal gas were described
from microscopic as well as macroscopic points of view (Section 3.2). The heat and work involved
in various processes with ideal gases, such as the constant volume process, the constant pressure
process, the isothermal process, the adiabatic process, and the polytropic process were derived
(Section 3.3). The changes in the internal energy (U) and the enthalpy (H) of an ideal gas are given by
dU = CV dT and dH = CP dT, irrespective of how the process is carried out. It was also shown that
for ideal gases, U and H are functions of temperature alone.
For engineering calculations, many gases can be assumed to behave ideally under atmospheric
conditions. However, the only state at which the real gases follow ideal behaviour in the true sense of
the term, is at zero pressure. Several equations of state were proposed to explain the behaviour of
real gases. Though they differ widely, there are certain limiting conditions that are to be satisfied by
all equations of state (Section 3.4). The compressibility factor, defined as Z = PV/RT, is a measure of
the deviation of real gases from the ideal gas behaviour. The generalised compressibility charts
provide a convenient means for the estimation of the thermodynamic properties in the absence of
experimental data. These charts are based on the principle of corresponding states: all gases when
compared at the same reduced temperature and the reduced pressure, have approximately the same



compressibility factor and all deviate from the ideal behaviour to the same extent (Section 3.5).
The role of thermochemistry in the design and analysis of chemical processes is very important. The
enthalpy changes involved in chemical reactions, the influence of temperature on these and the
methods for the evaluation of the heat of reaction were discussed in Section 3.6. It was also
established that the maximum adiabatic flame temperature is attained when a fuel is burned with the
theoretical requirement of pure oxygen. The ideas presented here will be used extensively in the
analysis of chemical reaction equilibria in Chapter 9.

REVIEW QUESTIONS
1. What do you mean by the saturation pressure and the saturation temperature of a substance?
2. What is the difference between a vapour and a gas?
3. Explain the physical significance of the triple point and the critical point.
4. In a microscopic sense, what are the two characteristics of an ideal gas? How do these features

explain the dependency of the internal energy of an ideal gas on temperature alone?
5. Do you agree that for ideal gases, dU = CV dT and dH = CP dT for all processes irrespective of

their nature?
6. How is the temperature of an ideal gas related to pressure and volume in an adiabatic process?
7. What is the expression for the work done in an adiabatic process in terms of the pressure ratio?
8. What do you understand by an equation of state? What are the limiting conditions to be satisfied

by such equations?
9. van der Waals equation results when the ideal gas equation is corrected to include the effect of

the molecular interaction and the volume of molecules. What are these correction terms?
10. How do you relate the van der Waals constants to the critical properties?
11. What do you mean by acentric factor?
12. How do you explain the physical significance of the virial coefficients?
13. How is the compressibility factor defined?
14. What is the principle of corresponding states?
15. Define: (a) The heat of reaction, (b) The standard heat of reaction, (c) The standard heat of

formation, and (d) The standard heat of combustion.
16. How is the standard heat of reaction evaluated using (a) The standard heat of formation and (b)

The standard heat of combustion of the various components?
17. How is the Hess’s law of constant heat summation useful in thermochemical calculations?
18. If the standard heat of reaction at one temperature is known, how would you evaluate the

standard heat of reaction at any other temperature?
19. What is the adiabatic flame temperature? How is it estimated? What influence does excess air

have on its value?

EXERCISES
3.1 Sulphur dioxide is circulated as the refrigerant in a small refrigerator. SO2 gas at a pressure of

5 bar and temperature 340 K is to be cooled at constant volume of 0.142 m3, to 293 K as part of
the refrigeration cycle. Calculate (a) The heat liberated, (b) The work done by the gas on



cooling, (c) The final pressure attained on cooling and (d) The change in enthalpy. Sulphur
dioxide may be treated as an ideal gas. The specific heat (J/mol K) is found to vary with
temperature (K) according to

CP = 25.736 + 5.796 � 10–2 T – 3.8112 � 10–5 T2 + 8.612 � 10–9 T3

3.2 Ten kilograms of an equimolar mixture of CO and H2 at 1500 K and 1 bar is cooled at constant
pressure to 350 K. Assume that the gases are ideal. Determine: (a) the heat given off during
cooling, (b) the change in internal energy, (c) the work done on the gas.

The specific heats in J/mol K are as follows:

 = 29.086 – 8.3694 � 10–4 T + 2.0130 � 10–6 T2

CP,CO = 26.553 + 7.6882 � 10–3 T – 1.1727 � 10–6 T2

3.3 CO2 is sold commercially in steel containers at 60 bar. The gas is leaking through the outlet
valve slowly so that the temperature may be assumed constant at the room temperature of 300 K.
(a) What is the work done in the expansion of 10 kg of this gas from 60 bar to 1 bar?
(b) If the temperature were constant at 290 K, would there be any difference in the work done?
(c) What are the changes in enthalpy in both the above cases?

3.4 An ideal gas is compressed adiabatically from 1.5 bar, 338 K to 9 bar. The process is
reversible, and g = 1.23 is constant over the entire range of conditions. Calculate:
(a) The temperature at the end of compression
(b) The work of compression
(c) The heat transferred
(d) The change in internal energy
(e) The change in enthalpy

3.5 An ideal gas undergoes the following reversible processes:
(a) From an initial state of 343 K and 1 bar it is compressed adiabatically to 423 K.
(b) It is then cooled to 343 K at constant pressure.
(c) Finally, it is expanded to its original state isothermally.

Calculate DU, DH, W and Q for each step as well as for the entire cycle. Assume CV = 
(3/2) R.

3.6 Air, initially at 389 K and 8 bar is expanded reversibly and isothermally to such a pressure that
when it is cooled to 278 K at constant volume, its pressure is 2 bar. Assume air to be an ideal
gas with CP = 29.3 J/mol K. Calculate the work, heat transferred, changes in internal energies,
and changes in enthalpies.

3.7 Methane is stored in a tank of capacity 5.7 � 10–2 m3 at a pressure of 15 bar and 294 K. The
gas is allowed to flow from the tank through a partially opened valve to a gas holder where the
pressure is constant at 1.15 bar. When the pressure in the tank dropped to 
5 bar, what would be the mass of methane removed under the following conditions?
(a) If the process took place slowly so that the temperature was constant.
(b) If the process took place so rapidly that the heat transferred was negligible.

Methane behaves as ideal gas with g = 1.4.



3.8 A rigid non-conducting tank with a volume of 4 m3 is divided into two equal parts by a
membrane. On one side of the membrane, the tank contained gas A at 5 bar and 350 K and on the
other side a gas B at 10 bar and 450 K. A and B are ideal gases with CV values (5/2)R and
(7/2)R respectively. The membrane is suddenly ruptured and the gases get mixed. What are the
final temperature and pressure?

3.9 One cubic metre of an ideal gas at 600 K and 20 bar expands to ten times its initial volume as
follows:
(a) By a reversible, isothermal process
(b) By a reversible, adiabatic process
(c) By an irreversible, adiabatic process in which the expansion is against a restraining

pressure of 1 bar.
If CP = 21 J/mol K, calculate the final temperature, pressure, and the work done by the gas.

3.10 Estimate the molar volume of CO2 at 500 K and 100 bar using van der Waals equation. The

van der Waals constants are 0.364 m4 N/mol2 and 4.267 � 10–5 m3/mol.
3.11 Calculate the molar volume of ammonia at 373 K and 10 bar using (a) the van der Waals

equation and (b) the Redlich–Kwong equation, given that the critical temperature is 
405.5 K and the critical pressure is 112.8 bar.

3.12 Use the Redlich–Kwong equation to calculate the pressure of 0.5 kg gaseous ammonia
contained in a vessel of 0.03 m3 at a constant temperature of 338 K. The critical temperature
and pressure are 405.5 K and 112.8 bar respectively.

3.13 Calculate the pressure developed by 1 kmol gaseous ammonia contained in a vessel of 
0.6 m3 capacity at a constant temperature of 473 K by the following methods:
(a) Using the ideal gas equation
(b) Using the van der Waals equation given that

a = 0.4233 N m4/mol2;………b = 3.73 � 10–5 m3/mol
(c) Using the Redlich–Kwong equation given that PC = 112.8 bar; TC = 405.5 K.
3.14 Determine the van der Waals constants and the molar volume of ethane at the critical point,

given that the critical temperature and pressure are respectively 305.2 K and 
49.4 bar.

3.15 Using the Redlich–Kwong equation calculate the molal volumes of saturated liquid and
saturated vapour of methyl chloride at 333 K. The saturation pressure of methyl chloride at 333
K is 13.76 bar. The critical temperature and pressure are respectively 416.3 K and 66.8 bar.

3.16 Using the virial equation calculate the molar volume and compressibility factor of
isopropanol vapour at 473 K and 10 bar. The virial coefficients are:

B = – 3.88 � 10–4 m3/mol;………C = – 2.6 � 10–8 m6/mol2

3.17 Determine the molar volume of gaseous methane at 300 K and 600 bar by the following
methods:
(a) Using the ideal gas equation
(b) Using the van der Waals equation given that



a = 0.2285 N m4/mol2;………b = 4.27 � 10–5 m3/mol
(c) Using the Redlich–Kwong equation given that TC = 191.1 K and PC = 46.4 bar.

3.18 An empirical equation PVd = C, where C is constant, is used to relate P and V of any
reversible process. Show that for an ideal gas this equation leads to

3.19 Heat of combustion of solid carbon and gaseous CO are respectively –393.78 kJ/mol and –
283.18 kJ/mol. Determine the heat of formation of CO.

3.20 Using Hess’s law evaluate the heat of formation of solid CaCO3. The following data are
available:

(a) Ca (s) + O2 (g) � CaO (s);  = – 635.77 kJ

(b) C (s) + O2 (g) � CO2 (g);  = – 393.77 kJ

(c) CaO (s) + CO2 (g) � CaCO3 (s);  = – 178.15 kJ
3.21 Calculate the standard heat of reaction for the following reaction:

2 FeS2 (s) +  O2 (g) � Fe2O3 (s) + 4 SO2 (g)

The standard heat of formation at 298 K are –178.02 kJ/mol for FeS2 (s), –822.71 kJ/mol for
Fe2O3 (s) and –297.10 kJ/mol for SO2 (g).

3.22 The standard heat of combustion of benzene at 298 K is – 3269.5 kJ/mol when burnt
completely to CO2 and liquid water. The standard heat of combustion of hydrogen to liquid
water is –286.04 kJ/mol and that of carbon to carbon dioxide is – 393.78 kJ/mol. Calculate the
standard heat of formation of liquid benzene.

3.23 The standard heat of reaction at 298 K for the following reaction is – 42.433 kJ.
C2H4 (g) + H2O (g) � C2H5OH (g)

Calculate the heat of reaction at 400 K. The constants in the heat capacity equation

CP = a + bT + gT2

are as given below: (CP is in J/mol K and T in K).



a b gC2H4 11.85 119.75 � 10–3 – 36.53 � 10–6

H2O 30.38 9.62 � 10–3 + 1.19 � 10–6

C2H5OH 29.27 166.39 � 10–3 – 49.93 � 10–6

3.24 The standard heat of combustion of graphite at 298 K is – 393.778 kJ/mol. Determine the heat of
combustion at 800 K. The heat capacities in J/mol K are:

3.25 Calculate the heat of combustion of methane at 800 K given that the heat of combustion at 298 K
is – 802.861 kJ/mol and the mean heat capacity in the temperature range from 
298 K to 800 K are 41.868 J/mol K, 30.563 J/mol K, 41.449 J/mol K, and 34.332 J/mol K for
methane, oxygen, CO2 and water vapour respectively.

3.26 Ammonia is synthesised according to the following reaction:

The specific heats of the components are represented by

CP = a + bT + gT2

where CP is in J/mol K and the constants a, b and g are:

a b g
N2 27.31 5.2335 � 10–3 – 4.1868 � 10–9

H2 29.09 – 8.374 � 10–4 + 2.0139 � 10–6

NH3 25.48 36.89 � 10–3 – 6.305 � 10–6

Express the heat of reaction as function of temperature.
3.27 Calculate the heat of the following gas-phase reaction

if the reactants are at 473 K and the product is at 993 K. The specific heats CP = 

a + bT + gT2 J/mol K may be evaluated using the data given below:



a b g
H2 29.09 – 8.374 � 10–4 2.0139 � 10–6

O2 25.74 12.987 � 10–3 – 3.864 � 10–6

H2O 30.38 9.621 � 10–3 – 1.185 � 10–6

3.28 Carbon monoxide (CO) at 1000 K is burned with air at 800 K in 90% excess air. The
products of combustion leave the reaction chamber at 1250 K. Calculate the heat evolved in the
reaction chamber per kmol of CO burned. The standard heat of reaction at 298 K is – 283.028
kJ/mol CO. The mean specific heat applicable in the temperature range of this problem are
29.38, 49.91, 33.13, and 31.43 J/mol K for CO, CO2, O2, and N2 respectively.

3.29 Hydrochloric acid is produced from chlorine according to

Cl2 + H2O � 2 HCl +  O2
The standard heats of formation at 298 K are –241.82, – 92.307 kJ/mol for water vapour and
hydrochloric acid respectively. The reaction is to be carried out at 500 K with saturated steam
at 500 K and chlorine gas at 500 K entering the reactor with a ratio of 3 mol steam per mol of
chlorine gas. Determine the amount of heat to be added or to be removed per kmol of acid
obtained if the reaction goes to completion and the products leave at 500 K. Mean specific heats
of chlorine gas, oxygen, HCl, and water vapour may be taken as 35.0, 33.0, 40.0, and 25.0 J/mol
K respectively, and enthalpy of saturated water vapour at 298 K and 500 K are 2547 kJ/kg and
2801 kJ/kg respectively.3.30 Calculate the theoretical flame temperature for a gas containing
25% CO and 75% N2 when burned with 80% excess air, when both the reactants are at 298 K.
The standard heat of formation are –393. 70 kJ/mol for CO2 and –110.00 kJ/mol for CO. The
mean molar specific heats in J/mol K are

T, K CO2 O2 N2
800 45.43 31.59 30.31
1000 47.56 32.37 30.64
1200 49.35 33.02 31.22
1400 50.82 33.60 31.77
1600 51.99 34.05 32.25
1800 53.18 34.40 32.65

3.31 Calculate the theoretical flame temperature of a gas mixture consisting of 20% CO and 80% N2
when burned with 100% excess air, both air and gas initially being at 298 K. The standard heat
of reaction at 298 K is –283.178 J/mol CO. The heat capacity in 
J/mol K are given by CP = a + bT + gT2, where

a b g
CO2 26.54 42.45 � 10–3 – 14.298 � 10–6



O2 25.61 13.26 � 10–3 – 4.208 � 10–6
N2 27.03 5.815 � 10–3 – 0.289 � 10–6

3.32 0.5 mol hydrogen at 300 K, 2 mol nitrogen and oxygen present in the ratio of 3:1, and 0.3 mol
of CO are mixed. The nitrogen–oxygen mixture was initially present at 400 K and the initial
temperature of CO was 500 K. Fifty per cent of the CO present reacts. If the final temperature of
the system raises to 1200 K under adiabatic conditions, and if the standard heat of formation of
CO2 is two times that of CO, calculate the standard heat of formation of CO2. The mean heat
capacities in J/mol K are 32.5 for O2, 31.1 for N2, 29.0 for H2, 31.0 for CO, and 49.0 for CO2.

3.33 Calculate the standard heat of reaction at 800 K for the combustion of pentane gas, given that
the mean heat capacities in J/mol K are 247 for C5H12, 33.62 for O2, 52.32 for CO2, and 38.49
for H2O. The standard heat of combustion at 298 K is –3271.71 kJ/mol.

3.34 An internal combustion engine uses octane as fuel. The air and fuel vapour mixture enter the
engine at 298 K. Twenty per cent excess air is supplied. Seventy-five per cent of the carbon
present in the fuel is converted to CO2 and the rest to CO, and the combustion products leave the
engine at 800 K, calculate the energy transferred as heat to the engine per kg fuel burned. The
mean heat capacities in J/mol K are 32.5 for O2, 31.1 for N2, 
31.0 for CO, 50.0 for H2O, and 49.0 for CO2. The heat of formation of CO2, CO, and H2O at
298 K are –393.509, –110.525, and –241.818 kJ/mol respectively. Heat of formation of octane
is –208.75 kJ/mol.

3.35 Calculate the maximum flame temperature attained when methane is burned with theoretical
air when both fuel and air are at 298 K initially. The mean heat capacities in J/mol K are 62.75
for CO2, 52.96 for H2O, 38.67 for O2, 37.13 for N2. The standard heat of combustion of
methane at 298 K is –802.625 kJ/mol.

3.36 Calculate the standard heat of reaction at 298 K for the following reaction:
4 HCl (g) + O2 (g) � 2 H2O (g) + 2 Cl2 (g)

The standard heats of formation arE –92.307 kJ/mol for HCl (g) and –241.818 kJ/mol for H2O
(g).

3.37 Hydrocarbon fuels can be produced from methanol by the following reaction:
6 CH3OH (g) � C6H12 (g) + 6 H2O (g)

Compare the standard heat of combustion of 6 mol CH3OH (g) at 298 K with the standard 
heat of combustion of C6H12 (g) at 298 K, products in both the cases being CO2 (g) and H2O
(g).

3.38 Methanol is synthesised according to the following reaction:
CO (g) + 2 H2 (g) � CH3OH (g)

The standard heats of formation at 298 K are –110.125 kJ/mol for CO and –200.660 kJ/mol for
methanol. The specific heats (J/mol K) are given by:

CP (CH3OH) = 19.382 + 101.564 � 10–3T – 28.683 � 10–6T2



CP (CO) = 28.068 + 4.631 � 10–3T – 2.5773 � 104T–2

CP (H2) = 27.012 + 3.509 � 10–3T + 6.9006 � 104T–2

(a) Calculate the standard heat of reaction at 1073 K.
(b) Express the heat of reaction as a function of temperature.

3.39 Methane is burned with 20% excess air; both methane and air being at 298 K. The standard
heat of combustion of methane at 298 K is – 802.625 kJ. The heat capacities in J/mol K are:

CP (CH4) = 14.150 + 75.499 � 10–3T – 17.9915 � 10–6 T2

CP (O2) = 30.255 + 4.207 � 10–3T – 1.8873 � 105T–2

CP (N2) = 27.270 + 4.930 � 10–3T + 3.3256 � 104T–2

CP (CO2) = 45.369 + 8.688 � 10–3T + 9.6193 � 105T–2

CP (H2O) = 28.850 + 12.055 � 10–3T + 1.006 � 105T–2

Calculate the adiabatic flame temperature attained.
3.40 Carbon monoxide reacts with water vapour to form carbon dioxide and hydrogen.

CO (g) + H2O (g) � CO2 (g) + H2 (g);  = – 41.190 kJ

The reactants are at 298 K and in stoichiometric proportions. Seventyfive per cent of CO is
converted in the reaction. The products leave the reaction chamber at 800 K. The mean heat
capacities in J/mol K are 30.35 for CO, 45.64 for CO2, 36.00 for water vapour, and 29.30 for
hydrogen. Determine the quantity of heat to be added or removed in the reaction chamber per
1000 kg of hydrogen produced.

3.41 Calculate the standard heat of the following reaction at 298 K:
C5H12 (g) + 8 O2 (g) � 5 CO2 (g) + 6 H2O (l)

The standard heats of formation are as follows:
CO2 (g) = – 393.509 kJ , H2O (g) = –241.818 kJ, C5H12 (g) = –146.76 kJ

The latent heat of vaporisation of water at 298 K = 43.967 kJ/mol.
3.42 A gas mixture consisting of 20% ethane and 80% oxygen at 298 K is burned completely after

diluting it with double the volume of CO2 at the same temperature 298 K. The mean heat
capacities in J/mol K are 54.56 for CO2, 43.02 for water vapour, and 35.52 for oxygen. The
standard heat of reaction of ethane at 298 K is –1478 kJ/mol. Determine the theoretical flame
temperature.



4

Second Law of Thermodynamics
4.1 LIMITATIONS OF THE FIRST LAW OF THERMODYNAMICS
The first law of thermodynamics deals with energy changes involved in a process. But, it alone
cannot answer many questions related to transformation of energy. The first law specifies only this: if
energy is produced during a process, it must be compensated with a loss of an exactly equal quantity,
so that the total energy before and after the process are the same. It helps us to determine the energy
changes involved in a process, but it cannot tell us whether a proposed change would actually occur
or not. If it occurs, what is the direction of the change and what are the conditions of equilibrium
under which the system undergoes no further change?
The major limitation of the first law of thermodynamics is, therefore, its inability to deal with the
direction of the process and the extent of change. Also, according to the first law, all forms of energy
are quantitatively equivalent and they are just additive terms in an energy balance. It fails to recognise
the qualitative differences between various forms of energy. This difference is apparent when we
attempt to convert heat into work by means of a heat engine. Before we embark on the detailed study
of the second law of thermodynamics, a discussion on these limitations is quite in order.

4.1.1 Direction of Change
We have seen that the first law of thermodynamics deals with the amount of energy in different forms
that are involved in various spontaneous processes, but it is not concerned with the ‘direction of
change’. For example, when water on the top of a mountain runs to the bottom as a stream or as a
waterfall, the initial potential energy of water is converted to the kinetic energy and the first law of
thermodynamics is satisfied, because, the total energy remains unchanged. It would equally be
satisfied in the reverse process in which the water flows upwards spontaneously. The first law
doesn’t suggest the impossibility of water flowing upwards spontaneously. However, such an
occurrence is contrary to our experience.
Now, let us consider another example. When two bodies at different temperatures are brought into
contact, heat energy flows from the body at high temperature to that at low temperature spontaneously.
Heat energy will never flow from a lower temperature level to a higher temperature level without
applying external work. According to the first law, the energy gained by the cold body should be
equal to the energy lost by the hot body. Again, there is nothing in the first law that predicts that the
transfer of heat must always be from the hot to the cold body. The first law would be satisfied equally
well if the transfer of energy took place in the reverse direction, but such a transfer never happens in
nature. Similarly, we never observe a mixture of gases made up of two or more components
spontaneously separating into its constituents. Though such a process is against our experience, it
would not be inconsistent with the first law of thermodynamics as long as no net change in the total
energy is involved. Thus, it is clear that apart from the first law, but complementary to it, there should
be some principle to deal with the spontaneous processes and their direction.



The inadequacy of the first law of thermodynamics to explain our general experience with
spontaneous processes or tendency to change led to the development of the second law of
thermodynamics, which deals with the direction of change. With the help of the tools provided by the
second law, we can find answers to many problems that are not answered by the first law. For a
chemical reaction occurring from a given initial state of reactants to a given final state of products,
the first law can be utilised to estimate the heat of reaction and the effect of temperature and pressure
on it. But, will the reaction proceed spontaneously? What is the equilibrium point at which no further
change occurs? How is the equilibrium affected by the operating conditions? What is the maximum
work available from a process? What is the minimum work required to carry out a process? What is
the maximum efficiency with which a process could be carried out? Such questions are answered by
the second law of thermodynamics, usually in combination with the first law.

4.1.2 Qualitative Difference between Heat and Work
Another limitation of the first law of thermodynamics is that it does not take into account the
difference in quality between heat and work. When we treat heat and work as additive terms in an
energy balance, we are in fact ignoring the intrinsic difference between them. It is true that, in the
application of the first law this difference is not going to affect our calculations. However when we
consider converting heat energy to other forms of energy, the qualitative difference between heat and
work would be obvious. It is possible to convert one form of work to another (such as electrical to
mechanical) with almost 100 per cent efficiency, provided, the irreversibilities in the apparatus are
eliminated. But the efficiency of converting energy transferred to a system as heat into any of the
forms of work is limited to very low values. This leads us to the conclusion that heat is a less
versatile or more degraded form of energy compared to the other forms of energy or work can be
termed energy of a higher quality than heat. During the conversion of heat into work, a portion of the
energy becomes unavailable, that is, not capable of being transformed into useful form.
The difference between the quality of heat and other forms of energy are accounted for in the second
law of thermodynamics. When we say that heat flows always from a higher to a lower temperature we
are assigning a characteristic quality as well as quantity to heat, the quality being represented by
temperature. We know that the efficiency of a thermal power plant increases as the temperature of the
steam in the boiler increases. In the transformation of heat to work, the increase in the efficiency that
results from the increase in the temperature of the source clearly establishes the connection between
the temperature and the quality of heat.

4.2 GENERAL STATEMENTS OF THE SECOND LAW OF
THERMODYNAMICS
The second law of thermodynamics is just the generalisation of our experiences with spontaneous
processes and can be stated in a number of ways:

1. Heat cannot by itself pass from a cold to a hot body.
2. All spontaneous processes are, to some extent, irreversible and are accompanied by a

degradation of energy.
3. Every system, when left to itself, will on the average, change toward a system of maximum

probability.



4. Kelvin–Planck statement. It is impossible to construct an engine that, operating continuously (in
a cycle), will produce no effect other than the transfer of heat from a single thermal reservoir at
a uniform temperature and the performance of an equal amount of work. This statement implies
that at least two thermal reservoirs of different temperatures are necessary for a heat engine to
operate. This is because only part of the heat transferred to the engine from a high temperature
reservoir is converted to work; the rest is rejected to a low temperature reservoir. Further, the
statement implies that no heat engine can have 100% efficiency because heat cannot be
completely converted to work. The word ‘continuous’ in the Kelvin–Planck statement has an
important implication. Consider the isothermal expansion of an ideal gas. The change in internal
energy, DU, is zero in this process. This means that the heat absorbed by the gas is completely
converted to work. Though it may appear to contradict the second law, in fact, it is not so. What
the second law requires is that there should be no change in the system or in the surroundings
other than the complete conversion of heat into work. Here, the pressure of the gas has
decreased and the process cannot be carried out continuously. The pressure of the gas would
soon become equal to that of the surroundings, and further expansion would be impossible. The
continuous conversion of heat to work is possible only in a cyclic process. But, in the cyclic
process, energy from the surroundings is utilised in the form of work, in order to compress the
gas back to its original pressure.

5. Clausius statement. It is impossible to construct a heat pump that, operating continuously, will
produce no effect other than the transfer of heat from a lower temperature body to a higher
temperature one. In other words, any process, which consists solely in the transfer of heat from
one temperature to a higher one, is impossible. It means that energy in the form of work must be
supplied to the heat pump in order to transfer heat from a cold body to a hot body. Therefore, the
coefficient of performance of a heat pump can never be infinity.

4.2.1 The Equivalence of the Kelvin and Clausius Statements
All the statements of the second law are equivalent and mean the same thing. Any device that violates
any one of these statements will violate all other statements. Figure 4.1 shows an engine, which
violates Kelvin–Planck statement by absorbing heat from a single thermal reservoir and producing an
equivalent amount of work. The work output of this engine (W = Q1) is used to drive a heat pump
which transfers an amount of heat Q2 from a low temperature reservoir and an amount (Q1 + Q2) to a
high temperature reservoir. The combined system shown by the dotted lines in the figure then act as
heat pump which transfers an amount of heat Q2 from a lower temperature to a higher temperature
reservoir without using any external work. This is a violation of Clausius statement.
Now consider a heat pump, which violates the Clausius statement, by absorbing heat Q2 from a low
temperature reservoir and transferring it to a high temperature reservoir (Fig. 4.2). Let a heat engine
work between these two reservoirs by absorbing heat Q1 (Q1 > Q2) delivering work W (W = Q1 –
Q2) and rejecting heat Q2 to the low temperature reservoir. Since this process does not affect the
low-temperature reservoir, the net effect is a heat engine operating with a single thermal reservoir
absorbing heat Q1 – Q2 and converting it completely to work. This is a violation of the Kelvin–
Planck statement.



4.3 ENTROPY
4.3.1 Why the Concept of Entropy?
The second law of thermodynamics states that all spontaneous processes are, to some extent,
irreversible and are accompanied by a degradation of energy. It also means that it is impossible for
any self-acting machine to transfer energy from a given state to a higher state of availability. To make
these statements quantitative there is required some function that always changes in a certain way
during a spontaneous process and therefore, will characterise such a change. Internal energy was



defined to give quantitative significance to the first law. Internal energy does not change in any
characteristic way in a spontaneous process, and it does not help in any way in the development of the
second law. The function that is fundamental in the development of the second law is entropy, which
means transformability (change) in Greek, introduced by Clausius in 1851. Later in this chapter, we
will show that the second law of thermodynamics necessitates that all spontaneous processes result in
an increase in the entropy and no process is possible that results in a decrease in entropy.
Consider an imaginary process for gas separation as illustrated in Fig. 4.3. Assuming that the gases
behave ideally, the change in the internal energy, DU = 0. On the basis of the first law, the process is
not an impossible one. With the aid of the entropy function it can readily be shown that the imagined
process is impossible, because, it would involve a net decrease in entropy of the system with no
corresponding increase in the entropy of the surroundings.

We have seen that although there is an exact quantitative equivalence among the different forms of
energy, there is a marked difference in the availability of these forms for useful work. Heat represents
the least ‘available’ form of energy and transformation of other forms into heat represents a
degradation of energy. Entropy is the thermodynamic property, which serves as a measure of the
unavailability or degradation of energy. An increase in unavailability of the total energy of a system is
quantitatively expressed by a corresponding increase in its entropy. Entropy, being an intrinsic
property of matter, is not affected by the external position of the body or its motion relative to other
bodies. The entropy of unit mass of water at the top of the mountain is equal to the entropy of the same
amount of water at the bottom of the falls, if the temperature and pressure are the same. Similarly, the
entropy of unit mass of water in the flowing stream will be equal to the entropy of water in a stagnant
pool, provided that the conditions such as the temperature and pressure are the same in both the cases.
The entropy of a system is affected only by the nature of matter under consideration and by the state in
which it exists.

4.3.2 Entropy and Heat
As noted above, the entropy is a measure of the unavailability of the internal energy. Among the
various forms, heat is the least available form of energy. Whenever a certain form of energy gets
transformed to heat the total energy gets degraded with a corresponding increase in the entropy of the
system. Consider 1 kg of water at the top of a mountain of height about 426.8 m. At this position,
water possesses a potential energy of nearly 4.187 kJ. When the water falls and strikes the river at the
bottom, all its potential energy gets converted to thermal energy with a consequent temperature rise of
water by approximately 1 K. This process results in a degradation of total energy. If not, we could
have reversed the process and raised the water to its initial position by cooling it by 1 K. This



degradation of energy is measured by a net increase in the entropy. In this case, the increase in
entropy was due to the degeneration of mechanical energy into heat. In general, an increase in entropy
results from the addition of heat into the system through the degradation of energy in any form or, by
the direct supply of heat to the system. In short, the entropy of the system is increased by the
addition of heat through any mechanism or from any source.  The increase in entropy is
proportional to the heat exchanged but not equal to it, since, it is necessary to consider the
temperature of the system when the heat is transferred.

4.3.3 Entropy and Temperature
The amount of heat added to a system is only a partial measure of the magnitude of its entropy
increase. It also depends upon the temperature of the system to which heat is added. Consider a
system consisting of a weight and two separate reservoirs, one at temperature Th and the other at a
lower temperature Tc. The weight is first allowed to fall to the high-temperature reservoir,
transferring to it certain quantity of heat in the process. The heat so transferred is then made to flow
into the reservoir at Tc. These two irreversible processes result in a net increase in entropy which
would be the same as the increase in entropy that would result if the weight were allowed to fall
directly to the reservoir at Tc. This is so, because, the initial and the final conditions are the same in
both cases. Entropy, as will be shown later, is a thermodynamic property that depends only on the
terminal states and not on the path followed. Therefore, the change in entropy would be the same in
both cases. In the first instance, it is the sum of two contributions: one, the entropy change that
resulted by the dropping of the weight to the hot reservoir; and the other by the transfer of heat to the
cold reservoir. Since, these two together equal the entropy change resulted by the dropping of the
weight to the cold reservoir, we can conclude that the change in entropy due to the lowering of weight
to a reservoir at a high temperature is less than that resulted when the weight was lowered to the
reservoir at a low temperature. It means that the transfer of energy to a low temperature leads to a
greater degradation than that resulted by the transfer of the same quantity to a higher temperature. The
greater the degradation of the energy, the greater would be the irreversibility of the process. Entropy,
being a thermodynamic function, used to measure the degree of degradation or the extent of
irreversibility, should therefore, be related not to Q, but to Q/T, where Q is the heat received by the
reservoir and T is its temperature.
In conclusion, the transfer of heat within an isolated system to a region of lower temperature
increases the unavailability of energy and the entropy of the system. The addition of heat to a
system at a lower temperature leads to a greater degradation of energy than that resulted by the
addition at a higher temperature.

4.3.4 Entropy and the Nature of the Process
We have seen that a quantitative description for entropy should take into account the heat transferred
and the temperature level at which it is transferred. In addition, in order to complete the definition of
entropy, the nature of the process should also be specified. For example, a gas may be expanded
freely to a lower pressure within a closed system, which is completely isolated from the surroundings
thermally and mechanically. This is an irreversible process resulting in degradation of energy of the
system and consequently an increase in its entropy. However, no heat is added, no work is done, and



for an ideal gas, the process is isothermal. How is then the increase in entropy for this process
measured? Consider an engine operating within the system that continuously converts the work done
into heat by means of friction. In this case, heat is added to the system by degradation of mechanical
work. The amount of heat added increases with the efficiency of the engine, and reaches a maximum
when the engine operates reversibly. But the change in entropy (being a state function) accompanying
a process, is dependent only on the initial and final states and not on the path. So, when we take the
amount of heat transferred to measure the increase in entropy through the term Q/T, the nature of the
process should be specified. The logical choice, thus, is the maximum possible degradation of higher
forms of energy into heat, which is possible only in a reversible process. Entropy change should
therefore be measured as QR/T, where QR is the heat transferred when the process is occurring
reversibly.
To summarise, the quantitative definition of entropy requires the following specifications:

1. The amount of heat transferred.
2. The temperature level at which the transfer occurs

3. The nature of the process, whether reversible or irreversible.
To comply with these requirements, we define entropy change in a process as

In Eq. (4.1), S denotes the entropy, Q the heat transferred, T the absolute temperature, and the suffix R
indicates the reversibility of the process.

4.4 THE CARNOT PRINCIPLE
Nicolas Sadi Carnot (1824) introduced the concept of cyclic operations and was among the first to
study the principles of the second law of thermodynamics. He devised a classical ideal cycle named
after him that formed the basis for the mathematical statement of second law of thermodynamics.
The Carnot cycle consists of an alternate series of two reversible isothermal processes and two
reversible adiabatic processes as shown in Fig. 4.4.



During the process AB, heat is transferred reversibly and isothermally to the working substance from
the high-temperature reservoir (HTR) at temperature T1 and the system performs an amount of work
which is given by the area under the curve AB on the PV diagram. During the reversible adiabatic
expansion (BC), the temperature of the system decreases from T1 to T2. The area under the curve BC
gives the net work obtained from this step. During process CD, the system rejects heat Q2 to a low-
temperature reservoir (LTR) at a constant temperature T2. The area on the PV diagram under the
curve CD is the net work done on the system during this step. The final step is a reversible adiabatic
compression (DA) during which the temperature rises from T2 to T1 and the original conditions are
restored to the system. The area under the curve DA is the work done on the system for this change.
The enclosed area ABCD represents the net work delivered by the engine.
The Carnot principle involves the following two propositions.
1. No heat engine operating in a cycle between two constant temperature reservoirs can be more

efficient than a reversible engine working between the same two reservoirs.
2. All reversible engines working between two constant temperature reservoirs have the same

efficiency irrespective of the working substance, and this efficiency is dependent only on the
temperature levels.

The first proposition can be easily verified by considering a reversible engine (R) and an irreversible
engine (I) operating between two heat reservoirs as shown in Fig. 4.5. Assume that the irreversible
engine is more efficient than the reversible one. Let the work output of both the engines be W. Since,
the efficiency is defined as the ratio of the work output to the heat input, then for engine I, both the
heat absorbed Q1,I and the heat rejected Q2,I are less than the corresponding values Q1,R and Q2,R
for the reversible engine.

Since the reversible engine can be operated as a heat pump as shown by the dotted arrows in Fig. 4.5,
the work output from engine (I) can be utilised to pump heat Q2,R from the LTR, thereby, rejecting
heat Q1,R to the HTR. The net effect of the combined system would be the transfer of heat (Q2,R –
Q2,I) from a cold body to the hot one without the aid of an external agency. As this is a violation of
the second law of thermodynamics, an irreversible engine cannot be more efficient than a reversible



one.
To prove the second proposition, assume that the irreversible engine (I) in Fig. 4.5 be replaced by a
reversible engine (R�). Let this engine be more efficient than the engine R. By reasoning on the same
lines as in the preceding paragraph, we can show that the engine R can be reversed to run as a heat
pump, producing a net effect of transfer of energy from a lower to a higher temperature without any
work. Since this is contrary to the second law, R� cannot be more efficient than R and vice versa.
This means that neither R nor R� can be more efficient than each other, i.e., both must have same
efficiency. Since, no restrictions were placed on the working fluid in the engine, this efficiency is
independent of the working substance and depends only on the temperature levels between which the
system is operating.
Denoting the efficiency of the Carnot engine by h,

h = f(T1, T2)

Since the efficiency is defined as the ratio of W to Q1, and W by the first law of thermodynamics is
equal to Q1 – Q2, we can write the above equation as

Equation (4.3) means that the ratio of heat rejected to the heat absorbed by a reversible engine is a
function only of the temperatures of the heat source and sink.

4.4.1 Thermodynamic Temperature Scale
The fact that the efficiency of a Carnot engine is independent of the working fluid enables us to define
a universal scale of temperature independent of the individual properties of the thermometric
substance and of the arbitrary nature of the method of measurement. Lord Kelvin proposed an
absolute thermodynamic scale of temperature such that the functional relationship in Eq. (4.3) could
be written as

………(4.4)
Equation (4.4) means that if an ideal Carnot engine be constructed and Q1 and Q2 are measured, their
ratio would be the ratio of the absolute thermodynamic temperature of the heat source to that of the
sink. The choice of the function f(T1, T2) as T1/T2 is arbitrary. We could have chosen this function as
equal to T2/T1, or exp (T1 – T2) instead of T1/T2. But the present choice is found to be convenient,
because by this choice, the absolute temperature coincides with the temperature in the ideal gas
equation. The unit of absolute temperature is defined by choosing a single fixed point, the triple point
of water as Tt = 273.16 K. If a heat engine has a heat source at this temperature, the temperature of the
cold sink—the object, whose temperature we want to measure—can be found by measuring Q1 and



Q2 and using

With the above choice of the thermodynamic temperature, the efficiency (h) of an ideal Carnot engine,
Eq. (4.2), becomes

The absolute zero or the zero of the thermodynamic temperature scale is the value of T2 at which the
Carnot efficiency becomes equal to unity. Equation (4.5) gives the maximum efficiency of a heat
engine operating between two thermal reservoirs at thermodynamic temperatures T1 and T2. In the
following section, we consider the efficiency of an ideal Carnot engine using an ideal gas as the
working fluid and show that the thermodynamic temperature and the ideal gas temperature are the
same.

4.4.2 Ideal Gas as the Carnot Engine Working Substance
Consider an ideal Carnot engine cycle as depicted in Fig. 4.4 with an ideal gas as the working
substance. Let PA, PB, PC and PD denote the pressures of the gas at the various states represented by
points A, B, C and D respectively. The isothermal expansion step AB and isothermal compression step
CD are carried out at constant temperatures T1 and T2 respectively. The net work done by the engine

Wnet = WAB + WBC + WCD + WDA………(4.6)

The work done during the reversible adiabatic operations BC and DA are equal to – DU. It follows
from the first law, Eq. (2.4), DU = Q – W, in which Q = 0



The work done during the isothermal compression CD is given by

For the adiabatic processes BC and DA, the temperatures and pressures are interrelated as given
below.



By the first law of thermodynamics Wnet = Q1 – Q2. Therefore, Eq. (4.17) can be written as

Comparison of Eq. (4.18) with Eq. (4.5) shows that the ideal gas temperature and the absolute
thermodynamic temperature are identical.

EXAMPLE 4.1 A heat engine operates between a heat source at 700 K and a heat sink at 300 K.
What is the maximum efficiency of the engine?
Solution The efficiency of a Carnot engine operating between two temperature levels T1 and T2 is
given by Eq. (4.17). This is the maximum efficiency that can be expected of any heat engine.
Therefore, the theoretical efficiency of the given engine is

EXAMPLE 4.2 From a reservoir at 600 K, 1000 J of heat is transferred to an engine that operates on
the Carnot cycle. The engine rejects heat to a reservoir at 300 K. Determine the thermal efficiency of
the cycle and the work done by the engine.
Solution The efficiency of an ideal Carnot engine is given by Eq. (4.5).



The efficiency of the engine is 50%.
W = 0.5 Q1 = 0.5 � 1000 = 500 J

The work done by the engine = 500 J.

EXAMPLE 4.3 It is required to freeze 1 kg water at 273 K by means of a refrigeration machine
which operates in the surroundings at 300 K. The latent heat of fusion of ice at 273 K is 
334.11 kJ/kg. Determine:

(a) The minimum amount of work required
(b) The heat given up to the surroundings.

Solution The work required will be minimum for an ideal Carnot machine acting as a refrigerator.
The coefficient of performance (COP) of such a machine is given by the relation

Here, Q2 is the heat absorbed at a temperature T2, and T1 is the temperature of the surroundings to
which heat is given up. For freezing 1 kg water, the heat to be removed is 334.11 kJ, i.e. 
Q2 = 334.11 kJ.

EXAMPLE 4.4 An inventor claims to have developed a refrigeration unit which maintains the
refrigerated space at 270 K while operating in a room where the temperature is 300 K and which has
a coefficient of performance of 9.5. How do you evaluate his claim?
Solution The coefficient of performance of an ideal refrigerating machine is given by
Eq. (4.19).



No machine operating between 270 K and 300 K can have a COP greater than 9.0. Hence, the
inventor’s claim of a COP of 9.5 is unacceptable.

EXAMPLE 4.5 A new engine is claimed to be having a power output of 4.5 hp while receiving a heat
input of 6.25 kW and working between the source and sink temperature limits of 1000 K and 500 K.
Determine the efficiency of the proposed engine. Is the claim for the engine admissible?

Solution The work output of the proposed engine is 4.5 � 745.7 = 3355.65 W and the heat input is
6250 W. The efficiency of the proposed engine is, therefore,

3355.65/6250 = 0.537
The maximum efficiency of an engine working between the temperature limits 1000 K and 500 K is
the Carnot efficiency. Thus, the maximum efficiency is

No engine can have an efficiency greater than this value. Hence the claim of the proposed engine is
impossible.

4.5 ENTROPY—A STATE FUNCTION
Equation (4.18) can be rearranged as

where Q1 is the heat absorbed and Q2 is the heat rejected by the system. The heat absorbed by the
system is positive and heat rejected is negative as per the sign convention we have adopted so that the
above equation should be written as

or

Equation (4.21) means that the sum of the quantities Q1/T1 and Q2/T2 for a reversible heat engine is
zero. Any reversible cyclic operation like the one represented on the P-V diagram in Fig. 4.6 may be
regarded as made up of a large number of imaginary Carnot cycles and for each such cycle we can
write equation similar to Eq. (4.21) as

where dQ1 and dQ2 are the heat absorbed and heat rejected respectively during one such an
imaginary cycle.



Combining all such equations that are written for the separate Carnot cycles into which the original
reversible cycle is divided, we get

where S is the entropy of the system. We have characterised the thermodynamic property of a system
as a quantity that undergoes no net change in a cyclic operation. Equation (4.24) means that the
entropy change DS for the cyclic operation is equal to zero; or, in short, entropy S as defined by Eq.
(4.1) is a thermodynamic property of the system. It reveals an interesting fact: whereas the heat
transferred in a process is a path function, the ratio of the heat transferred to the temperature at
which it is transferred is a state function.

4.6 CALCULATION OF ENTROPY CHANGES
The entropy change as defined by Eq. (4.1), accompanying a process is applicable for a reversible
process. In practice, processes are never carried out reversibly. Entropy being a state function
depends only on the end states. The entropy change in an irreversible process occurring between any
two states would be the same as the entropy change in a reversible process occurring between them,
the latter being evaluated by Eq. (4.1). Thus, the entropy change in any irreversible process can be
evaluated by devising an imaginary reversible process for accomplishing the same change and
calculating the entropy change in the latter.
If the process involves only the direct transfer of heat or the degradation of higher forms 



of energy into heat, the restriction of reversibility in Eq. (4.1) may be ignored. Thus, entropy change
due to the addition of heat can always be calculated by Eq. (4.1), whether the transfer is
accomplished reversibly or irreversibly. Similarly, for processes involving the changes in 
the relative position or movements of matter (as in the case of a falling object) the heat 
added, even if the process is highly irreversible, measures the entropy change. However, if a process
is irreversible because of a finite difference in another driving force, such as pressure, calculation of
entropy change is done by devising a reversible process for accomplishing 
the change. Thus, we see that in the evaluation of entropy changes, the reversibility restriction is to be
strictly followed only for processes involving changes in the intrinsic state of the 
matter.

4.6.1 Phase Change
The entropy change in phase transitions like fusion, vaporisation, or transition from one crystalline
form to another can be evaluated from the values of the latent heat of phase change and the
temperature at which the change is carried out. The phase changes can be treated as changes occurring
reversibly at constant temperature. For example, the entropy of vaporisation DSV is found out as

EXAMPLE 4.6 Calculate the entropy of evaporation of dry saturated steam at 500 kPa.
Data: From the steam tables, latent heat of vaporisation, DHV = 2106 kJ/kg; Saturation temperature
of steam = 425 K.

Solution By Eq. (4.25), entropy change accompanying vaporisation is DSV = 2106/425 = 4.96 kJ/kg
K

4.6.2 Processes involving Ideal Gases
For a differential change in the thermodynamic state of a closed system, the first law of
thermodynamics [Eq. (2.5)] can be written as

dQ = dU + dW
When the process is reversible and the work involved is only work of expansion (P dV), the above
equation can be modified as

dQR = dU + P dV

Since this infinitesimal change in the state of the system can be assumed to occur at constant
temperature T, the entropy change by Eq. (4.1) is



Assuming that CV is independent of temperature, this equation can be integrated for a finite change
from state 1 to state 2 giving for one mole of an ideal gas,

where the suffixes 1 and 2 indicate the properties of the gas at state 1 and state 2 respectively.
Equation (4.27) can be used for the evaluation of entropy change accompanying the change in states of
ideal gases. It can be put in another form also. We know that for ideal gases,

CV = CP – R………(4.28)

and

………(4.29)
Substituting Eqs. (4.28) and (4.29) into Eq. (4.27), we obtain the following:

For an isothermal process, we obtain

Though the above equations are derived on the premise that the processes are reversible, they can be
used for irreversible processes occurring between the same terminal conditions as well. This is



because the change in entropy depends only on the end states and not on the history of the system.
EXAMPLE 4.7 Determine the change in entropy when 2 kg of a gas at 277 K is heated at constant
volume to a temperature of 368 K. Take the specific heat at constant volume = 1.42 kJ/kg K.
Solution Entropy change accompanying a constant volume process is given by Eq. (4.31). For m = 2
kg,

EXAMPLE 4.8 Calculate the entropy change when 1 kmol of an ideal gas at 300 K and 10 bar
expands through a throttle to a pressure of 1 bar, both pressures being maintained constant during the
process by suitable means.
Solution During throttling enthalpy is unchanged. For an ideal gas enthalpy being a function of
temperature alone, the temperature remains unchanged during the process. Therefore, entropy change
accompanying the process can be computed by Eq. (4.33).

EXAMPLE 4.9 What is the change in entropy when 1 kmol of an ideal gas at 335 K and 10 bar is
expanded irreversibly to 300 K and 1 bar? CP = 29.3 kJ/kmol K.

Solution The entropy change in this process is given by Eq. (4.30)

4.6.3 Adiabatic Mixing Process
When two substances at different temperatures are mixed together adiabatically, both will attain an
intermediate temperature, say, T. The change in entropy of each is calculated as

where T1 denotes its initial temperature. The total entropy change is then obtained by adding the
individual changes. Equation (4.34) can be used for the calculation of change in entropy in processes
like mixing of two fluid streams or quenching of metallic bodies in liquids.
EXAMPLE 4.10 Ten kilograms water at 375 K is mixed adiabatically with 30 kg water at 275 K.
What is the change in entropy? Assume that the specific heat of water is 4.2 kJ/kg K and is
independent of temperature.
Solution Let T be the final temperature attained by the system. Then the heat balance gives



EXAMPLE 4.11 A steel casting at a temperature 725 K and weighing 35 kg is quenched in 150 kg oil
at 275 K. If there are no heat losses, determine the change in entropy. The specific heat (CP) of steel
is 0.88 kJ/kg K and that of oil is 2.5 kJ/kg K.
Solution Let T be the final temperature attained by the system. Then the heat balance gives

4.6.4 Isothermal Mixing of Ideal Gases
Consider a mixture of two or more ideal gases at pressure P and temperature T. Let the mole fraction
of the components in the mixture be represented by xi. The entropy change resulting from the
irreversible process of mixing of ideal gases in their pure state at temperature T and pressure P to
form the mixture at the same temperature and pressure can be computed by the following equation, the
proof of which is provided in Chapter 7 [see Eq. (7.122)].

DS = – R S xi ln xi………(4.35)

Gibbs paradox. When two distinct intermingling ideal gases are mixed, the resulting entropy
change is given by Eq. (4.35). For an equimolar mixture, the entropy change is,



DS = – R (0.5 ln 0.5 + 0.5 ln 0.5) = – R ln 0.5 = R ln 2.0
This is true as long as the gases are different, no matter how nearly identical they are. But, when the
gases are the same, the change in entropy on mixing should be zero. This curious result is known as
the Gibb’s paradox.

EXAMPLE 4.12 Assuming that air is a mixture of 21% oxygen and 79% nitrogen by volume,
calculate entropy of 1 kmol air relative to pure oxygen and nitrogen, all at the same temperature and
pressure.
Solution According to Eq. (4.35), entropy change accompanying the process of mixing pure oxygen
and nitrogen to form 1 kmol air is

DS = – 8.314(0.21 ln 0.21 + 0.79 ln 0.79) = 4.27 kJ/kmol K
This value represents entropy of 1 kmol air relative to pure components.

4.6.5 Chemical Reactions
The entropy changes accompanying chemical reactions are evaluated through the use of absolute
entropies of the various components taking part in the reaction. Let SP denote the sum of the entropies
of the reactants and SR denotes that of the products. Then the entropy change accompanying the
reaction is given by

DS = SP – SR………(4.36)

EXAMPLE 4.13 Calculate the entropy change for the following gas phase reaction occurring at 1 bar
and 298 K.

CO + O2 = CO2; DH = – 2.8318 � 105 J/mol

The absolute entropies of CO, oxygen and CO2 are respectively 198 J/mol K, 205.2 kJ/kmol K and
213.8 J/kmol K. Can you calculate the entropy change as the ratio of heat of reaction to the
temperature of the reaction? Why?
Solution Refer Eq. (4.36). The reactants are CO and oxygen. The product is CO2.

SP = 213.8 J/K, SR = 198 + 0.5 � 205.2 = 300.6 J/K

DS = 213.8 – 300.6 = – 86.8 J/K
Since the reaction is highly irreversible, entropy change cannot be calculated as the ratio of heat of
reaction to the temperature.

The heat of reaction (– DH) is the heat liberated when the reaction occurred irreversibly. If the
reaction were carried out reversibly, for example, in an electrolytic cell with the generation of
electric energy, the heat liberated would be (– TDS). Therefore, the difference between these two
represents the heat loss because of the irreversible nature of the process, or the heat that could have



been utilised for the production of useful work like electrical energy. Thus the energy available for
useful work is

2.8318 � 105 – 298 � 86.8 = 2.57314 � 105 J

4.7 CLAUSIUS INEQUALITY
The Carnot principle states that a reversible heat engine is more efficient than an irreversible engine.
The efficiency of a reversible engine is given by Eq. (4.17)

An irreversible cyclic operation can be divided into a number of heat engine cycles involving
infinitesimally small heat interactions, as we have done in Fig. 4.6 for the case of a reversible cyclic
operation. For each such cycle, it is possible to write equations analogous to Eq. (4.39) so that the net
result would be



which is known as Clausius inequality. It states that in a cyclic operation, the sum of the dQ/T
terms around a complete cycle is less than or equal to zero depending on whether the process is
irreversible or reversible.
EXAMPLE 4.14 Using Clausius inequality show that the change in entropy in a process is related to
the heat interaction as

where the greater than sign refers to an irreversible process and equal to sign refers to a reversible
process.
Solution Consider a reversible process between states A and B as illustrated in the P-V diagram (Fig.
4.7).

For this process, the change in entropy by Eq. (4.1) is

………(4.42)
where dQ is the heat change involved in this step. Assume that the system is brought back to the initial



condition along an irreversible path BA. The system has undergone a complete cycle of operations.
Entropy being a state property, net change in entropy is zero for the cycle. That is

DSAB + DSBA = 0

Since the cycle as a whole is irreversible, Eq. (4.41) gives

where DSBA represents the entropy change along the reversible path from B to A. Equation (4.43) can
be rewritten as

The entropy change for the processes occurring along a reversible path and an irreversible path
between the same end states A and B should be the same. The left-hand side of the preceding equation
therefore represents the entropy change along the irreversible path BA also, which, according to the
equation is greater than the sum of the dQ/T terms along the path. However, the change in entropy
along the reversible path can always be computed as equal to the sum of the dQ/T terms. In short,

We can put the above relation into the following general form for an infinitesimal change in the state
of the system.

The inequality in Eq. (4.44) refers to an irreversible process and the equality to a reversible process.

4.8 MATHEMATICAL STATEMENT OF THE SECOND LAW OF
THERMODYNAMICS



Entropy is a property of the system that determines the direction of change. In this section, we show
that all spontaneous processes are accompanied by an increase in the entropy, and for reversible
processes, entropy doesn’t change.
First, let us consider the entropy change in a closed adiabatic system. Referring to Fig. 4.8, the path
AB may be treated as an irreversible adiabatic operation. That is, the curve AB is the pressure-volume
relationship of a spontaneous process occurring in a closed system for which there is no net heat
interaction.

The work associated with this process is WAB. Let the system be brought back to the original
condition along the reversible path BA. Let QBA and WBA be the heat and work associated with this
process. In the combination of these two processes the system has undergone a cycle of changes so
that the overall energy and entropy changes must be zero. Since DU is zero, the first law of
thermodynamics demands that the net heat interaction must be equal to the net work interaction. That
is,

QBA = WAB + WBA
If QBA were positive, the above equation would mean that the system receives heat and converts it
completely to work, which would be a violation of the second law of thermodynamics. The second
law therefore requires that QBA be either negative or zero. QBA and the net work cannot be zero, as
these would then correspond to a reversible cyclic process. But the cycle is irreversible. Therefore,
QBA is negative and since the entropy change DSBA for the reversible step can be calculated as the
ratio of heat transferred to the temperature,

DSBA < 0

Or, the process BA is accompanied by a decrease in entropy. As the entropy change for the cycle as a
whole is zero, the entropy change along path AB must be positive.



DSAB > 0………(4.45)

Thus, we see that a spontaneous process occurring in a closed adiabatic system is accompanied by an
increase in entropy. For a reversible process occurring in a closed adiabatic system the entropy
change must be zero, as there is no heat exchange. An isolated system is a closed adiabatic system.
Therefore we can conclude that the entropy change of an isolated system in any process must be equal
to or greater than zero.

As pointed out in Chapter 1, the isolated system can be treated as one made up of the system and its
surroundings. Therefore, Eq. (4.46) can be written as

(DS)system + (DS)surroundings ≥ 0………(4.47)

As a spontaneous process occurring in a closed adiabatic system is accompanied by an increase in
entropy, for such a system it can be said that entropy is that property of the system that determines the
direction of change. The processes for which entropy changes are positive are possible, and
processes for which these are negative are impossible.
The validity of the above equations can be verified for a process in which an amount of heat Q is
transferred from a heat source at temperature T1 to a heat sink at T2. The change in entropy of the heat
source is –Q/T1 and that of the heat sink is Q/T2. The entropy change of the heat source and sink add
up to give the following result.

………(4.48)
If the quantity Q is positive and if the transfer of heat is carried out irreversibly as is the case when
there exists a finite difference in the temperatures of the source and the sink, (DS)total would be
positive. The process can be made reversible by lowering the temperature T1 to a value only slightly
greater than T2. In this case, the (DS)total approaches zero and for a true reversible process the value
becomes equal to zero. Thus, we see that the Eq. (4.47) provides a general result of universal validity
which can be restated as

Equations (4.46) and (4.49) are the general mathematical statements of second law of
thermodynamics. These statements apply to the total change in entropy; in an irreversible process, a
decrease in entropy may occur either in the system or in the surroundings. These statements require
only that the sum of the entropy changes of the system and the surroundings together be positive in an
irreversible process like the isothermal expansion of a gas. If the same expansion were carried out
reversibly, the increase in the entropy of the gas will be compensated by a decrease in the entropy of
the surroundings that results because of the withdrawal of heat. If this heat exchange also were
accomplished reversibly, the net change in entropy would be zero. Equation (4.49) is also known as
the principle of increase in entropy.
The principle of increase in entropy with reference to an isolated system means that the only



processes that can occur in an isolated system are those that have an increase in entropy associated
with them. The universe is a perfect example of an isolated system and all naturally occurring
processes in the universe are accompanied by an increase in entropy and are irreversible. Hence we
can say that the entropy of the universe goes on increasing . The statements for the first and second
laws of thermodynamics can now be combined: The energy of the universe is conserved whereas the
entropy is increasing.
EXAMPLE 4.15 One kilogram of superheated steam at 1.5 MPa and 523 K (H = 2923.5 kJ/kg, S =
6.71 kJ/kg K) is contained in a piston-cylinder assembly. The unit is kept at ambient conditions of
300 K and the steam condenses to saturated liquid (H = 845 kJ/kg, S = 2.32 kJ/kg K) at constant
pressure. Calculate the change in entropy and check whether the process is reversible or not.
Solution The change in entropy of steam is the difference between the entropy of the condensate and
entropy of superheated steam. That is,

Change in entropy of steam = 2.32 – 6.71 = – 4.39 kJ/kg K
At constant pressure, the change in enthalpy is equal to the heat supplied. Thus, the heat given out by
steam during condensation,

Q = – DH = 2923.5 – 845 = 2078.5 kJ/kg
Change in entropy of the surroundings is

Therefore, (DS)total = 2.54 kJ/kg

Since (DS)total is positive, the process is irreversible.

EXAMPLE 4.16 Two compartments each of 1 m3 capacity are connected by a valve and insulated
from the surroundings and from each other. One compartment contains saturated steam at 683.6 kPa
and the other contains steam at the same temperature but at a pressure of 101.3 kPa. The valve is
opened and the pressure is allowed to equalise. Determine the change in entropy of the system
consisting of the two vessels. Comment on the irreversibility of the process.
Solution From steam tables, the enthalpy, entropy, specific volume and internal energy of saturated
steam at 683.6 kPa (Ts = 437.2 K) are 2761 kJ/kg, 6.7133 kJ/kg K, 278.9 � 10–3 m3/kg and 2570.4
kJ/kg respectively. For superheated steam at 101.3 kPa and 437.2 K, these values are 2804 kJ/kg,
7.6712 kJ/kg K, 1976.2 m3/kg and 2603.3 kJ/kg respectively.
Mass of saturated steam:

1.0/(278.9 � 10–3) = 3.5855 kg
Mass of superheated steam:

1.0/(1976.2 � 10–3) = 0.5060 kg
Mass of the system:

3.5855 + 0.5060 = 4.0915 kg
Specific volume of the system:



2.0/4.0915 = 0.4888 m3/kg
Since no heat exchange and work interaction between the system and the surroundings occur during
the mixing process, according to the first law of thermodynamics, the internal energy after mixing
remains the same as that before mixing. The internal energy of saturated steam is

2570.4 � 3.5855 = 9216.2 kJ
The internal energy of superheated steam is

2603.3 � 0.5060 = 1317.3 kJ
Therefore, the specific internal energy of the system is

(9216.2 + 1317.3)/4.0915 = 2574.5 kJ/kg
The internal energy and specific volume of the system after mixing are now known. They are 
U = 2574.5 kJ/kg and V = 0.4888 m3/kg. These determine the state of the system. By interpolation of
the data from steam tables we get the pressure = 400 kPa and temperature = 437 K and the specific
entropy of the system = 6.9992 kJ/kg K.

Initial entropy = (6.7133 � 3.5855 + 7.6712 � 0.5060) = 27.9522 kJ/K
Final entropy = 6.9992 � 4.0915 = 28.6372 kJ/K
Change in entropy = 0.6850 kJ/K

As the surroundings are unaffected, the above value represents the total entropy change. Since it is
positive, the process is irreversible.
EXAMPLE 4.17 Two perfectly insulated tanks each of capacity 1 m3 are connected by means of a
small pipeline fitted with a valve. The first tank contains an ideal gas at 300 K and 200 kPa and the
second one is completely evacuated. The valve is opened and the pressure and temperature are
equalised. Determine the change in total entropy.
Solution Using the ideal gas equation, the number of moles of the gas is determined.

The system, which, in this case, is the gas contained in the vessels, exchanges no heat and work with
the surroundings. By the first law DU = 0. The internal energy of an ideal gas depends only on
temperature and therefore temperature after mixing is the same as that before mixing. Thus we have,
Final conditions:

T = 300 K, V = 2 m3 and P = 100 kPa
Initial conditions:

T = 300 K, V = 1 m3 and P = 200 kPa
Equation (4.33) can be used to evaluate the entropy change.

DS = R ln  = 5.7628 kJ/kmol K = 0.0802 � 5.7628 = 0.4622 kJ/K
Entropy of the surroundings does not change. Hence, the change in total entropy = 0.4622 kJ/K.



EXAMPLE 4.18 Oil at 500 K is to be cooled at a rate of 5000 kg/h in a counter-current exchanger
using cold water available at 295 K. A temperature approach of 10 K is to be main-tained at both
ends of the exchanger. The specific heats of oil and water are respectively 3.2 and 4.2 kJ/kg K.
Determine the total entropy change in the process.

Solution Assume that the oil is cooled to the minimum permissible temperature. Then the inlet and
exit temperature of the oil are 500 K and 305 K. The inlet and exit temperature of the water are 295 K
and 490 K. The mass flow rate m of water can be determined by an enthalpy balance.

4.9 ENTROPY AND IRREVERSIBILITY
The total increase in entropy associated with an actual process is a measure of the loss in capacity of
the system and surroundings as a whole to do work. In other words, the increase in entropy
accompanying a spontaneous process is a measure of lost work.
Consider an irreversible process in which a quantity of heat Q is transferred from a source at a
temperature T1 to a sink at a lower temperature T2. The change in total entropy in this process is
given by Eq. (4.48).

Now consider a reversible heat engine operating between the same thermal reservoirs receiving the
same quantity of heat Q. The efficiency of such an engine is given by Eq. (4.17)



Equation (4.52) gives a physical meaning to the total entropy change in an irreversible process. The
product of total entropy change and the temperature of the heat sink gives the quantity of heat that is
wasted or degraded in an irreversible process. A reversible engine which receives heat Q1 from the
reservoir at temperature T1 would perform some work rejecting a part of it, say Q2, to a heat sink at
temperature T2. The heat rejected in the case of an irreversible engine which receives the same
amount of heat would be greater by an amount equal to T2(DS)total. Thus 
T2(DS)total represents heat taken in at a higher temperature that would have been available for doing
work had the process been reversible, but that was lost because of the irreversibility of the actual
process.
Though Eq. (4.52) is developed for a heat transfer process, it can be shown that it is applicable to any
process. We can generalise the equation into the following form

Wlost = T0(DS)total………(4.53)

T0 is the temperature of the surroundings. In practice, it is approximately equal to the temperature of
the atmosphere. The lower the value of T0, the lesser the work loss due to irreversibility of the
process. But, the lowest practicable temperature is that of the atmosphere. To maintain the
temperature of a heat sink below that of the atmosphere, work is needed, and this work would be
more than that is gained by lowering T0.
EXAMPLE 4.19 Evaluate the loss in capacity for doing work when the steel casting in 
Example 4.11 is quenched in oil.
Solution Refer Example 4.11. The change in entropy of the casting is

DS1 = – 26.25 kJ/K



The change in entropy of the oil is
DS2 = 43.90 kJ/K

The total entropy change is
(DS) total = DS1 + DS2 = 17.65 kJ/K

The loss in capacity for doing work is
T0 DS = 275 � 17.65 = 4853.75 kJ

This is the net work, which would have been accomplished if all the changes resulting from the
process had been carried out reversibly.
EXAMPLE 4.20 Hydrocarbon oil is to be cooled from 425 K to 340 K at a rate of 5000 kg/h in a
parallel flow heat exchanger. Cooling water at a rate of 10,000 kg/h at 295 K is available. The mean
specific heats of the oil and water are respectively 2.5 kJ/kg K and 4.2 kJ/kg K.

(a) Determine the total change in entropy. Is the process reversible?
(b) If a reversible Carnot engine is to be operated receiving the heat from the oil and rejecting

the heat to the surroundings at 295 K, how much work would be available?
Solution The exit temperature of water is obtained by an energy balance. Assuming no heat loss, the
energy balance gives

5000 � 2.5 � (425 – 340) = 10000 � 4.2 � (T – 295)
where T is the exit temperature of cooling water. Solving this, we get T = 320.3 K.



4.10 STATISTICAL EXPLANATION FOR ENTROPY
To understand the physical meaning of entropy, the relationship between entropy and probability
should be made clear. All spontaneous processes are in the direction of maximum probability and, as
we have shown in the preceding sections, they are accompanied by an increase in entropy. For
example, consider the spontaneous process of mixing of the two pure gases A and B in a container.
The pure gases, which were initially separated by a membrane, are allowed to mix together. The most
probable state in which the system exists is the ‘mixed-up’ state, and the chances for one part of the
vessel being occupied by pure A and the other part by pure B are very remote. This concept may be
illustrated by a large number of white and black balls shaken together in a box. The most probable
average arrangement is a uniform distribution of black and white balls and a compartment of the box
being occupied by balls of only one colour is hardly observed. We see that the most probable state in
which a system can exist is that having the least orderly arrangement. That is, in the most probable
state of the system the molecules are distributed with greatest randomness. The second law of
thermodynamics in its most general form can be stated thus: every system, which is left to itself, will,
on the average, change towards a condition of maximum probability.
All spontaneous processes occur in the direction from order to disorder and chaos, and an increase in
entropy is associated with all these processes. Thus entropy may be looked upon as a measure of
randomness which is a minimum in systems with an orderly arrangement. Consider, for example, the
diffusion of one gas into another. The molecules of the gases, which were initially separated, have
mixed in a random manner. The spontaneous conduction of heat along a metallic bar results in a
random distribution of the kinetic energy of the molecules. The rejection of heat from a system though
decreases the disorder of the molecules, an equivalent or greater amount of disorder results in the
environment. It is therefore reasonable to postulate a relationship between the entropy of the system
and the randomness or degree of disorder in the given state.
The concept of entropy as a measure of randomness is also helpful in predicting qualitatively whether
a proposed process is accompanied by an increase or decrease in entropy, from a consideration of
randomness or disorder in the initial and final states. Similarly, knowledge of the entropy change
often provides information concerning structural changes accompanying a given process. To illustrate



this, consider a substance undergoing a change of phase from solid to liquid. The process involves an
increase in entropy as well as an increase of disorder. In general, the greater the increase of disorder
accompanying a process, the greater is the increase in entropy.
Boltzmann (1896) put forward the statistical definition of entropy by the following relation.

S = k ln W………(4.54)
In this equation, k is the Boltzmann constant and the quantity W is the number of different ways in
which the energy of the system can be achieved by rearranging the atoms or molecules among their
available states.

4.11 THIRD LAW OF THERMODYNAMICS
We have seen in the previous section that the more completely a system is shuffled the greater is its
entropy. Entropy is a measure of the randomness of molecular arrangement of a system. An orderly or
unmixed configuration results in low entropy. It is natural therefore, to expect a substance to have
zero entropy when it reaches a state in which all randomness have disappeared. A perfect crystalline
substance at the absolute zero of temperature would meet this requirement and should have zero
entropy. Using the experimental data on the heat capacity of perfect crystalline substances at very low
temperatures their entropy at 0 K was calculated and it was shown that they all have same entropy
values at this temperature. These observations lead to the postulate of the third law of
thermodynamics: The absolute entropy is zero for a perfect crystalline substance at absolute zero
of temperatures.
In comparison with internal energy and enthalpy, which are calculated relative to an arbitrary
reference state, entropy is a reference property and is absolute, as are pressure, volume and
temperature. Third law of thermodynamics can be utilised to calculate the absolute entropy of
substances at a given temperature by assigning the value zero for entropy of the crystalline form of the
substance at absolute zero. This is done by measuring the heat capacity at different temperatures and
the latent heats of phase transition that the substance must have undergone to arrive at the present state
from the initial state of absolute zero of temperature. For example, let the melting point of the
substance be Tf and the boiling point be Tb. The entropy at T, where T is above the boiling point may
be evaluated as

where CPS, CPL and CPG are the specific heats of solid, liquid and gas respectively, and DHf and
DHV are the latent heats of fusion and vaporisation respectively. The main difficulty in using the
above equation is with regards to the measurement of heat capacity at very low temperatures.
EXAMPLE 4.21 It is known that the molar heat capacity of a substance at low temperatures can be
approximated by the relation CP = aT3, where a is a constant. Determine the molar entropy of a metal
at 10 K if the molar heat capacity at this temperature is 0.45 J/mol K.
Solution The entropy of the solid at 10 K is evaluated using the first integral in Eq. (4.55)



EXAMPLE 4.22 Calculate the absolute entropy of water vapour at 473 K and 101.3 kPa above 273
K base temperature. Compare this with the value reported in steam tables (S = 7.829 kJ/kg K). The
average heat capacity of water = 4.2 kJ/kg K and that of water vapour between 373 K and 473 K =
1.9 kJ/kg K. The latent heat of vaporisation at 373 K = 2257 kJ/kg.
Solution Equation (4.55) is reduced to the following form for the present purpose.

S = 7.813 kJ/kg K and it compares favourably with the value reported in the steam tables: S = 7.829
kJ/kg K.

SUMMARY
The first law of thermodynamics is concerned with the amount of energy in different forms that are
involved in various spontaneous processes. But, it fails to explain the direction and extent of such
processes. Though heat can be treated as a form of energy there is a marked qualitative difference
between heat and other forms of energy. Because of these inadequacies of the first law in explaining
the naturally occurring processes, the second law of thermodynamics was proposed, which can be
stated in a number of ways. To give a mathematical expression for the second law, the concept of
entropy was introduced. Entropy was shown to be a thermodynamic property of the system, which
serves as a measure of the unavailability or the degradation of energy. An increase in the
unavailability of the total energy of a system is quantitatively expressed by a corresponding increase
in its entropy. It is defined by

The Carnot principle and the concept of the thermodynamic temperature were explained in Section
4.4. The Carnot engine was shown to have the maximum efficiency among all engines operating
between any two given temperature limits. This efficiency is a function of only the reservoir
temperatures and is independent of the working fluid. This led to the relationship



which formed the basis of the thermodynamic temperature scale. The ideal gas temperature and the
thermodynamic temperature were shown to be the same. In Section 4.6, methods for calculating the
change in entropy for some typical processes were examined. The Clausius inequality states that in a
cyclic operation, the sum of the dQ/T terms around the cycle is less than or equal to zero. The
Clausius inequality lead to the following generalisation for any given process:

The general mathematical statement (Section 4.8) of the second law is provided by
DS (isolated system) ≥ 0

This statement means that all naturally occurring processes in the universe are accompanied by an
increase in entropy and all are irreversible. This increase in the entropy is a measure of the
irreversibility (Section 4.9). The relationship between entropy and probability was highlighted in
Section 4.10 by providing a statistical explanation for entropy. As a consequence of this direct link
between entropy and ‘disorder’, a perfect crystalline substance may be thought of as having zero
entropy at absolute zero of temperature. The third law of thermodynamics (Section 4.11) was shown
to be nothing but a generalisation of this observation.

REVIEW QUESTIONS
1. What are the limitations of the first law of thermodynamics?
2. Give the Kelvin–Planck statement and the Clausius statement of the second law of

thermodynamics and show that they are equivalent.
3. Establish with examples why the concept of entropy is essential to explain the direction of

spontaneous processes.
4. How do you explain the qualitative difference between heat and other forms of energy?
5. “The addition of heat to a system at lower temperature results in greater degradation of energy

than the addition to a higher temperature”. Do you agree? Justify your answer.
6. Give the mathematical definition of entropy and explain the terms involved.
7. “Entropy of a rotating flywheel is the same as that of the flywheel at rest.” Do you agree?

Substantiate your answer.
8. What are Carnot propositions?
9. Prove that a Carnot engine has the maximum efficiency and that the efficiency is independent of

the working fluid.
10. How does the concept of thermodynamic temperature follow from the Carnot principle?
11. Is it possible to obtain zero temperature on the absolute thermodynamic temperature scale?

Why?
12. How would you prove that the thermodynamic temperature and ideal gas temperature are

identical?
13. How is entropy change in an irreversible process determined?
14. What is the general equation for evaluating the change in entropy of an ideal gas which is

undergoing a change of state?



15. What is the Gibb’s paradox in relation to the entropy change in the isothermal mixing of ideal
gases?

16. Can you determine the entropy change in a chemical reaction as the ratio of the heat of reaction
to the temperature of the reaction? Why?

17. State and prove the Clausius inequality.
18. State mathematically the principle of the increase in entropy and hence show that “the entropy

of the universe is increasing”.
19. “The second law of thermodynamics is the law of conservation of total entropy for a reversible

process”. Do you agree?
20. How would the increase in entropy be used as a measure of the irreversibility of a process?
21. How is the entropy and probability interrelated?
22. “A knowledge of the entropy change provides information concerning the structural changes

accompanying a process”. Comment on this.
23. State the third law of thermodynamics. How does it follow from the statistical explanation for

entropy?

EXERCISES
4.1 Calculate the minimum work required to produce 10 kg ice cubes from water initially at 273 K.

Assume that the surroundings are at 300 K. The latent heat of fusion of water at 273 K = 333.5
kJ/kg.

4.2 A 800 MW thermal power plant uses steam at 600 K and discards heat to a river at 
295 K. Determine the heat discarded to the river if the thermal efficiency of the plant is 70 per
cent of the maximum possible value.

4.3 The overhead vapour from a distillation column is taken to a condenser where it is condensed
by heat exchange with cooling water that enters at 300 K and leaves at 310 K. The vapour can
be treated as pure water vapour at 101.3 kPa. Its flow rate is 5000 kg/h. It is condensed and
subcooled to 345 K. If the condenser were replaced by a reversible engine calculate the
following:
(a) The work output of the engine
(b) The per cent reduction in the cooling water circulation rate when the condenser is replaced

with Carnot engine.
4.4 A reversible refrigerator absorbs heat from water at 273 K in order to produce ice at the same

temperature and rejects heat to the surroundings at 300 K. The work requirement of the
refrigerator is to be met by a reversible heat engine operating between a heat source at 425 K
and surroundings at 300 K. For each kilo joule of heat received by the engine, calculate:
(a) The heat removed from water
(b) The heat rejected to the surroundings.

4.5 An inventor claims to have developed a heat pump with a COP of 6 which maintains the cold
space at 250 K when operating in a surrounding temperature of 310 K. Would you agree with his
claim?

4.6 An engine using hot spring water at 330 K as the heat source receives 420 kJ and is said to
reject 335 kJ to melting ice at 273 K. Comment on the engine efficiency.



4.7 An inventor claims to have developed a refrigerating machine which maintains the refrigerated
space at 267 K while operating in a room at 300 K. If the COP claimed is 8.5, how would you
evaluate his claim?

4.8 One mole of an ideal gas is compressed isothermally at 400 K from an initial pressure of 1 bar
to a final pressure of 10 bar. The work required for this irreversible process is 20 per cent more
than that required for a reversible compression. The heat liberated during compression is
absorbed by a heat reservoir at 300 K. Determine:
(a) The entropy change of the gas
(b) The entropy change of the reservoir
(c) The total entropy change.

4.9 Three moles hydrogen and 1 mol nitrogen, both at 10 bar and 373 K are separately admitted,
mixed and then heated to 773 K in a heat exchanger with a corresponding increase in pressure.
Calculate the entropy change in the process. Assume CV = 21 J/mol K for the mixture.

4.10 Ten kilogram of water (the system) is heated from 290 K to 340 K under the following
conditions:
(a) Using saturated steam at 10 bar
(b) Using saturated steam at 5 bar
(c) Using superheated steam at 5 bar and 513 K
(d) Using 10 kg water at 340 K in a counter-current exchanger.

Assume that the condensate is not subcooled. In each case calculate the entropy change of the
system, the entropy change of the surroundings and the total entropy change and compare them.

4.11 An ideal gas at 300 K and 10 bar enters an apparatus, which is thermally and mechanically
insulated from the surroundings. The gas leaves the apparatus in two streams in equal quantities.
One stream is at 360 K and 1 bar and the other is at 240 K and 1 bar. The heat capacity of the
gas is 30 kJ/kmol K. Determine the total entropy change. Is the process thermodynamically
possible?

4.12 An ideal gas at 420 K and 5 bar enters a steady-flow system and leaves at 298 K and 
1 bar. Heat is exchanged with the surroundings at 298 K. The mean specific heat of the gas is 30
kJ/kmol K. Assuming reversible operation, determine the work extracted from each kilo mole of
gas flowing through the system.

4.13 Oil of specific heat 3.2 kJ/kg K is cooled from 495 K to 315 K at a rate of 5000 kg/h by
exchanging heat with a large thermal reservoir at a constant temperature of 300 K. What is the
lost work in the process?

4.14 It has been suggested that a building could be heated by a refrigeration engine operating in a
Carnot cycle. The engine takes heat from the outside at 280 K and delivers heat to the building at
295 K. How much work would have to be done for every kilo joule heat delivered to the
building?

4.15 An inventor claims to have developed an engine that produces 1200 kJ of work while
receiving 1000 kJ of heat from a single heat reservoir. Such an engine would violate both the
first and second laws of thermodynamics. Do you agree? Why?

4.16 Calculate the molal entropy of fusion and vaporisation of ethyl alcohol which melts at 158.8 K
and boils at 351.5 K. The latent heat of fusion and vaporisation are 108 kJ/kg and 855 kJ/kg



respectively.
4.17 Air at an initial condition of 1.4 bar, 295 K, and 0.3 m3 is compressed to a pressure of 

4.5 bar whereby its volume is reduced to 0.12 m3. Calculate the change in the molal entropy of
the gas in this process. Take the specific heat at constant volume of air to be 20.52 kJ/kmol K.

4.18 A block of copper at a temperature of 825 K and weighing 5 kg is dropped into 50 kg water at
300 K. If there are no heat losses what is the change in entropy of (a) copper, (b) water, and (c)
copper and water both considered together? CP of copper is 0.4 kJ/kg K and that of water is 4.2
kJ/kg K.

4.19 A refrigerator is to be used to maintain the temperature of certain storage space at 250 K. The
compressor is rated at 250 W and the cooling duty is estimated to be 5 � 104 kJ 
per day. Determine the fraction of the time the compressor runs if the refrigerator is 
used in
(a) a cold country where the ambient temperature is 290 K and
(b) a tropical country where the ambient temperature 310 K.

4.20 How much work must be done in order to cool the air in an otherwise empty room of
dimensions 5.0 m � 5.0 m � 3.0 m from 303 K to 295 K when the ambient temperature is (a)
293 K (b) 303 K? Take specific heat of air to be 29 kJ/kmol K and density to be 1.2 kg/m3.

4.21 Liquid helium is produced from its saturated vapour at 4.2 K. The latent heat of vaporisation
of helium at this temperature is 83.3 kJ/kmol. Calculate the minimum work required to produce
liquid helium if the ambient temperature is 305 K.

4.22 A heat engine absorbs 260 kJ of heat from a source at 325 K and yields a work output of 72 kJ
rejecting 100 kJ of heat to a reservoir at 300 K and 88 kJ of heat to another reservoir at 275 K.
Does this engine violate the laws of thermodynamics?

4.23 The heat capacity of chloroform in the range 240 K to 330 K is given by

CP = 91.47 + 7.5 � 10–2 T

where CP is in J/mol K and T in K. Calculate the change in molar entropy of chloroform when it
is heated from 273 K to 300 K.

4.24 One kilogram of saturated liquid water at 100 kPa is mixed with 5 kg of superheated steam at
100 kPa and 573 K in an insulated container. Assuming that the pressure remains constant during
mixing, calculate the entropy generation due to the mixing process.

4.25 In a heat exchanger, air is heated from 293 K to 353 K by means of a second air stream which
enters the exchanger at 423 K. The molar flow rates of both the streams are equal and the
specific heat of air is 29.3 kJ/kmol K.

(a) Calculate the entropy change of both the streams and the total entropy change.
(b) Repeat the above calculations if the cooler air temperature is raised to 393 K. Why
could this be achieved only in a counter-current system?

4.26 A cylinder of free volume 0.283 m3 is divided into two compartments by a piston. Initially the
piston is at one end and the cylinder contains 1 kg steam at 423 K. Air from a supply main at
1400 kPa and 288 K is then admitted slowly via a throttle valve to the other side of the piston.
Estimate the temperature of the air when pressure equilibrium is attained. Neglect any heat loss



from the cylinder and assume no heat transfer across the piston. State clearly the assumptions
made. CV = 21 J/mol K for air.

4.27 One kilo mole of water is heated at the constant pressure of 1400 kPa from a temperature of
294 K to the boiling point and then completely vaporised at this pressure. What portion of the
heat transferred is unavailable for transformation to work in a heat 
engine assuming that the temperature of the heat sink is 283 K? Boiling point of water at 1400
kPa = 468 K. Latent heat of vaporisation = 1960 kJ/kg.

4.28 What is the increase in unavailable energy for the conditions in Exercise 4.27, if the heat is
transferred from a furnace at 1480 K?

4.29 Determine the entropy of the mixture of two ideal gases A and B in the proportion 1 : 2. If this
mixture is expanded through a throttle from pressure 500 kPa to 100 kPa what is the entropy
change of the universe?

4.30 Oil with a heat capacity of 3.2 kJ/kg K is to be cooled from 495 K to 315 K at a rate of 5000
kg/h. An unlimited supply of cooling water at a constant temperature of 303 K is available.
Determine the lost work in the process and the thermodynamic efficiency of the process.

4.31 A hot hydrocarbon oil (CP = 2.512 kJ/kg K) is cooled from 422 K to 339 K in a heat
exchanger at the rate of 2500 kg/h. Cooling water at the rate of 5000 kg/h enters the exchanger at
294 K. Assume that there is no heat loss in the exchanger.
(a) What is the change in entropy of the oil?
(b) What is the total change in entropy?
(c) How much work could be obtained if the cooling of the oil were carried out by a reversible

Carnot engine rejecting heat to a sink at 294 K?
4.32 (a) Nitrogen gas (CP = 30 kJ/kmol K) at 1 bar and 300 K is to be compressed to 10 bar and

450 K at a rate of 5000 kg/h. Cooling water (CP = 4.1868 kJ/kg K) enters the compressor at 300
K at the rate of 7500 kg/h and leaves at 320 K. Determine the power required by the
compressor.
(b) For the same conditions of nitrogen as in the previous part, determine the minimum power
required by the compressor. The rate of circulation and the inlet temperature of cooling water
remain the same as above.

4.33 Calculate the change in entropy when one gram of ice at 273 K is converted into steam at 373
K. Latent heat of fusion of ice = 336 J/g, latent heat of vaporisation = 2268 J/g and the mean
specific heat of water between 273 K and 373 K = 4.2 J/g K.



5

Some Applications of 
the Laws of Thermodynamics
Engineers would be able to devise methods for improving the efficiency of a process by proper
application of laws of thermodynamics. This chapter deals with the thermodynamic analysis of some
typical industrial processes using the first and the second laws of thermodynamics. The first section
deals with the general energy balance equations and their application to some important fluid flow
problems. Refrigeration and liquefaction processes are discussed next, with emphasis on the
thermodynamic cycles rather than on the equipment used. In the last sections, the thermodynamic
analysis of various power cycles that are commonly used in steam-power plants, internal combustion
engines and gas turbines are discussed.

5.1 FLOW PROCESSES
Thermodynamics can be used to find solutions to many fluid flow problems. Some of the basic
equations in fluid mechanics are developed using the first and second laws of thermodynamics.
However, questions that are related to the mechanism of flow, such as the loss of heat due to friction
are not within the scope of thermodynamics. In order to facilitate the application of thermodynamic
principles to flow process, we assume that the flow is unidirectional and the fluid properties do not
change in the direction perpendicular to the direction of flow. By the latter idealisation, we mean that
the properties at any point in the flow system are average values applicable for the entire cross-
section.

5.1.1 Continuity Equation
For a control volume (see Fig. 5.1), the law of conservation of mass may be written as:

where r is the average fluid density, A is the fluid cross-sectional area and u is the average fluid
velocity. Equation (5.1) is known as the continuity equation. For steady-state flow process, there is
no accumulation of mass within the control volume, and the equation reduces to



Denoting the conditions at the entrance to the control volume by subscript 1 and the conditions at the
exit by subscript 2, Eq. (5.2) may be re-written as

r1u1A1 = r2u2A2

5.1.2 Energy Equation
The law of conservation of energy for a control volume is given by

where  and  are the rate at which heat is supplied to the fluid and the rate at which shaft work is
done by the fluid respectively.
Rate of accumulation of energy is dUt/dt, where Ut is the total internal energy within the control
volume. The total energy of the fluid stream is the sum of its kinetic energy (KE), potential energy
(PE), and internal energy (IE). The law of conservation of energy can now be expressed as

where  is the mass flow rate and Z is the height above a reference plane. The work rate  is made



up of two parts—the shaft work  and the flow-work, the latter being the product of the pressure
and the volume of the fluid. The flow work is equal to  and it is the net work done by the
fluid in pushing it into and out of the control volume.

Substituting Eqs. (5.4) and (5.5) in Eq. (5.3) and noting that H = U + PV, the energy equation becomes

If the fluid enters and leaves the control volume in a single stream, the mass rate of flow remains the
same at the entrance and exit. Then Eq. (5.7) becomes

This equation is known as the total energy balance. For the case, where changes in kinetic and
potential energies are negligible, Eq. (5.9) becomes

DH = Q – WS………(5.10)

In both Eqs. (5.9) and (5.10), .
The ‘total energy balance’ considers only the input and output from the system. For fluid mechanics
calculations, it is customary to express this equation in the form of mechanical energy balance. The
mechanical energy balance takes irreversible effects, such as, fluid friction also into account.
Equation (5.9) may be put in the following form:

………(5.11)
From the definition of enthalpy of a fluid [see Eq. (2.9)], we get

dH = dU + PdV + VdP………(5.12)
Using the first law of thermodynamics [see Eq. (2.5)],



dU = dQ – dW………(5.13)
For a reversible process, the work done by the fluid is

dW = P dV
Substituting this into Eq. (5.13) and combining the resulting equation with Eq. (5.12), we get

dH = dQ + V dP………(5.14)
Integrate Eq. (5.14) between the entrance and exit of the control volume. Then,

If the changes in kinetic and potential energies are negligible, the shaft work is given by

Here, F represents the lost work due to friction or mechanical energy dissipated to heat due to
irreversibilities in the system. Equation (5.18) is known as the mechanical energy balance.

Bernoulli’s equation. Bernoulli’s equation is a special form of the mechanical energy balance
applicable only to non-viscous incompressible fluids, which do not exchange shaft work with the
surroundings. For non-viscous fluids, F = 0. The integral in Eq. (5.18) can be evaluated if the
functional relationship between pressure and volume is known. For incompressible fluids, volume is
independent of pressure, and hence

where r is the density of the fluid. Since no shaft work is exchanged, WS = 0. Using these
simplifications, Eq. (5.18) can be written as



Equation (5.21) is known as Bernoulli’s equation.

EXAMPLE 5.1 Water flowing upward through a vertical pipe enters a reducer with a velocity of 1
m/s. The diameters at the entrance and exit of the reducer are 0.2 m and 0.1 m respectively. If the
pressure at the entrance to the section is 105 kPa, what is the pressure at the exit given that the
entrance and exit are 5 m apart?

Solution The continuity equation is given as r1u1A1 = r2u2A2. Since, the density of water remains
constant,

EXAMPLE 5.2 A valve on a well-insulated steam pipe carrying saturated steam at 1000 kPa is found
leaking. The temperature of the steam escaping from the leak is measured to be 398 K. Determine the
quality of steam flowing through the pipe.
The following data are taken from the steam tables: Enthalpy of saturated vapour at 1000 kPa = 2778
kJ/kg; Enthalpy of saturated liquid at 1000 kPa = 763 kJ/kg; Enthalpy of superheated steam at 398 K
and 101.3 kPa = 2726 kJ/kg.
Solution Assuming that the kinetic and potential energy changes are negligible, Eq. (5.10) may be
used.

DH = Q – WS
Let the section 1 be taken at a point in the pipe and x be the fraction of steam that is liquid. The



enthalpy of steam at this section is equal to the sum of the enthalpies of x kg saturated liquid and (1 –
x) kg saturated vapour. That is,

H1 = x(763) + (1 – x)2778

Let the section 2 be taken at a point in the steam issuing from the leak in the valve. The steam issues to
the atmosphere where the pressure is 101.3 kPa and its temperature is 398 K. For superheated steam
at this condition enthalpy is H2 = 2726 kJ/kg.
Between sections 1 and 2 no work is done and no heat is exchanged. Therefore, Q and WS are zero.
Equation (5.10) reduces to

DH = H2 – H1 = 0

2726 – x(763) – (1 – x)2778 = 0
Thus x = 0.026. That is, the steam contains 2.6% liquid.

EXAMPLE 5.3 An evacuated tank is being filled by a gas from a constant pressure line through a
valve. (a) Show that in the absence of heat transfer, the internal energy of the gas in the tank at the end
of the process is equal to the enthalpy of the gas admitted. (b) Show that if the gas is assumed to be
ideal gas, the final temperature attained by the contents of the tank is independent of the quantity of the
gas admitted.
Solution (a) The energy equation for the control volume

The first term on the left represents the change in the total internal energy within the control volume
and the second term represents the net enthalpy transport by the flowing streams.
The increase in the total internal energy of the tank contents is

DUt = m2U2 – m1U1
D[Hm] = Heme – Himi………(5.6b)

where m1 is the mass of gas initially present in the tank and m2 is the mass after the tank is filled, mi



is the mass of gas entering the control volume (inlet stream) and me is the mass of gas leaving the
control volume (exit stream). Since initially the tank is evacuated, m1 = 0.

m2 = m1 + (mi – me)

Here me = 0; therefore, m2 = mi.
Substituting these in Eq. (5.6b), we get

DUt = m2U2
D[H m] = – Himi

Substituting the above values into Eq. (5.6a) and noting that Q = 0, Ws = 0, we get

m2U2 – miHi = 0

U2 = Hi………(5.6c)

The internal energy of the gas in the tank is equal to the enthalpy of the gas entering the tank.
(b) If the gas is ideal, Hi in Eq. (5.6c) can be written as

Hi = Ui + PiVi = Ui + RTi
where Ui is the internal energy of the gas admitted and Ti is its temperature. Equation (5.6c) now
simplifies as

U2 – Ui = RTi………(5.6d)

Assuming constant heat capacity CV, the change in internal energy of the ideal gas is

U2 – Ui = CV (T2 – Ti)

Substituting this in Eq. (5.6d), we get
CV (T2 – Ti) = RTi

which can be rewritten as

or
T2 = g Ti

This means that when an evacuated tank is being filled by an ideal gas from a constant pressure line,
the temperature attained by the gas in the tank is independent of the amount of gas admitted in the
absence of heat transfer.

EXAMPLE 5.4 A rigid, insulated tank that is initially evacuated is connected through a valve to a
supply line that carries steam at 1.2 MPa and 673 K. Now the valve is opened, and steam is allowed
to flow slowly into the tank until the pressure reaches 1.2 MPa, at which point the valve is closed.
Determine the final temperature of the steam in the tank.
Solution Equation (5.6a) can be written as



m2U2 – m1U1 + Heme – Himi = Q – WS
m1 is the mass of steam initially present in the tank = 0.
me is the mass of steam leaving the control volume or mass of exit steam from the tank = 0.
m2 is the final mass of steam present in the tank = mass of steam admitted = mi.
Since no work is exchanged, and no heat is transferred, Q = WS = 0.
Using these results, Eq. (5.6a) becomes

U2 = Hi
U2 is the internal energy of steam in the tank and Hi is the enthalpy of steam in the supply line, that is
the enthalpy of superheated steam at 1.2 MPa and 673 K. From steam tables, the enthalpy of steam at
1.2 MPa and 673 K (= Hi) = 3260.7 kJ/kg.
Therefore, internal energy of steam in the tank = U2 = 3260.7 kJ/kg. Since the pressure in the tank is
to be 1.2 MPa, the condition of steam is (P = 1.2 MPa, U = 3260.7 kJ/kg). The temperature of steam
satisfying these conditions is read from steam table. T = 853 K.

EXAMPLE 5.5 A rigid tank of volume 0.1 m3 initially contains a refrigerant at 283 K. Sixty percent
by mass of the refrigerant in the tank is vapour and the rest is liquid. The tank is connected through a
valve to a pipeline which carries the same refrigerant at 403 K and 1 MPa. The valve is opened and
the refrigerant is allowed to enter the tank till the pressure in the tank reaches 1.017 MPa at which the
contents of the vessel is entirely saturated vapour. Now the valve is closed. Determine:

(a) The mass of refrigerant admitted
(b) The heat transferred

Data: Saturation pressure at 283 K = 415.8 kPa, saturation temperature at 1.017 MPa = 313 K.
Specific volumes of saturated liquid and vapour at 283 K are, respectively, 7.94 � 10–4 m3/kg, and
4.945 � 10–2 m3/kg, specific volume of saturated vapour at 313 K = 0.02 m3/kg. Enthalpy of
saturated liquid at 283 K = 213.58 kJ/kg, enthalpy of saturated vapour at 283 K = 404.23 kJ/kg,
enthalpy of saturated vapour at 313 K = 419.821 kJ/kg and enthalpy of superheated vapour at 
403 K and 1 MPa = 514.69 kJ/kg.
Solution The energy balance for the system is

DUt + D(H m) = Q – WS

DUt = m2U2 – m1U1
where U1 and U2 are the initial and final internal energies of the contents of the tank and m1 and m2
are the mass of the material in the tank before and after steam is allowed to enter the vessel.

D(H m) = meHe – miHi
where mi and me are, respectively, the mass of material entering and leaving the control volume, and
Hi and He are the enthalpies of the respective streams.
Q is the heat supplied and Ws is the work done. Since no work is done and no material is leaving the



control volume, WS = 0 and me = 0. Also,

m2 = m1 + mi
The energy balance for the present case reduces to the following form:

m2U2 – m1U1 – miHi = Q………(5.6e)

(a) Mass of refrigerant initially present is m1 kg. Sixty per cent by mass of the refrigerant 
initially present in the tank is saturated vapour and 40% is saturated liquid at the saturation
temperature of 283 K. Specific volumes of saturated liquid and vapour at 283 K are, respectively,
7.94 � 10–4 m3/kg, and 4.945×10–2 m3/kg. Since 0.4 m1 kg liquid and 0.6 m1 kg vapour together

occupy a volume of 0.1 m3,

0.4 m1 � 7.94 � 10–4 + 0.6 m1 � 4.945 � 10–2 = 0.1

or
m1 = 3.3347 kg

In the final state, m2 kg of saturated vapour at 1.017 MPa occupies a volume of 0.1 m3. Since the
saturation temperature corresponding to 1.017 MPa is given to be 313 K, the final temperature of the
refrigerant in the tank is 313 K. The specific volume of saturated vapour at 313 K is given to be 0.02
m3/kg. Therefore,

m2 � 0.02 = 0.1

or
m2 = 5.0 kg

The mass of refrigerant admitted = mi = m2 – m1 = 5.0 – 3.3347 = 1.6653 kg.
(b) The internal energy of the initial mass in the tank is U1 = 0.4 � Ul + 0.6 � Uv, where Ul and Uv
are the internal energies of saturated liquid and saturated vapour at 283 K. These can be calculated
from the given enthalpy and specific volume using the relation U = H – PV. The saturation values at
283 K are:

Ul = 213.58 – 415.8 � 7.94 � 10–4 = 213.25 kJ/kg

Uv = 404.23 – 415.8 � 4.945 � 10–2 = 383.67 kJ/kg

Therefore,
U1 = 0.4 � Ul + 0.6 � Uv = 0.4 � 213.25 + 0.6 � 383.67 = 315.50 kJ/kg

Similarly, the internal energy of the final state can be evaluated as

U2 = 419.821 – 1.017 � 103 � 0.02 = 399.48 kJ/kg

Hi is the enthalpy of the refrigerant admitted into the tank. Since the refrigerant in the supply line is at
403 K and 1 MPa,

Hi = 514.69 kJ/kg



Now the heat transferred is calculated.
Q = m2U2 – m1U1 – miHi
Q = 5.0 � 399.48 – 3.3347 � 315.50 – 1.6653 � 514.69 = 88.19 kJ

EXAMPLE 5.6 An ideal gas (molecular weight = 29, g =1.4) is contained in a tank of volume 1 m3
at 10 MPa and 400 K. The gas is discharged into the surrounding atmosphere by opening a valve. The
valve is closed when the pressure inside the tank falls to 5 MPa. If the surrounding atmosphere is at
101.3 kPa, determine the temperature of the gas in the tank and the mass of gas discharged.
Solution Equation (5.6a) can be written as

m2U2 – m1U1 + Heme – Himi = Q – WS
Here, mi = 0, since no material is admitted into the control volume. Q = 0 and WS = 0. Also me = m1
– m2. Therefore, Eq. (5.6a) reduces to

m2U2 – m1U1 + Heme = 0………(5.6f)

m2U2 – m1U1 + (m1 – m2)He = 0

where T2 is the final temperature of the gas in the tank.
Using these values in Eq. (5.6f) and also noting that the internal energy and enthalpies of ideal gas are
functions only of temperature, we get



5.1.3 Flow in Pipes
Pressure drop. The pressure drop accompanying the steady-state flow of a fluid through a straight
pipe is evaluated from the mechanical energy balance [Eq. (5.18)] expressed in differential form:

u du + g dZ + V dP + dWS + dF = 0………(5.22)

The friction term is usually expressed in terms of the flow geometry, dynamics of flow and a
dimensionless friction factor f, known as the Fanning friction factor.

In Eq. (5.23), D and L are the length and diameter of the pipe respectively.

Maximum velocity. The maximum velocity attainable in pipe flow can be determined using
thermodynamic principles. The total energy balance [Eq. (5.11)] may be put in differential form as
follows:



Noting that dQ = T dS for a reversible process, Eq. (5.14) may be written as

For flow of gas through a pipe of uniform cross-section, since the flow is in the direction of decrease
in pressure (dP < 0), the specific volume increases or density decreases (dr < 0) in the flow
direction. The first term on the right is negative and the second term is positive. At a particular
pressure, these two contributions to the entropy change will be equal in magnitude so that dS = 0. The
maximum velocity is attained by the gas at this condition and it can be evaluated as:

 dr – dP = 0 for constant S

………(5.30)
The speed of sound in a fluid is evaluated as the square root of the derivative on the right-hand side
of Eq. (5.30). Therefore, , where c is the sonic velocity. Thus, we see that the maximum fluid velocity



attained in a pipe of uniform cross-section is equal to the speed of sound in the fluid.

5.1.4 Flow through Nozzles
A nozzle is a device for converting thermal or mechanical energy into kinetic energy. This is
achieved by changing the cross-sectional area available for flow. Nozzles find application in
turbines, ejectors, diffusers, etc. In the analysis of flow through nozzles presented below, it is
assumed that the flow is isentropic.
Relation between A and u. Let us first see the relationship between cross-sectional area and
velocity of the fluid through a pipe of varying cross-section. Equation (5.2), the equation of
continuity, expressed in differential form is given below:

d(urA) = 0
This equation may be put into the following form:

Because of our assumption of isentropic flow, (dP/dr) in the above equation may be replaced by
(∂P/∂r)S which was shown to be equal to c2, where c is the sonic velocity. Also, dr can be replaced

by dP/c2. The resulting equation can be rearranged as



For subsonic velocity of the gas M < 1 and (dA/du) < 0. For supersonic velocity, M > 1 and 
(dA/du) > 0. For sonic velocity, M = 1 and (dA/du) = 0. Equation (5.36), therefore, means that if the
gas is to be accelerated continuously from subsonic to supersonic velocity, the area of cross- section
for flow should first decrease (dA < 0), then remain constant (dA = 0), and finally increase (dA > 0).
This principle is used for increasing the velocity of gases beyond Mach number unity in the
converging–diverging nozzles (Fig. 5.2).

Velocity at the throat. It is clear that the maximum velocity attained by the gas in the converging
section of the converging-diverging nozzle is the sonic velocity. Therefore, referring to Eq. (5.30),
we see that the velocity at the throat is given by



Critical pressure ratio. The relationship between pressure and velocity in a nozzle is given by Eq.
(5.32), which may be put in the following form:

Suppose that the nozzle is connected between a reservoir at pressure P0 and a receiver at pressure
Pr. Flow through the nozzle occurs when Pr is less than P0 and the velocity of the fluid at the throat is
maximum. On further reduction of the receiver pressure, the flow rate and the velocity through the
nozzle increases. A limiting value is attained when the velocity at the throat becomes sonic. The
pressure at the throat at this condition is PC, the critical pressure. The critical pressure ratio PC/P0,
is the pressure ratio P/P0 at which the velocity of the fluid at the throat becomes the sonic velocity.
Substituting u = uthroat in Eq. (5.39) and using Eq. (5.41), we get:

where the ratio PC/P0 is the critical pressure ratio . This depends only on g, the ratio of specific
heats. Reduction of the receiver pressure below that corresponding to the critical condition, the throat
will not affect the flow rate through the nozzle.
The maximum velocity attainable in a converging nozzle is the velocity of sound and it is attained
when the pressure ratio reaches the critical value. Therefore, a converging nozzle can discharge a
fluid at constant flow rate to a region of variable pressure, independent of the down stream pressure.
The pressure ratio, provided it is less than the critical value, will not affect the flow rate through the



nozzle. In a converging-diverging nozzle, if the sonic velocity is not attained in the throat because of
insufficient pressure drop, the diverging section acts as a diffuser, which increases the pressure and
reduces the velocity. Therefore, the purpose of the divergent section is to reduce velocity and regain
pressure if the flow is subsonic, and increase velocity and obtain Mach numbers greater than unity if
flow is supersonic.
EXAMPLE 5.7 Steam at 600 kPa and 573 K (H = 3062 kJ/kg) enters a nozzle at a rate of 
10 kg/s and discharges it at 100 kPa and 473 K (H = 2875 kJ/kg). Heat loss to the surroundings is
estimated to be 100 kW. Assuming that the inlet velocity of steam is negligible, determine the
discharge velocity.
Solution The total energy balance [Eq. (5.9)] is used for solving this problem.

EXAMPLE 5.8 Air at 600 K and 2000 kPa enters a convergent-divergent nozzle whose throat area is
one-half that of the discharge of the divergent section. Assuming g = 1.4 for air, determine the
following:

(a) The pressure, temperature, velocity, and density at the throat when the Mach number is 0.8 at
the throat.

(b) The critical pressure corresponding to the reservoir condition.

Solution (a) Mach number M is given as M2 = u2/c2. Thus, u2 = c2M2, and using Eq. (5.40),

u2 = M2gPV
Substituting this in Eq. (5.39) and rearranging, we get



The pressure ratio is obtained by writing the above equation in the following form:

where M is the molecular weight of air. Substituting these in Eq. (5.39),
u = 369.7 m/s

Equation (3.23) relates the temperature and the pressure in an adiabatic process.



5.1.5 Ejectors
Ejectors or jet pumps are devices which employ the momentum and kinetic energy of a high velocity
stream to entrain and compress a second gas or vapour stream. Steam-jet ejectors are used for
pumping large volumes of vapour and gas at low pressures. See Fig. 5.3.



An ejector consists of the following parts:
1. A nozzle for accelerating the primary fluid
2. A fluid suction for accelerating the secondary fluid before its entrainment
3. A mixing section, where the secondary fluid is further accelerated and primary fluid is

decelerated
4. A diffuser section for decelerating the combined stream of primary and secondary fluids with

consequent increase in pressure.
Steam (primary fluid) is first expanded by passing through a nozzle, where it attains supersonic
velocity. Due to the high velocity of the steam entering the mixing space, a low-pressure region is
created there and as a result the steam transfers some of its momentum to the gas or vapour
(secondary fluid) entering through the gas inlet. In the diffuser section, the mixed stream is
decelerated and it gets compressed, the work of compression being derived at the expense of its
kinetic energy. The compressed gas leaving the ejector is discharged directly to atmosphere or it can
be sent to a water-cooled condenser. The latter option is employed in multi-stage ejectors to reduce
the quantity of steam handled in the successive stages.
An exhaustive thermodynamic analysis of the ejector performance requires application of the
equations of continuity, momentum, and energy to various component parts. The overall efficiency of
an ejector is the ratio of work of isentropic compression of the secondary fluid from the suction to the
discharge pressure, divided by the work of isentropic expansion of the primary fluid from its initial to
the discharge pressure.

5.1.6 Throttling Process (Joule–Thomson Expansion)
Throttling process, also known as Joule–Thomson expansion, is a steady-state steady-flow process
across a restriction, which results in a reduction in pressure for the fluid. The flow through a partially
opened valve or a porous plug is a typical example of throttling process. The throttling process may
be treated as an adiabatic operation, because the expansion takes place in a very short time within a
very small region, so that the heat exchange between the system and the surroundings is negligible. As
no mechanisms are present for extracting work, the process is a highly irreversible one.
Since the kinetic and potential energy changes are negligible, we can use Eq. (5.10) to describe the



throttling process. Since dQ = 0 and dWS = 0, this equation reduces to dH = 0. That is, Joule–
Thomson expansion is an isenthalpic process. The temperature of the gas changes as a result of this
expansion. The change in temperature resulting from the throttling operation is known as the Joule–
Thomson coefficient m, which is defined as

During expansion DP is negative. Therefore, a positive value of Joule–Thomson coefficient means
that DT is negative and the gas cools on throttling. On the other hand, a negative Joule–Thomson
coefficient means that throttling results in an increase in temperature. Joule–Thomson coefficient of a
gas can be determined using the pressure-volume-temperature relationship. This is discussed in detail
in the next chapter [see Eq. (6.70)]. It is sufficient here to note that, at any given pressure, the Joule–
Thomson coefficient is positive only within a temperature range, that is between the upper and lower
inversion temperatures. Only within these temperatures a gas cools on throttling. For a perfect gas,
enthalpy being a function of temperature alone, throttling, which is essentially a constant enthalpy
process, produces no temperature change. That is, the Joule–Thomson coefficient of ideal gas is zero.
This is true for any gas whose volume varies linearly with temperature at a given pressure (see
Exercise 6.30). For real gases, however, above a certain pressure the throttling process always
results in cooling. For nitrogen, this pressure is found to be about 375 bar. 
Joule–Thomson liquefaction process is explained in Section 5.3.2.

5.1.7 Compressors
Compressors may be of reciprocating type or turbo type. The reciprocating type compressors are
used for developing high pressure-ratios, whereas turbo type compressors are preferred for high
volumetric rate. The general energy equations are applicable for both types.

Adiabatic compression. For adiabatic compression of gases under negligible changes in kinetic
and potential energies, Eq. (5.9) reduces to

WS = – DH

The minimum shaft work required for compressing a gas adiabatically from a given initial state to a
given discharge pressure is the isentropic work which is given as

where DHS is the enthalpy change accompanying the isentropic compression. The ratio of this
isentropic work to the actual work required for compression is the compressor efficiency.



Using this relation, V in Eq. (5.17) may be replaced and the resulting equation is integrated.

The work required for compressing an ideal gas may be written in terms of the initial and final
temperatures as well. For an ideal gas, DH = CPDT. Equation (5.44) gives

WS = – DH = CP(T1 – T2)………(5.47)

The work computed by Eq. (5.46) or by Eq. (5.47) provides the value for the numerator in 
Eq. (5.45).

Isothermal compression. For reversible isothermal compression of a gas, Eq. (5.10) becomes
WS = Q – DH

Since Q = TDS under this condition, we have
WS = TDS – DH………(5.48)

If the gas is ideal DH = 0, because, the enthalpy of ideal gas depends only on temperature. Also,

For ideal gases, Eq. (5.48) therefore simplifies to



Equation (5.49) gives the shaft work required in isothermal compression of ideal gases. The same
result is obtained from Eq. (5.17) also by replacing V by RT/P.

Multi-stage compression. The reversible isothermal and adiabatic paths for the compression of
an ideal gas from an initial pressure P1 to a final pressure P2 is shown in Fig. 5.4.

The area bounded by the curves, the pressure axis, and the horizontal lines drawn at P = P1 and P =

P2 gives the integral V dP evaluated between limits P1 and P2, which, by Eq. (5.17), is the shaft
work required. From Fig. 5.4, it is evident that compression along the isothermal path requires less
work compared to the adiabatic path. The actual compression takes place along a path intermediate to
these two limiting paths. However, the isothermal path can be approached in practice by compressing
the gas in stages with inter-stage cooling at constant pressure. In 
Fig. 5.5, it is shown that the compression of gas from pressure P1 to pressure P2 achieved in three
adiabatic steps.



After the first and second stages the gas is cooled to the original temperature at constant pressure. The
actual path traced by the gas is shown with arrows and it is very close to the isothermal path for
compressing the gas between the same pressure limits. The shaded area in 
Fig. 5.5 is the saving in the work required for compressing the gas from pressure P1 to pressure P2
by using a three stage compressor with inter-stage cooling over the work required in a single-stage
compressor employing the same compression ratio.
Because of mechanical difficulties, a compression ratio greater than 5 cannot be attained in a single-
stage reciprocating compressor. Multi-stage compressors are used to develop high compression
ratios. The main advantage of this compression is that it allows inter-stage cooling and thereby an
isothermal operation is closely approached. This results in reduction in the work done for
compression.
The work requirement in a multi-stage compressor is the sum of the work requirements for 
the individual stages. For a two-stage compressor in which an ideal gas is compressed from pressure
P1 to P� in the first stage and cooled to the initial temperature T1 before it is sent to the second
stage for the final compression to a pressure P2, the total work required according to 
Eq. (5.46) is

EXAMPLE 5.9 Show that in a two-stage reciprocating compressor, the minimum total work results
when the pressure ratios in each stage are equal and are given by the square root of the over-all
pressure ratio.
Solution The total work required when the initial and final pressures are P1 and P2 respectively and
the intermediate pressure is given by Eq. (5.50)



Equations (5.53) and (5.54) reveal that for minimum total work in a two-stage compressor, the
pressure ratios in both stages are equal and they are equal to the square root of the over-all pressure
ratio.
EXAMPLE 5.10 What is the effect of ‘clearance’ on the work and theoretical volumetric efficiency
of a single-stage reciprocating compressor?
Solution The P-V diagram of a single-stage reciprocating compressor is shown in Fig. 5.6.
Here 1–2 is the compression stroke, 2–3 the discharge stroke, 3–4 the expansion stroke and 
4–1 the suction (intake) stroke. At the end of the discharge stroke, a volume V3 of the high-pressure
gas remains entrapped within the cylinder. This volume is known as the clearance volume. During the
expansion stroke, the pressure of this gas is reduced and the volume increased to V4. During the
suction stroke, the volume of gas sucked in is equal to V1 – V4, which is the intake volume of the
compressor. The volume swept through by the piston after discharge of the compressed gas is the
displacement volume and is equal to V1 – V3. The ratio of clearance volume to displacement volume
is called the clearance and is denoted by c. The theoretical volumetric efficiency is the ratio of the
intake volume to the displacement volume. Thus we have,



The work required for compressing an ideal gas in a reversible adiabatic process from pressure P1
to pressure P2 is given by Eq. (5.46)

It means that, if we use the actual intake volume of the gas in Eq. (5.46), the work required for



compressors with clearance will be the same as that for compressors without clearance. To be
precise, the clearance has no effect on the work of compression.
Theoretical volumetric efficiency

EXAMPLE 5.11 Carbon dioxide at 1 bar and 300 K is to be compressed to a pressure of 10 bar in a
single-stage compressor at a rate of 100 m3/h. Assuming that CO2 behaves as an ideal gas, calculate
the temperature of the gas after compression and the work required. Take g = 1.3.
Solution For ideal gas, the work of compression is given by Eq. (5.46)



Therefore, the required work is

– WS = 7579.3 (1.114 � 10–3) = 8.44 kW]

Temperature and pressure in adiabatic compression are interrelated.

EXAMPLE 5.12 Consider the compression of air (molecular weight = 29) from 105 Pa at 
300 K to 3.6 � 106 Pa in ideal two-stage compressor with intercooling. Assume that the temperature
of air leaving the intercooler is also 300 K and that the optimum interstage pressure is used. The
compressor is water jacketted and the polytropic exponent n is 1.30 for both stages. Determine the
work of compression per kg of air.
Solution By Eq. (5.54), the optimum interstage pressure in a two-stage compressor is the geometric
mean of the initial and final pressures. That is,



EXAMPLE 5.13 Saturated steam at 100 kPa is compressed adiabatically to 500 kPa. The comp-
ression efficiency is 80%. Determine the work required to run the compressor and the temperature of
the exhaust steam.

Solution From steam tables, the following properties of the steam entering the compressor are taken:
Temperature, T1 = 372.8 K; Enthalpy, H1 = 2675.5 kJ/kg; Entropy, S1 = 7.3594 kJ/kg K.
For isentropic compression, S2 = S1 = 7.3594 kJ/kg K.
Temperature T2 (= 545.74 K) of superheated steam at 500 kPa having entropy of 7.3594 kJ/kg K is
obtained from steam tables by interpolation. Enthalpy of superheated steam at 500 kPa and 545.74 K,
H2 = 3008 kJ/kg. The change in enthalpy of steam in isentropic compression is

H2 – H1 = 3008 – 2675.5 = 332.5 kJ/kg

From Eq. (5.44),
WS (isentropic) = – DHS = – 332.5 kJ/kg

Since the compression efficiency is only 80%,
WS (actual) = – 332.5/0.8 = – 415.6 kJ/kg

Therefore, the work required for compression is 415.6 kJ per kg of steam admitted to the compressor.
The actual change in the enthalpy of steam is

Therefore, the actual enthalpy of steam leaving the compressor is
2675.5 + 415.6 = 3091.1 kJ/kg



The temperature of superheated steam at 500 kPa and having enthalpy of 3091.1 kJ/kg that leaves the
compressor is obtained from steam tables by interpolation. That is, T = 586 K.

5.2 REFRIGERATION
Refrigeration is the process of producing and maintaining a temperature below that of the
surrounding atmosphere. Refrigeration processes find wide applications in chemical process
industries. The process is used in manufacturing synthetic rubber, textiles, chlorine, plastics,
hydrogen fluoride, etc. Refrigeration is used to remove heat of chemical reactions and to liquefy
process gases for gas separation by distillation and condensation. Liquefaction processes for the
production of pure gases such as oxygen and nitrogen from air and liquefaction and storage of natural
gases employ refrigeration principles. Separation of volatile hydrocarbons in petroleum industries,
separation of gasoline from natural gas, solvent recovery, crystallisation of salts from solutions,
manufacture of ice, treatment, transport and preservation of food and beverages, etc., are some other
important applications of refrigeration operation. Apart from its widespread use in the air-
conditioning of houses and buildings and in domestic refrigerators, refrigeration is also used in the
air-conditioning of plant areas as in the manufacture of rayon, photographic film, gelatine, etc.
Refrigeration implies production of low temperature by continually absorbing heat at a low level and
rejecting it at a high level. Since heat cannot flow from a body at low temperature to one at a higher
temperature spontaneously, external work is required to achieve refrigeration. Thus, refrigeration is
essentially an operation involving the pumping of heat from one temperature to a higher temperature.
In mechanical refrigeration, which is the most commonly used method for commercial applications,
the low temperature is produced by the evaporation of a liquid whose properties are, such that, at the
pressure of evaporation, the saturation temperature is low. The evaporated liquid is then returned to
its original state for continuous operation. The complete series of processes that the working fluid—
the refrigerant—undergoes, constitute a refrigeration cycle. A typical refrigeration cycle includes
evaporation of the liquid refrigerant, compression of the refrigerant vapour, condensation of the
vapour into liquid, and finally expansion of the liquid.

5.2.1 Coefficient of Performance (COP)
Refer Fig. 5.7, which represents schematically the refrigeration process. Let Q2 be the heat that is
absorbed at a low temperature T2 and Q1 be the heat rejected at high temperature T1. By first law of
thermodynamics, the external work required to bring about this transfer is

W = Q1 – Q2



The efficiency or coefficient of performance (COP) of a refrigerator is defined as the quantity of heat
absorbed at the low temperature per unit of work.

5.2.2 Refrigerator Capacity
The refrigerator capacity determines the rate of circulation of the refrigerant, which in turn, decides
the design and size of the various units such as condenser, compressor, evaporator, and the expansion
devices. The capacity is sometimes measured in ton of refrigeration. One ton is defined as the heat
absorption at the rate of 12000 BTU per hour (One BTU is the amount of heat required to raise the
temperature of one pound, i.e. 0.4536 kg of water by one degree Fahrenheit, or (1/1.8) K. Thus, 1
BTU = 1.055 kJ). This rate corresponds to the rate of heat removal that is required to freeze 1 ton of
water in a day originally at 273 K. One ton of refrigeration is equivalent to a refrigeration rate of
12660 kJ/h in SI units.

5.2.3 Carnot Cycle
The Carnot cycle can be used as a model of the ideal refrigeration cycle, because, of all the
refrigerators operating between the same two thermal reservoirs, the maximum COP is attained by the
one based on Carnot cycle. The Carnot refrigeration cycle is depicted in Fig. 5.8(a).
It consists of the following steps: reversible adiabatic compression (AB), isothermal heat rejection
(BC), reversible adiabatic expansion (CD) and isothermal heat absorption (DA). During the
isothermal heat absorption (DA), an amount of heat Q2 is absorbed at low temperature level T2. The
area ADXY on the T-S diagram [Fig. 5.8(b)] represents the heat absorbed. It is equal to T2DS, where
DS is the change in entropy of the fluid due to the heat absorption. Heat rejected at higher temperature
T1 is equal to Q1 and is represented by the area BCXY. It is equal to T1DS. The external work done



for this transfer of heat against a temperature gradient is given by W = Q1 – Q2, which is the enclosed
area ABCD in Fig. 5.8(b).

The coefficient of performance of the Carnot cycle is,

We note that the coefficient of performance of the Carnot refrigeration cycle depends only on the
temperature levels between which the machine operates and is independent of the working fluid.
Equation (5.56) establishes the optimum performance that can be expected of any refrigerating
machine operating between given temperature limits. Equation (5.56) on rearrangement gives

which is the minimum work required for transferring heat Q2 from a low temperature T2 to a higher
temperature T1. It is impossible to construct a refrigeration machine that will pump heat with less
expenditure of work than that given by Eq. (5.57). Because of the inherent irreversibilities in any
practical process, the COP of an actual machine will be less than that given by Eq. (5.56) and the
work required for transfer of a given quantity of heat will be more than that given by 
Eq. (5.57). However, these equations can be used as a standard for comparison of the actual
processes and suggest possible improvement in such processes. Equation (5.57) indicates that the
work input increases with decrease in the temperature of the refrigerator or with increase in the
temperature of the heat receiver and is independent of the refrigerant. It may be noted here that even in
the actual cycles, the influence of the working fluid on the work input per unit of refrigeration is quite
insignificant.

Limitations. A refrigeration machine operating on the Carnot cycle cannot be achieved in practice.
Carnot cycle demands reversible operation, and it is difficult to eliminate all irreversibilities in an



actual operation. Isothermal heat interactions at the heat absorption and the heat rejection stages,
which proceed at very slow rates necessitate large heat transfer areas. A temperature difference
between the refrigerant and the reservoirs in the heat absorption and heat rejection stages is
necessary, in order to have a finite rate of heat transfer. If the heat absorption is achieved by the
evaporation of a refrigerant then the possibility of the input stream to the compressor containing
liquid cannot be overruled. This may lead to severe erosion problems in the compressor. Apart from
these, the work output of an expansion engine or a turbine used for reversible expansion is normally
very small whereas their costs are prohibitively high.
EXAMPLE 5.14 To maintain the temperature of a solution at 261 K, 1000 kJ of heat per minute is
continuously removed from it. The surrounding temperature is 288 K. What is the least amount of
power necessary to accomplish this?
Solution Using Eq. (5.57),

EXAMPLE 5.15 A refrigeration machine operating at a condenser temperature of 290 K needs 1 kW
of power per ton of refrigeration. Determine the following:
(a) The coefficient of performance
(b) The heat rejected to the condenser
(c) The lowest temperature that can be maintained.
Solution (a) 1 Ton of refrigeration = 12660 kJ/h = 3516.67 W
That is Q2 = 3516.67 W; W = 1000. Therefore, COP = Q2/W = 3516.67/1000 = 3.52
(b) The heat rejected, Q1 = Q2 + W = 3516.67 + 1000 = 4516.67 W = 4.52 kW
(c) Let T2 is the lowest possible temperature in the refrigerator, then

5.2.4 Vapour-compression Cycle
The actual refrigeration cycles are less efficient than the ideal Carnot cycle, because of the presence
of the inevitable irreversible effects, such as friction, imperfect heat insulation, and because of the
finite temperature difference that is maintained for a reasonably good rate of 
heat transfer in the refrigerator and the condenser. In the vapour-compression cycle shown in 
Fig. 5.9(a), the refrigerant vapour is compressed (AB) to such a pressure that the available cooling
water can condense the vapour in a condenser (BC) operated at this pressure which is maintained
constant. The vapour, during condensation rejects heat to the cooling medium. By passing through a
throttling valve, the pressure of the liquid leaving the condenser is reduced (CD) to the pressure



maintained in the evaporator. The liquid then evaporates (DA), absorbing heat at constant temperature
T2. The vapour thus produced enters the compressor, and the cycle is repeated. The process is
represented on the T-S diagram as shown in Fig. 5.9(b). The liquid portion of the refrigerant leaving
the throttling valve is vaporised at constant pressure P2 and constant temperature T2 in the
refrigerator. The vapour leaving the refrigerator is saturated (A). It is possible that the vapour leaving
the refrigerator may get slightly superheated or may be slightly unsaturated. On adiabatic
compression, the vapour gets super heated (B) and this vapour enters the condenser at pressure P1.
The reversible adiabatic compression is an isentropic process and is represented by the vertical line
AB. In the condenser, the vapour is first cooled and the superheat is removed from the vapour, as
shown by the line BE, and then it is condensed at constant temperature T2. The saturated liquid (C)
leaving the condenser is expanded by throttling. The throttling is a constant enthalpy process and is
represented by the curve CD. Throttling results in the partial vaporisation of the liquid, and the point
(D) representing the mixture leaving the valve lies in the two-phase region. Figure 5.9(c) shows the
vapour-compression cycle on a pressure-enthalpy diagram.



As the heat absorption in the refrigerator occurs at constant pressure, the heat absorbed during
vaporisation is equal to the change in the enthalpy of the refrigerant.

Q2 = HA – HD………(5.58)

The heat rejected is
Q1 = HB – HC………(5.59)

Since the work required, W = Q1 – Q2, and HD = HC (the process CD is isenthalpic), we have

W = HB – HA………(5.60)

The coefficient of performance is

The vapour leaving the compressor is superheated at the condenser pressure P1. Its temperature is
greater than the saturation temperature T1. Also, the throttling process is highly irreversible. Because
of these two reasons, the ordinary vapour-compression cycle presented above, is less efficient than
the Carnot cycle. By allowing the evaporation to proceed up to point A� in Fig. 5.9(b), and



compressing the resultant vapour–liquid mixture adiabatically to saturation at pressure P1 (process
A�E in the figure) the first difficulty can be overcome. But the practical gain in such an operation is
only very small in comparison with the operational difficulties associated with the compression of a
two-phase mixture. If the expansion process (CD) were carried out in an expansion engine instead of
throttling, the irreversibilities can be minimised to a great extent. This is what is done in an
expansion-engine vapour-compression cycle illustrated in Figs. 5.10(a) and (b). Here, the expansion
is isentropic and hence CD is a vertical line on the T-S diagram.
The heat absorbed and heat rejected during this cycle are respectively Q2 and Q1, which are given by
Q2 = HA – HD and Q1 = HB – HC.
The work input W = Q1 – Q2. Hence,

As the expansion engine operating on a two-phase mixture is expensive, this cycle is preferred only
for large installations. Because of their simplicity and low cost, the throttle valves are preferred over
turbines in small installations.

EXAMPLE 5.16 A vapour compression refrigeration system with ammonia as the working fluid is to
operate between 266 K and 300 K. Determine the following:
(a) COP, given that the enthalpy of saturated vapour at 266 K = 656 kJ/kg and enthalpy of superheated

vapour leaving the compressor = 724 kJ/kg, enthalpy of saturated liquid at 300 K = 144 kJ/kg.
(b) COP, if a temperature approach of 5 K is necessary in the evaporator and condenser, 



and the efficiency of the compressor is 75%. Enthalpy of saturated vapour at 261 K 
= 652 kJ/kg and the enthalpy of superheated vapour entering the condenser = 758 kJ/kg, enthalpy
of saturated liquid at 305 K = 159 kJ/kg.

(c) The COP of an ideal Carnot refrigerator.

EXAMPLE 5.17 A vapour-compression cycle using ammonia as refrigerant is employed in an ice
manufacturing plant. Cooling water at 288 K enters the condenser at a rate of 0.25 kg/s and leaves at
300 K. Ammonia at 294 K condenses at a rate of 0.50 kg/minute. Enthalpy of liquid ammonia at 294
K is 281.5 kJ/kg. The compressor efficiency is 90%. Saturated ammonia vapour at 258 K and
enthalpy of 1426 kJ/kg enters the compressor. What is the power requirement of the compressor and
refrigeration capacity in tons?
Solution Since heat is rejected at constant pressure in the condenser, we have



EXAMPLE 5.18 An expansion engine vapour-compression machine rated at 10 ton is used to
maintain the temperature of a cold storage at 261 K. The cooling water is available at 293 K. 
A 5-K approach is necessary in the condenser as well as in the evaporator. The saturation pressure,
enthalpy, and entropy of saturated vapour at 256 K are 1.62 bar, 181 kJ/kg and 0.714 kJ/kg K
respectively. The saturation pressure, enthalpy, and entropy of saturated liquid at 298 K are 
6.79 bar, 62 kJ/kg, and 0.231 kJ/kg K respectively. The enthalpy of superheated vapour leaving the
compressor at a pressure of 6.79 bar with entropy 0.714 kJ/kg K is 206 kJ/kg. Calculate the COP and
the refrigerant circulation rate.
Solution Allowing a 5-K approach in the condenser and in the evaporator, T1 = 298 K and T2 = 256
K.
Using Eq. (5.64), the COP is evaluated as

The enthalpy HD in this equation is to be determined first. Referring to Fig. 5.11 we can see that the
ratio of the line lengths, DA/FA, measures the fraction of the mixture at D, that is liquid.



where DHV is the heat of vaporisation at 1.62 bar. Similarly, we can write, using the entropy of
vaporisation DSV,

5.2.5 Choice of Refrigerant



Today a number of refrigerants have been developed and are in use. Among them, the halogenated
hydrocarbons such as Freon-12 find wide application. They have the advantages that they are non-
toxic, non-flammable, and non-explosive. Methyl chloride, carbon dioxide, sulphur dioxide, propane,
and ammonia are other commonly used refrigerants. The important properties of a refrigerant are as
follows.
1. Boiling temperature: It is necessary that the operating pressure be maintained above atmospheric
to avoid air and moisture leaks into the system. The normal boiling point of the refrigerant should,
therefore, be lower than the desired temperature levels in the refrigerator.
2 . Freezing point: The freezing point of the refrigerant should be well below the minimum
temperature at which the system is operated.
3. Critical temperature and pressure:  The critical temperature and pressure of the refrigerant should
be above the operating system temperature and pressure. If the operating temperature is above the
critical temperature, it is impossible to condense the gas by compressing it to high pressures.
4. Condenser and evaporator pressures: The condenser pressure should not be very high. If pressure
is very high, the cost of equipment and the cost of operation would be excessive. If the evaporator
pressure is excessively low, the compression ratio would be abnormally high. If the refrigerant has
sub-atmospheric vapour pressures at the temperature in the refrigerator coils, the possibility of
contamination by leaks cannot be overruled.
5 . Specific volume: Specific volume of the vapour determines the size of the compressor. Low
suction volumes are desirable for reciprocating compressors and high suction volumes for centrifugal
compressors.
6. Latent heat: A high latent heat of vaporisation of the refrigerant is desired, because it results in
high refrigerating effect per unit weight of the refrigerant and low rate of circulation of the refrigerant.
7. Specific heat of liquid: If the specific heat of the refrigerant liquid is unduly high, large quantity of
heat would have to be removed to cool the hot liquid entering the evaporator to bring its temperature
down to the saturation value. Therefore, low specific heat of the liquid refrigerant is preferred.
8. Molecular weight: Molecular weight of the refrigerant affects the compressor size because the
specific volume of the vapour is directly related to it. A high-molecular weight refrigerant gives high
specific volumes for the vapour, which is preferred for centrifugal compressors, whereas for
reciprocating compressors a low molecular weight for the refrigerant is advantageous.
9 . Safety aspects: Refrigerants are grouped according to toxicity and flammability. Halogenated
hydrocarbons are relatively non-flammable, non-toxic, and non-explosive. These belong to 
group 1. Group 2 refrigerants are either toxic or flammable. Examples are methyl chloride and
sulphur dioxide. The highly flammable and explosive refrigerants like propane, propylene, 
ethane, ethylene, methane, etc., fall into group 3.
10. Other desirable properties: Normally, a refrigerant would be in use for a very long period.
Consequently, the chemical stability of the refrigerant is another important criterion in the choice of a
proper refrigerant. They should also be non-corrosive, should have low viscosity and high thermal
conductivity.
We see that the choice of refrigerant is limited to relatively few fluids, as it is necessary that they



should have a vapour pressure above the atmospheric pressure at the evaporator temperature and the
vapour pressure should not be excessively high at the condenser temperature.

5.2.6 Air-refrigeration Cycle
The air-refrigeration cycle is illustrated in Fig. 5.12. Here, the working fluid is air, which undergoes
no phase change in the unit. The air is compressed adiabatically to a pressure P1 and temperature T1
in the compressor (AB). In the cooler, it is then cooled at constant pressure P1 (BC). The air at
pressure P1 is expanded in an engine or a turbine to a pressure P2, which, in an ideal case, is equal
to the pressure of air at the compressor intake (CD). The work output of the expander contributes a
part of the work requirement of the compressor. The gas leaving the expander is passed through the
refrigerator, where it absorbs heat at constant pressure P2 (DA). The gas leaving the refrigerator
enters the compressor, and the cycle is repeated.

On the T-S diagram, T1 is the temperature of the cooling water and T2 is the temperature to be
maintained in the refrigerator. The area under the curve DA down to the S-axis is the heat absorbed in
the refrigerator and the enclosed area ABCD is the work required for the removal of heat. It can be
easily shown that, an ideal Carnot refrigerator operating between temperature levels T1 and T2
removes greater amount of heat with less work than an air-refrigeration machine.
Let the rate of air circulation be . Assume that the heat capacity of air remains constant during the
cycle. Then, heat absorbed is



The coefficient of performance of an air-refrigeration machine is

The main advantage of the air-refrigeration cycles is that the air is available at no cost. Majority of
the commonly used refrigerants possess certain undesirable properties like corrosiveness,
explosiveness, toxicity, and flammability. Compared to these, air is harmless. In spite of all these, the
air refrigeration processes are rarely used now. They are replaced by the vapour-compression
processes. The disadvantages of the air cycles are their low efficiencies, large heat transfer surfaces
required, and large quantity of air to be circulated through the unit. Since, the heat transfer in the
refrigerator and the cooler occurs through air-films, which offer very high resistance to heat transfer,
large temperature difference would be necessary between the air and the refrigerator as well as
between the air and the cooler. For any specified refrigeration requirement, this would lead to an
increase in the difference between the temperature of air in the cooler and that in the refrigerator,
which, in turn, leads to low efficiencies. Also, since the specific heat of air is low, relatively large
quantity of air is circulated through the unit in order to achieve an appreciable amount of
refrigeration.
EXAMPLE 5.19 An air-refrigeration machine rated at 10 ton is used to maintain the temperature of a
cold room at 261 K when the cooling water is available at 293 K. The machine operates between
pressures of 1.013 bar and 4.052 bar. Assume a 5-K approach in the cooler and the refrigerator. The



specific heat of air may be taken as 1.008 kJ/kg K and g = 1.4. Calculate the COP and air-circulation
rate.
Solution Refer Fig. 5.12. The temperature of the air leaving the refrigerator is

TA (= T2) = 261 – 5 = 256 K

The temperature of the air leaving the cooler is
TC (= T1) = 293 + 5 = 298 K

Use Eq. (5.66) to determine temperature TB;

5.2.7 Absorption Refrigeration
In a vapour-compression cycle, external work is required to run the compressor. The ultimate source
of this work is normally a heat engine, which absorbs heat from a high-temperature source and rejects
part of it to a heat sink, the difference is transformed to work. The net effect is, a part of the heat that
is absorbed from a high temperature source by a heat engine is utilised in a vapour-compression
refrigeration system for pumping heat from a low temperature region to a high temperature region.
Then a question may naturally arise, why should we not use this heat directly in a refrigeration system
without converting it into work by means of a heat engine? An absorption refrigeration unit uses the
heat absorbed from a high-temperature source directly for achieving the necessary refrigeration.
The principle behind absorption refrigeration is illustrated in Fig. 5.13. For a refrigeration rate of Q2
kJ/h, the minimum work required when the refrigerator and the condenser are at temperatures T2 and
T1 respectively is given by Eq. (5.56)



In order to deliver a work equal to W, a heat engine operating between a high-temperature source at
T3 and the surroundings at T1 should absorb a quantity of heat Q3, where

Equation (5.72) represents the ideal case, because, both the heat engine and the refrigerator were
assumed to operate on the Carnot cycle. Actual efficiency will be less than the value given by this
equation. For example, consider a heat source of saturated steam at 1 bar (T3 = 373 K), surroundings
at 300 K (T1) and a refrigerator space at 260 K (T2). Using Eq. (5.72), we get the efficiency to be
1.27. For the actual absorption refrigerator, the efficiency would be roughly only one-third of this
value.
The compressor in the vapour-compression unit is replaced by an absorber-regenerator combination
as shown in Fig. 5.14. Heat is liberated when the refrigerant vapour is absorbed in a non-volatile
solvent. A typical absorption refrigeration cycle for moderate temperature applications uses water as
the refrigerant and lithium bromide solution as the absorbent. For lower temperatures, ammonia is
used as the absorbent and water as the solvent. The heat liberated during absorption is discarded to
the surroundings at temperature T1. The liquid leaving the absorber is a solution of the refrigerant in a
relatively non-volatile solvent. It is pumped through a heat exchanger as shown in the figure. The



temperature and pressure of the solution increase when the liquid reaches the regenerator.
Regeneration of the refrigerant is achieved by evaporating it from the solution and the heat required
for this is absorbed from the source at T3. Low-pressure steam is usually used as the source. The
regenerated absorbent liquid, which is almost free of the refrigerant, is cooled by passing through the
heat exchanger. The heat given off by the solvent is utilised to raise the temperature of the solution
leaving the absorber. The solvent is recycled to the absorber.

5.2.8 Heat Pumps
A heat pump is a refrigerator operating in reverse order. Here, work is done to pump heat from a
cold reservoir such as a river or the surrounding land into a hot sink such as the inside of a house.
Heat pumps are used to heat houses and commercial buildings during the winter and cool them during
the summer. During winter, the liquid refrigerant is allowed to evaporate in coils kept in the outside
air. Heat is absorbed from the low-temperature source and the liquid gets vaporised during this stage.
The vapour is then compressed to such a pressure that it can be condensed at a high temperature. In
the condenser, the heat is transferred to cooling water or air which is used for heating the houses. By
reversing the flow of the refrigerant, the same unit can be used to absorb heat from the rooms and
reject it to the outside air during summer.
The coefficient of performance of a heat pump used for winter heating can be defined as the ratio of
heat rejected to the high-temperature sink to the work required for the transfer. COP is 
Q1/W. Compare this with the COP of the refrigerator. In the refrigerator, the quantity of prime interest
being the heat absorbed at low temperature, the COP is defined as Q2/W. A refrigerator with a COP
of 3 will absorb three units of heat using one unit of work and deliver 4 units of heat to the rooms.
Therefore, the COP of this machine when working as a heat pump is 4. The effectiveness of a heat



pump for winter heating should be judged by comparing the cost of its operation with the cost of the
conventional heating methods employing combustion of fuels.

EXAMPLE 5.20 Show that a 1-kW heat pump working between an indoor temperature of 
300 K and an outside temperature of 290 K is equivalent to a 30-kW heater.
Solution The heat absorbed can be determined assuming a Carnot cycle.

EXAMPLE 5.21 A heat pump is used to maintain the temperature inside a building at 295 K by
pumping heat from the outside air at 275 K. The unit has an overall efficiency of 25%. The pump is
driven electrically and the electric power is generated by the combustion of certain fuel gas. The heat
of combustion of the fuel is 890.9 kJ/mol. It is estimated that only 33% of the heat of combustion of
the fuel is converted into electricity. Determine the amount of fuel burned for delivering 1000 MJ of
heat to the building.

Solution Q1 = 106 kJ. The coefficient of performance of the heat pump is

Therefore, work required to deliver 106 kJ of heat is

106/14.75 = 6.78 � 104 kJ
Since the engine efficiency is only 25%, the actual amount of electrical energy to be supplied is

6.78 � 104/0.25 = 27.12 � 104 kJ
Since the efficiency of conversion of heat of combustion to electricity is 33%, the heat energy
required as heat of combustion is

27.12 � 104/0.33 = 82.18 � 104 kJ
Number of moles of fuel burned is

82.18 � 104/890.9 = 922.5 mol = 0.9225 kmol

5.3 LIQUEFACTION PROCESSES
Gas liquefaction has gained wide acceptability in recent years. Liquefaction processes make the task
of storage, handling, and transportation of gases simple. In addition to the benefits such as the
reduction of storage space and transportation costs achieved by liquefaction process in general, gas



liquefaction is widely used for separation of gaseous mixtures into their component parts. Air
liquefaction and separation are used to produce liquid oxygen and nitrogen widely used in missile
and rocket development and low-temperature refrigeration. The developments in the space research
have led to a manifold increase in the use of liquid helium. Liquid hydrogen finds application in
nuclear weapons development and rocket propulsion.
There are three general methods of engineering importance for liquefaction of gases:

1. Vaporisation of a liquid
2. Joule–Thomson expansion
3. Expansion of gas in an engine delivering external work.

5.3.1 Vaporisation of Liquid
This method can be used to reach liquid–air temperatures by employing a series of liquids of different
boiling points. The liquid of the lowest boiling point absorbs heat from the system to be refrigerated,
and delivers this heat to the next higher boiling liquid in a condenser–boiler combination. Finally, the
fluid of the highest boiling point is condensed by cooling (by air or water) thus discharging the heat to
the atmosphere. This method has been used for liquefaction of air and natural gas. The lowest
temperature that can be attained by this method is 63 K, the triple point of nitrogen.

5.3.2 Free Expansion
For liquefaction of the gas by this method, the initial pressure of the gas should be raised to such a
high value that on Joule–Thomson expansion, which is an isenthalpic operation, the constant enthalpy
lines cut into the two-phase region as shown in Fig. 5.15. Otherwise, no liquefaction is possible by
Joule–Thomson expansion. For example, the gas at an initial state such as the one represented by a
point A in this figure, cannot be liquefied by throttling.



The Linde process for gas liquefaction works on the principle of Joule–Thomson expansion. It can be
used for liquefaction of gases that cool on Joule–Thomson expansion, that is, for gases that possess a
positive Joule–Thomson coefficient. (The Joule–Thomson coefficient and its dependence on other
thermodynamic variables are discussed in detail in Section 6.4.12.) Most gases have a positive
Joule–Thomson coefficient at ordinary conditions, hydrogen and helium being exceptions. Even
hydrogen and helium have positive coefficients below 100 K and 20 K respectively. The Linde
process for liquefaction of air is shown in Fig. 5.16.

The temperature of the air at the upstream side of the throttle valve is reduced to a sufficiently low
value (e.g. 170 K at 100 bar) so that the constant enthalpy lines cut into the two-phase region. The
cooling of air is achieved by passing it counter-currently to the unliquefied part of the air leaving the
throttling valve. Fresh air and the unliquefied air form the input to the compressor. Air leaving the
compressor is cooled by ambient air or by cooling water and subsequently by counter-current heat
exchange with the recycled air. In the throttling valve, a fraction of the gas is liquefied. By applying
the first law, it can be shown that the fraction x of the liquefied air is given by

HC = xHF + (1 – x)HA
or

5.3.3 Isentropic Expansion
The Claude process for gas liquefaction utilises isentropic expansion of a compressed gas. The
throttle valve, in Fig. 5.16, will be replaced by an expansion turbine. The process can be followed on
the T-S diagram as shown in Fig. 5.17.



The vertical line DE represents the isentropic expansion. The fraction of gas liquefied can be
determined as follows.
An energy balance around the heat exchanger, turbine, and the separator gives

xHC = (1 – x)HA + xHF + WS………(5.74)

where WS is the work delivered by the turbine. If the turbine operates adiabatically, the shaft work
WS is equal to the decrease in enthalpy of the gas during expansion.

WS = HD – HE………(5.75)

The fraction of the gas liquefied in an isentropic expansion is clearly greater than that in a free
expansion. However, since the turbine is to be operated with a two-phase mixture, the isentropic
expansion process has certain practical difficulties. To overcome these, only a portion of the gas
leaving the compressor may be expanded isentropically. The remaining portion is cooled in a heat
exchanger before it is expanded in a throttle valve. The saturated gas leaving the turbine is used to
cool the portion of the gas that is throttled. In this way, the inlet stream to the valve can be cooled to a
very low temperature, which will result in greater liquefaction.
The cost of power is an important consideration in the commercialisation of a liquefaction process,
and hence, it is essential that the thermodynamic efficiency of the process is known. This is defined
as the ratio of the minimum reversible work for the given process to the actual work. This can be
evaluated as the product of two other efficiencies, viz., the cycle efficiency and practical efficiency.



The reversible work is the least possible amount of work that is necessary to effect a given change in
the state of the system. It is given by the second law of thermodynamics as

– W = DH – T0DS………(5.78)

where T0 is the temperature of the heat sink to which heat may be rejected in large quantities. The
reversible work depends only on the initial and final states of the system and is independent of the
cycle. The theoretical work for ideal operation—the quantity in the denominator of 
Eq. (5.76)—is evaluated as the work required by the given cycle if it is operated after eliminating all
irreversible effects. The practical efficiency takes into account the imperfections of the equipment
used in the cycle.
EXAMPLE 5.22 Steam at 2.54 bar is expanded to produce superheated steam at 1 bar and 385 K.
Determine the fraction of liquid in the inlet stream and the temperature of the stream if
(a) The expansion is isenthalpic
(b) The expansion is isentropic.
The following data are taken from steam tables:
Enthalpy of saturated vapour at 2.54 bar = 2717 kJ/kg; enthalpy of saturated liquid at 
2.54 bar = 538 kJ/kg; entropy of saturated vapour at 2.54 bar = 7.05 kJ/kg K; entropy of saturated
liquid at 2.54 bar =1.61 kJ/kg K; enthalpy of superheated steam at 1 bar and 385 K = 2700 kJ/kg.
Entropy of superheated steam at 1 bar and 385 K = 7.42 kJ/kg K.
Solution Let the fraction of the inlet stream, which is liquid be x.
(a) Enthalpy balance around the throttle valve:

x(538) + (1 – x)2717 = 2700
Therefore, x = 0.008 and temperature = 401 K (from the steam tables).
(b) The process being isentropic, entropy of inlet steam = entropy of steam leaving the turbine = 7.42
kJ/kg K. Since, the entropy of saturated vapour at the inlet pressure is 7.05 kJ/kg K, which is less than
the entropy of steam leaving the turbine, the inlet steam is superheated. Therefore, 
x = 0; temperature of superheated steam having entropy of 7.42 kJ/kg K = 478 K.
EXAMPLE 5.23 Linde process is used for air liquefaction. The high-pressure gas leaving the
compressor is at 120 bar and is cooled to 306 K (516 kJ/kg) before it is sent through the heat
exchanger where it exchanges heat with low pressure gas leaving the separator at 2 bar. A 14 K
approach is desired at the hot end of the exchanger so that the low-pressure gas leaving the exchanger
is at 292 K (526 kJ/kg). Enthalpy of saturated liquid and saturated vapour at 2 bar are 121 kJ/kg and
314 kJ/kg, respectively. Determine:
(a) The fraction of the air liquefied during expansion
(b) Temperature of the air on the high-pressure side of the throttle valve.



Solution Refer Fig. 5.15.
HC = 516 kJ/kg; HA = 526 kJ/kg; HF = 121 kJ/kg; HG = 314 kJ/kg

Therefore, HD = 309 kJ/kg. HD is the enthalpy of air on the high-pressure (120 bar) side of the
throttle valve. Temperature (=167 K) of this air is determined from T-S diagram for air. (For 
T-S diagram of air, see Perry and Chilton: Chemical Engineers Handbook.) Therefore, the
temperature of air on the upstream side of the valve is 167 K.

5.4 THE STEAM-POWER PLANT
Steam-power plants operate on a closed cycle. The working fluid undergoes a series of operations
and returns to the initial state. The thermodynamic analysis of steam power plants is done by
comparing the performance of the actual cycles with certain idealised cycles. In the following
sections, we discuss these ideal steam-power cycles with a view to suggest methods for the
evaluation of their thermal efficiencies and point out how the actual cycles deviate from these ideal
cycles. Though the working fluid considered is water, the discussion is applicable for vapour-power
cycles in general.

5.4.1 Rankine Cycle
The components of a Rankine cycle, also known as the standard vapour-power cycle are shown in
Fig. 5.18.



Water at low temperature and pressure is compressed isentropically to the boiler pressure by the feed
pump (1–2). In the boiler, heat is supplied to the water at constant pressure, whereby, its temperature
rises to the saturation temperature corresponding to the pressure in the boiler. Further supply of heat
results in the evaporation of water and in superheating the vapour, thus produced (2–3). The
superheated vapour at the elevated pressure is then allowed to expand isentropically in a turbine to
the condenser pressure (3–4). In the condenser, the low-pressure exhaust steam from the turbine gives
out its heat to the cooling water at constant pressure (4–1). The saturated liquid water leaving the
condenser then enters the feed pump and the cycle is repeated.
The cycle is represented on a T-S diagram, as illustrated in Fig. 5.19(a). Let Q1 be the heat absorbed
at constant pressure in the boiler and Q2 be the heat rejected at constant pressure to the cooling water
in the condenser, both correspond to unit mass of the working fluid. Then,

In Fig. 5.19(b), is shown the T-S diagram of a Carnot engine operating between the same average
temperature levels. A Carnot cycle, as discussed earlier, consists of two reversible adiabatic
operations and two reversible isothermal operations. Comparing the preceding figures, it can be
readily concluded that the efficiency of the Rankine cycle is less than that of a Carnot cycle operating
between the same thermal reservoirs. A question that may arise naturally is that, why should we use
the Rankine cycle as the ideal cycle for assessing the performance of actual cycles, rather than a
Carnot cycle? One of the reasons for this is the practical difficulty associated with the operation of
the turbine and the feed pump with a mixture of liquid and vapour. A turbine that operates with an



input of saturated steam and discharges a mixture of vapour and liquid may lead to severe erosion
problems. Also, it is difficult to operate a pump, which takes in a two-phase mixture and discharges a
saturated liquid. The Rankine cycle is free from these problems and is, therefore, accepted as a model
for the actual vapour-power cycle.

EXAMPLE 5.24 In a 1-MW steam power plant, superheated steam at 2800 kPa and 598 K enters the
turbine and it is expanded to the condenser pressure of 5 kPa. Assuming an isentropic turbine
efficiency of 85% and an isentropic pump efficiency of 80%, determine the following:
(a) The ideal Rankine cycle efficiency for the stated conditions
(b) The thermal efficiency of the plant
(c) The rate of steam production
The following data are taken from the steam tables:

Specific volume of saturated liquid at 5 kPa is 1.005 � 10–3 m3/kg.

State of water Enthalpy Entropy

(kJ/kg) (kJ/kg K)

Saturated liquid at 5 kPa 138 0.4764

Saturated vapour at 5 kPa 2562 8.3951

Superheated steam at 2800 kPa and 598 K 3063 6.6875

Solution (a) Refer Fig. 5.19(b) and consider the feed water pump. The work required by the pump
operating isentropically is given by



(b) The actual work requirement in the pump will be greater than that in an ideal isentropic process.
As the efficiency is 80%, the actual required work is

2.809/0.8 = 3.5 kJ/kg = 
Hence the enthalpy of water leaving the feed water pump is

 = H1 + 3.5 = 138 + 3.5 = 141.5 kJ/kg

The work output of the turbine in isentropic expansion is
(H3 – H4) = 3063 – 2038 = 1025 kJ/kg

Since the efficiency is 85%, the actual work output is
0.85 � 1025 kJ/kg = 871 kJ/kg = H3 – 

Therefore, the actual enthalpy of steam leaving the turbine is
 = H3 – 871 = 3063 – 871 = 2192 kJ/kg

The efficiency of the actual cycle is



The actual efficiency is 29.7%.
(c) Net work output is

Wnet = h � Q1 = 0.297 � (3063 – 141.5) = 868 kJ/kg

That is, 1 kg of steam expanding in the turbine will deliver a net work of 868 kJ. For the rated
capacity of the plant, the work output = 1000 kJ/s = 3.6 � 106 kJ/h. Therefore, steam produced in the
boiler = 3.6 � 106/868 = 4147.5 kg/h.

5.4.2 Reheat Cycle
The efficiency of Rankine cycle can be improved by increasing the pressure in the boiler. However,
this will lead to an increase in the proportion of the liquid in the exhaust from the turbine. This
problem is circumvented in a reheat cycle. The reheat cycle uses high pressure during the absorption
of heat, yet eliminates the presence of excessive moisture in the discharge from the turbine. The cycle
is presented in Fig. 5.20.

The superheated steam leaving the boiler is admitted to a high-pressure turbine, and after expansion is
returned to the boiler for reheating. It is heated to a high temperature in the boiler, and then sent to a
low-pressure turbine where it is expanded to the condenser pressure. The T-S diagram for the reheat
cycle is shown in Fig. 5.21.



Total heat absorbed by the fluid = (H3 – H2) + (H5 – H4)

Heat rejected by the fluid = (H6 – H1)

Net work obtained = Heat absorbed – Heat rejected = (H3 – H2) + (H5 – H4) – (H6 –
H1)………(5.81)

The right side in Eq. (5.83) gives the same value as the numerator on the right side of Eq. (5.82).
EXAMPLE 5.25 Superheated steam at 7600 kPa and 673 K enters a high-pressure turbine in a 1 MW
steam power plant employing steam reheat cycle, where it is expanded to a pressure of 
1400 kPa. The exhaust steam is reheated to 658 K and sent to the low-pressure turbine, where it is
expanded to 5 kPa. Assume isentropic expansion in the turbine and isentropic compression in the feed
water pump. Determine:

(a) The work output for the high-pressure and low-pressure turbines.
(b) The thermal efficiency of the cycle.
(c) The rate of steam circulation.

The following data are taken from steam tables:

Specific volume of saturated liquid at 5 kPa = 1.005 � 10–3 m3/kg.



State of water Enthalpy Entropy

(kJ/kg) (kJ/kg K)

Saturated liquid at 5 kPa 138 0.4764

Saturated vapour at 5 kPa 2562 8.3951

Saturated liquid at 1400 kPa 830 2.2842

Saturated vapour at 1400 kPa 2790 6.4693

Superheated steam at 1400 kPa and 658 K 3226 7.2558

Superheated steam at 7600 kPa and 673 K 3150 6.4022

Solution (a) The work output of high-pressure turbine is H3 – H4. Here, H3 = 3150 kJ/kg. To
determine H4, the enthalpy of steam leaving the high-pressure turbine, its quality should be known.
Let the fraction of steam in the vapour state be x. Then the entropy at 4 is

S4 = 2.2842 + x(6.4693 – 2.2842)

As the expansion process is isentropic,
S4 = S3 = 6.4022 kJ/kg K

Therefore,
S4 = 2.2842 + x(6.4693 – 2.2842) = 6.4022

Solving this we get, x = 0.984
H4 = 830 + 0.984(2790 – 830) = 2759 kJ/kg

[Note: The HS diagram, also known as the Mollier diagram, may also be used to determine the
values of the enthalpy and entropy of steam at various conditions. Mollier diagram will be discussed
in detail in Chapter 6.]
The work output of the high-pressure turbine = 3150 – 2759 = 391 kJ/kg
Similarly,

S6 = 0.4764 + x(8.3951 – 0.4764) = S5 = 7.2558 kJ/kg K

Thus, x = 0.856 and
H6 = 138 + 0.856(2562 – 138) = 2213 kJ/kg

The work output from the low-pressure turbine is
H5 – H6 = 3226 – 2213 = 1013 kJ/kg

(b) ………(5.82)
Work output of the feed water pump,

or



H2 – H1 = 1.005 � 10–3 � (7600 – 5) � 103 = 7633 J/kg = 7.633 kJ/kg

Since,
H1 = 138 kJ/kg

H2 = H1 + 7.633 = 138 + 7.633 = 145.6 kJ/kg

Thermal efficiency is 40.2%.
(c) The net work output is given by the numerator of Eq. (5.82), Wnet = 1396.4 kJ/kg. The rate of
circulation of steam for 1000 kW of net work output = 1000 � 3600/1396.4 = 2578.1 kg/h.

5.4.3 Regenerative Cycle
In the Rankine cycle, the feed water enters the boiler in a sub-cooled state corresponding to the
pressure in the boiler and it is heated to the saturation temperature before vaporisation begins. But the
heating medium in the boiler is at a very high temperature. Because of this large difference between
the temperature of the heating medium and that of the feed water, the heat interaction in the boiler is a
highly irreversible process. The process can be carried out more or less reversibly, if the water from
the condenser rather than being pumped directly to the boiler, is first heated by steam extracted from
various stages of expansion in the turbine. The heating process thus approaches a reversible
isothermal heat interaction process. In this way, the thermal efficiency of the Rankine cycle could be
greatly improved. The Rankine cycle modified in this manner is known as the regenerative cycle. A
regenerative cycle with a single feed heater is shown in Fig. 5.22.

The T-S diagram of an ideal regenerative cycle is presented in Fig. 5.23. Assume that 1 kg of



superheated steam (3) enters the high-pressure side of the turbine. Let m kg of the steam is extracted
from certain point in the turbine (3–4) and the remaining (1 – m) kg steam be allowed to expand to the
condenser pressure (3–5). The extracted steam is admitted to the feed water heater where it releases
its latent heat (4–1). This heat is transferred to the feed water leaving the condenser (7–1) that is
being pumped by the condensate pump (6–7). Under ideal conditions, the temperature of the m kg of
condensed steam that is withdrawn through the steam trap and that of the (1 – m) kg feed water which
gets heated on its passage through the heater, are the same (1). These two streams are mixed together
and the combined stream is pumped to the boiler pressure (1–2). The latent heat of vaporisation and
the superheat required by the steam are supplied in the boiler (2–3) and the cycle is repeated.

Heat supplied in the boiler = Q1 = H3 – H2
Heat rejected in the condenser = Q2 = (1 – m) (H5 – H6)

The net work obtained = Wnet = Q1 – Q2 = (H3 – H2) – (1 – m) (H5 – H6)………(5.84)

EXAMPLE 5.26 Superheated steam at 2800 kPa and 598 K enters the high-pressure side of the
turbine in a steam power plant. A fraction of the steam is withdrawn from a point in the turbine at a
pressure of 275 kPa and is sent to the feed water heater operated at 275 kPa and the remaining steam
is expanded to the condenser pressure of 5 kPa. Assume that the expansion in the turbine and the
compression in the boiler feed water pump are isentropic and that the power required by the
condensate pump is negligible. Determine the fraction of steam withdrawn from the turbine and the
thermal efficiency of the cycle.
Specific volume of saturated liquid at 275 kPa =1.070 � 10–3 m3/kg

State of water Enthalpy Entropy



(kJ/kg) (kJ/kg K)

Saturated liquid at 5 kPa 138 0.4764

Saturated vapour at 5 kPa 2562 8.3951

Saturated liquid at 275 kPa 549 1.6408

Saturated vapour at 275 kPa 2721 7.0209

Superheated steam at 2800 kPa and 598 K 3063 6.6875

Solution Refer to Fig. 5.23. Take an energy balance around the feed water heater. Let m be the
fraction of steam extracted from the turbine.

m(H4 – H1) = (1 – m) (H1 – H7)

As the power input to the condensate pump is negligible, H7 = H6, the enthalpy of saturated liquid at
5 kPa = 138 kJ/kg. H1 = 549 kPa. To determine the enthalpy H4, the quality of steam is to be
determined first. We know that,

S4 = S3 = 1.6408 + x(7.0209 – 1.6408) = 6.6875

Solving this, x = 0.938.
H4 = 549 + 0.938(2721 – 549) = 2586 kJ/kg

Substituting these values in the energy balance equation,
m(2586 – 549) = (1 – m) (549 – 138)

Solving this we get, m = 0.168. That is, the fraction of steam extracted = 0.168. The work input to the
feed water pump is

H2 – H1 = V(P2 – P1) = 1.070 � 10–3 (2800 – 275) � 103 � 10–3 = 2.702 kJ/kg

Since, H1 = 549 kJ/kg,

H2 = 549 + 2.702 = 551.702 kJ/kg

Considering the isentropic expansion in the turbine,
S5 = S3 = 6.6875 = 0.4764 + x(8.3951 – 0.4764)

Solving this we get, x = 0.784 so that,
H5 = 138 + 0.784(2562 – 138) = 2038 kJ/kg

Thermal efficiency is given by Eq. (5.85)

Thermal efficiency is 37.1%.

5.5 INTERNAL COMBUSTION ENGINES
The steam power plants and internal combustion engines are broadly designated as heat engines,



because in both, the chemical energy of a fuel is converted into heat energy, which is utilised to
perform mechanical work. Internal combustion engine differs from steam power plants such that the
former operates on open cycles whereas the latter on closed cycles. In internal combustion engines,
the working fluid which is a mixture of air and fuel is burned inside the engine and after a series of
processes which results in the production of mechanical work, the combustion products are
discarded. The working fluid does not undergo a cycle of changes in an internal combustion engine,
as does the steam in a steam power plant. However, the engine operates on a closed mechanical
cycle. The internal combustion engines involve no transfer of heat through surfaces, which restrict the
temperature and pressure, as is the case with the boiler of the steam power plants. The high
temperatures and the absence of heat transfer surfaces are the main advantages of internal combustion
engines over steam power generation systems.
The thermodynamic analysis of internal combustion engine is made possible by devising ideal closed
cycles with air as the working fluid and by comparing the performance of actual cycles with these
ideal air-standard cycles. The assumptions involved in this approach are:

1. The working fluid is a fixed mass of air and it undergoes no chemical change. Air is assumed to
behave as an ideal gas.

2. The combustion process in the actual cycle is replaced by a heat transfer process in the ideal
cycle. Heat is assumed to be transferred from an external heat source.

3. The exhaust stroke in the actual engine is replaced by a heat rejection step in the ideal cycle.
Heat is assumed to be transferred to the surroundings.

4. The air is assumed to have constant specific heat and all the processes are internally reversible.
The Otto cycle and the Diesel cycle are the two important air-standard cycles used for the analysis of
internal combustion engines.

5.5.1 Otto Cycle
The P-V and T-S diagram of the air-standard Otto cycle are shown in Fig. 5.24. The cycle is
characterised by the following processes:
1. Process 1–2: A given mass of air, assumed an ideal gas, is compressed isentropically during the
inward stroke of the piston. As a result, the temperature of the gas increases from T1 to T2.



2. Process 2–3: Heat (Q1) is supplied to the system at constant volume by allowing the system to
come in contact with a high-temperature reservoir. The heat transfer results in the increase in
temperature from T2 to T3. It also increases the pressure and entropy of the fluid. (In actual engines,
this process is achieved approximately by igniting the compressed gas by means of a spark. The
combustion of the fuel/air mixture occurs so rapidly that it may be approximated by a constant volume
process).
3. Process 3–4: The air is expanded isentropically during the outward stroke of the piston. Both the
pressure and temperature decrease during this process. Temperature decreases from T3 to T4 during
this step. (In actual engines, the products of combustion at very high pressure and temperature expand
approximately adiabatically during this step.)
4. Process 4–1: Heat (Q2) is transferred from the system reversibly, at constant volume to a low-
temperature reservoir. The temperature, pressure, and entropy of the system decrease during this
stage. (In actual engine, during the corresponding process the exhaust valve opens and the pressure
falls rapidly at nearly constant volume.)

Heat absorbed, Q1 = mCV (T3 – T2)

Heat rejected, Q2 = mCV (T4 – T1)



Substituting Eq. (5.87) into Eq. (5.86), we get the expression for thermal efficiency in terms of the
compression ratio.

We see that the thermal efficiency of an Otto engine depends on the compression ratio and the ratio of
specific heats, g. For a specified value of g, the efficiency increases with increase in compression
ratio; the increase is rapid at low values of r, but slow at high values of r. The upper limit of the
compression ratio is set by the ignition temperature of the fuel. If the compression ratio exceeds this
limit, the temperature of the fuel-air mixture exceeds the ignition temperature, resulting in
uncontrolled combustion of the fuel-air mixture, a condition known as knocking.
EXAMPLE 5.27 The compression ratio in an air-standard Otto cycle is 8. The temperature and
pressure at the beginning of the compression stroke are 290 K and 100 kPa. Heat transferred per
cycle is 450 kJ/kg of air. The specific heat of air are CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K.
Determine the following:
(a) The pressure and temperature of air at the end of each process
(b) The thermal efficiency
(c) The work done by kg of air
(d) The mean effective pressure.



Solution (a) The cycle is represented in Fig. 5.24. P1 = 100 kPa and T1 = 290 K. The volume of 1 kg
of air at this condition is V1. It is evaluated using the ideal gas equation

Conditions at 3: 2–3 is a constant volume process. V3 = V2 = 0.1039 m3.
Heat supplied is obtained as

Q1 = CV (T3 – T2)

450 = 0.718 (T3 – T2)

T3 = 450/0.718 + 666.2 = 1292.9 K

Heat rejected during the constant volume process 4–1 is



Q2 = CV(T4 – T1) = 0.718 � (562.9 – 290) = 195.9 kJ/kg

(b) Thermal efficiency is calculated using Eq. (5.88).

5.5.2 Diesel Cycle
The P-V and T-S diagram of the air-standard Diesel cycle are shown in Fig. 5.25. The Diesel engines
differ from the Otto engines, insofar as in the former, the temperature at the end of compression,
exceeds the fuel ignition temperature and the combustion of fuel occur spontaneously. The Diesel
cycle consists of the following processes:

1 . Process 1–2: Air assumed to behave as an ideal gas, is compressed isentropically to a high
temperature and pressure. The temperature of the gas increases from T1 to T2.



2. Process 2–3: Heat Q1 is supplied to the fluid at constant pressure. The temperature increases to
T3. (In actual engines, this is accomplished by injecting the fuel to the hot compressed air at the end
of the compression stroke. The fuel ignites spontaneously and the piston starts moving outward
slowly.)
3. Process 3–4: The gas undergoes an isentropic expansion by which the pressure and temperature of
the gas decrease. The temperature attained after the expansion process is T4.
4. Process 4–1: Heat Q2 is rejected at constant volume thus decreasing the temperature and pressure
of the gas further. (In actual engines, during the corresponding stage, the discharge port opens and the
combustion products are exhausted.)

Heat absorbed Q1 = mCP (T3 – T2)

Heat rejected Q2 = mCV (T4 – T1)

Thermal efficiency is obtained as

In Eq. (5.89), g = ratio of specific heats, CP/CV. The ratio of the volumes at the beginning and at the
end of the compression stroke is called the compression ratio and it is denoted by r. Therefore, r =
V1/V2. The ratio of volumes at the end and beginning of the constant pressure heat addition process is
called the cut-off ratio and it is denoted by rc. Thus, rc = V3/V2.

For the isentropic compression step 1–2, T2/T1 = (V1/V2)g–1 = rg–1, so that

T2 = T1rg–1………(5.90)



For the same compression ratio r, the Otto cycle is more efficient than the Diesel cycle. However, in
Diesel engine, it is possible to achieve a compression ratio higher than that attainable in an Otto
engine, which in turn, results in high efficiencies.
EXAMPLE 5.28 A Diesel engine operates with a compression ratio of 15. The pressure and
temperature at the beginning of the compression stroke are 100 kPa and 300 K. Heat is transferred at
the rate of 500 kJ/kg of the working fluid per cycle. Determine:

(a) The pressure and temperature at each stage of the cycle
(b) The work done per kg air
(c) The thermal efficiency
(d) The mean effective pressure

Take the specific heats of air as CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K.

Solution The cycle is illustrated in Fig. 5.25.
(a) Here, r =15, T1 = 300 K, P1 = 100 kPa, and g = CP/CV = 1.4.



Isentropic expansion 3–4:
V4 = V1 = 0.86 m3/kg



[Note: Thermal efficiency may be calculated using Eq. (5.93) also.

5.5.3 Dual Cycle
In an ideal Otto cycle, the heat is supplied during a constant volume process. It requires that the
combustion of the fuel is instantaneous and occurs so rapidly that the change in volume is negligible.
In contrast, in the air-standard ‘Diesel cycle’, the heat is supplied during a constant pressure process.
It necessitates the combustion process to occur very slowly. Both these ideal situations are not
achievable in practice, and hence the combustion process is neither a constant volume process nor a
constant pressure process. An air-standard dual cycle is a compromise between an ideal Otto cycle
and an ideal Diesel cycle. The P-V and T-S diagrams for a dual cycle are shown in Fig. 5.26.



In dual cycle, heat transfer is assumed to occur first at constant volume and then at constant pressure.
Referring to the figure, the heat supplied is obtained as

Q1 = mCV (T3 – T2) + mCP (T4 – T3)

The heat rejected is given by
Q2 = mCV (T5 – T1)

The thermal efficiency is

5.6 GAS-TURBINE POWER PLANT
An open-cycle gas-turbine power plant is schematically illustrated in Figs. 5.27(a) and (b). 
The compressor discharges air into a combustion chamber where it is heated by combustion of fuel.
The mixture of air and combustion gases is then expanded in a turbine. A part of the 
power output from the turbine is used to run the compressor and the rest is available as useful work.
The expanded gas may be discharged to the atmosphere, or may be used to preheat the air discharged
from the compressor. In closed-cycle operation, the working fluid after expansion is recycled to the
compressor through an exhaust-gas cooler. Heat is supplied by a heat transfer process.



5.6.1 Brayton Cycle
The ideal air-standard gas-turbine cycle is known as the Brayton cycle. The P-V diagram and the T-
S diagram of the Brayton cycle are given in Fig. 5.28.



The ideal cycle includes an isentropic compression (1–2), a constant-pressure heating (2–3), an
isentropic expansion (3–4), and a constant-pressure cooling (4–1).
The heat supplied is

Q1 = mCP (T3 – T2)

The heat rejected is
Q2 = mCP (T4 – T1)

The thermal efficiency is evaluated as

From Eq. (5.98) we get



The thermal efficiency of the air-standard Brayton cycle therefore increases by increasing the
pressure ratio. Also from Eq. (5.95), we see that the higher the temperature of the combustion gases
entering the turbine (T3), the greater the work produced per kg of fuel burned. However, the strength
of the turbine blades sets a limit to the maximum temperature of the gas that can be employed.
EXAMPLE 5.29 In an air-standard Brayton cycle, the temperature and pressure of air entering the
compressor are 300 K and 100 kPa. The maximum pressure and temperature in the cycle 
are 500 kPa and 1200 K. Assuming air to be an ideal gas with constant specific heats CP = 
1.005 kJ/kg K and CV = 0.718 kJ/kg K, determine:

(a) The pressure and temperature at each point in the cycle
(b) The work required by the compressor
(c) The work done by the turbine
(d) The thermal efficiency.

Solution (a) P1 = P4 = 100 kPa; P2 = P3 = 500 kPa; T1 = 300 K and T3 = 1200 K; 
g = CP/CV = 1.4.

Isentropic compression 1–2:

This gives T4 = 757.7 K.
(b) The work required by the compressor is

– WS = H2 – H1 = mCP(T2 – T1) = 1.005(475.1 – 300) = 176 kJ/kg

(c) The work done by the turbine is
WS = H3 – H4 = mCP(T3 – T4) = 1.005(1200 – 757.7) = 444.5 kJ/kg

(d) Thermal efficiency



SUMMARY
Through the application of first and second laws of thermodynamics, attempts were made in Section
5.1 to find solutions to some fluid flow problems. The continuity equation, the total energy balance
equation, and the mechanical energy balance equation were derived and the Bernoulli equation was
deduced. These are applied to some practically important cases such as the flow through pipes,
nozzles, and ejectors. Thus it was shown that for flow through straight pipes of uniform cross-section,
the maximum fluid velocity attained is equal to the speed of sound in the fluid. For isentropic flow
through nozzles, if the gas is to be accelerated continuously from subsonic to supersonic velocity, the
area of cross-section for flow should first decrease, then remain constant and finally increase, thus
establishing the thermodynamic basis of the convergent-divergent nozzles. A brief description of the
throttling process and the definition of the Joule–Thomson coefficient was also provided. Equations
for calculating the work of isothermal and adiabatic compression were also formulated. The
isothermal path for compression for which the work requirement is less than that for the adiabatic
path, can be approached by multi-stage compression with interstage cooling. Also, for minimum total
work in a multi-stage compressor, the pressure ratios in all the stages should be equal.
Four important refrigeration cycles, the Carnot cycle, the vapour-compression cycle, the air-
refrigeration cycle, and the absorption refrigeration cycles were analysed for their coefficients of
performance, and their relative merits and demerits were discussed in Section 5.2. The vapour
compression cycle employing an expansion engine gives higher COP, but are not recommended for
small-scale applications. An absorption refrigeration system uses, for achieving refrigeration, the
heat absorbed from a high-temperature source directly without converting it into work by means of a
heat engine, as is done in a vapour-compression cycle. A thermodynamic analysis of the Linde
process employing free-expansion and the Claude process employing isentropic expansion for air-
liquefaction revealed that the fraction of air liquefied in an isentropic expansion was greater than that
in a free-expansion. However, the isentropic expansion process has practical difficulties that are
associated with the operation of the turbine with a two-phase mixture (Section 5.3).
The thermodynamic analysis of steam-power plants was done by comparing the performance of the
actual cycles with certain idealised cycles. The ideal cycles considered were the Rankine cycle, the
reheat cycle, and the regenerative cycle. Equations for evaluating their thermal efficiencies were
developed. The thermal efficiency of the Rankine cycle can be improved in the regenerative cycle by
heating the water leaving the condenser before being sent to the boiler, by steam extracted from



various stages of expansion in the turbine (Section 5.4). The Otto cycle and the Diesel cycle are the
two important air-standard cycles used for the analysis of internal combustion engines. The thermal
efficiency of the Otto cycle depends on the compression ratio and the ratio of specific heats. For the
same compression ratio, the Otto cycle is more efficient than the Diesel cycle. However, in a Diesel
engine a compression ratio higher than that is permissible in an Otto engine, may be employed and
hence high efficiencies may be achieved. The dual cycle was found to be a compromise between the
Otto cycle and the Diesel cycle (Section 5.5).

REVIEW QUESTIONS
1. Derive the total energy balance for a flow system and deduce the mechanical energy balance

equation.
2. Derive the Bernoulli’s equation and list out the assumptions involved.
3. Show that the maximum fluid velocity attainable for flow through a pipe of uniform cross-section

is equal to the sonic velocity.
4. Define Mach number. How is it important in establishing the relation between the velocity and

the area of cross-section for flow through nozzles?
5. What is the critical pressure for flow through nozzles? “A converging nozzle can discharge a

fluid at constant flow-rate to a region of variable pressure independent of the down stream
pressure.” Explain.

6. Flow of a fluid through a well-insulated partially opened valve results in throttling. Prove that a
throttling expansion is an isenthalpic operation.

7. What is Joule–Thomson coefficient? If a gas cools on throttling, will it be positive or negative?
8. What are the Joule–Thomson inversion temperatures?
9. How is the minimum work in an adiabatic compressor related to the decrease in enthalpy of the

fluid?
10. Why is inter-stage cooling necessary in a multi-stage compression?
11. For minimum total work in a multi-stage compression, what can you say about the pressure

ratios in different stages?
12. How does the clearance affect the work of adiabatic compression?
13. What is COP of a refrigerator? What do you know about the work required per ton of

refrigeration by a Carnot refrigerating unit in comparison with other cycles?
14. What are the practical limitations of a Carnot cycle for refrigeration and how are these

overcome in a vapour-compression cycle?
15. With the help of a T-S diagram, deduce expressions for the COP of the vapour-compression

cycles.
16. Why is throttling used in practical refrigerators in place of turbine?
17. What are the desirable properties of a refrigerant?
18. How is the COP of an air cycle related to the compression ratio? What are the advantages and

disadvantages of air-refrigeration machines?
19. What is the basic principle behind the absorption refrigeration systems?



20. Explain the working principle of a heat pump.
21. What are the three general methods available for gas liquefaction? Why is it necessary that a

gas be compressed to a high pressure before it is subjected to liquefaction by throttling?
22. Compare the Linde process with the Claude process for air liquefaction.
23. How is the Rankine cycle practically superior to the Carnot cycle as an ideal steam-power

cycle? Why is it advantageous to use superheat in the Rankine cycle?
24. How could the efficiency of the Rankine cycle be improved in (a) reheat cycle 

(b) regenerative cycle?
25. What simplifications are inherent in using the air-standard cycles for assessing the performance

of internal combustion engines?
26. What are the factors that affect the thermal efficiency of Otto cycle?
27. What are the major differences between the Otto cycle and Diesel cycle for IC engines.
28. “An air-standard dual cycle may be treated as a compromise between the Otto cycle and the

Diesel cycle”. Justify.
29. What is the effect of the pressure ratio on the thermal efficiency of the Brayton cycle?

EXERCISES
5.1 A 50-mm diameter horizontal jet of water strikes a vertical plane. If the horizontal force

needed to support the plane is 360 N, what is the velocity of the jet?
5.2 Wet steam containing 5% by weight of liquid at a pressure of 500 kPa is mixed at a rate of 1

kg/s with superheated steam at 500 kPa and 473 K (H = 2855 kJ/kg) to obtain dry saturated
steam at 500 kPa (Hl = 640 kJ/kg; HV = 2749 kJ/kg). Determine the rate of addition of
superheated steam if mixing is done adiabatically.

5.3 An ideal gas with heat capacity CP = 29.7 kJ/kmol K flows steadily through a long capillary
tube at 5 bar and 350 K and leaves at 2 bar. What is its exit temperature?

5.4 3600 kg/h of superheated steam at 200 kPa and 673 K enters a turbine with a velocity of 100
m/s. The inlet to the turbine is at an elevation of 10 m and the exit is at an elevation of 3 m. The
steam leaves the turbine at a velocity of 150 m/s and is 98% dry at a pressure of 10 kPa. What is
the power output of the turbine if the energy loss from it is estimated to be 40000 kJ/h?

5.5 A tank has a volume of 3 m3 and contains 1400 kg liquid water in equilibrium with its vapour,
which fills the remainder of the tank. The temperature and pressure are 505 K and 2902 kPa
respectively (enthalpy of saturated vapour = 2802 kJ/kg; enthalpy of saturated liquid = 1000
kJ/kg; specific volume of saturated liquid = 1.213 � 10–3 m3/kg; specific volume of saturated
vapour = 68.89 � 10–3 m3/kg). A quantity of 1000 kg water at 
340 K (H = 280 kJ/kg) is to be pumped into the tank without removing any steam. How much
heat must be added during this process, if the pressure and temperature in the tank remain at their
initial values?

5.6 A turbine is fed with steam at 78 bar and 698 K (enthalpy = 3213 kJ/kg) at a rate of 
1000 kg/h. Saturated steam at 5 bar (H = 2749 kJ/kg) is withdrawn from one point in the turbine



at a rate of 250 kg/h. The remaining steam leaves the turbine saturated at 1 bar (H = 2676 kJ/kg).
Determine the power output from the turbine, if it operates adiabatically?

5.7 A tank contains 1 kg steam at a pressure of 2100 kPa and a temperature of 648 K (enthalpy and
specific volume are 3192 kJ/kg and 137.76 � 10–3 m3/kg). It is connected through a valve to a
vertical cylinder containing a frictionless piston. The piston is loaded with a weight such that a
pressure of 700 kPa is necessary to support it. Initially the piston is at the bottom of the cylinder.
The valve is opened slightly, so that steam flows into the cylinder until the pressure is uniform
throughout the system. The final temperature of steam in the tank is found to be 513 K (enthalpy
and specific volume of the superheated steam at 700 kPa and 513 K are 2933 kJ/kg and 329.23
� 10–3 m3/kg). Calculate the temperature of steam in the cylinder, if no heat is transferred from
the steam to the surroundings.

5.8 A well-insulated closed tank has a volume of 70 m3. Initially it contains 23000 kg water
distributed between liquid and vapour phases at 300 K. Saturated steam at 1100 kPa is admitted
to the tank until the pressure reaches 700 kPa. Determine the amount of steam added.

5.9 An evacuated tank is connected to a pipe carrying steam at 1400 kPa and 598 K (enthalpy =
3097 kJ/kg) through a valve. The valve is opened and the tank is filled with steam until the
pressure is 1400 kPa, and then the valve is closed. Assume that the process is adiabatic and the
kinetic and potential energies are negligible. Determine the final temperature of the steam.

5.10 A tank of volume 0.3 m3 initially contains saturated steam at 345 kPa. It is connected to a
pipeline carrying steam at 1400 kPa and 598 K through a valve. The valve is then opened and
steam from the line flows into the tank till the pressure is equal to 1400 kPa. Calculate the mass
of steam that flows into the tank.

5.11 A rigid and insulated tank of volume 1 m3 initially contains air at 300 K and 10 bar. A valve
is opened and the gas is discharged until the mass of air in the tank is reduced by half. Determine
the temperature and pressure of the gas left in the tank.

5.12 An insulated rigid tank is initially evacuated and kept in a room. The atmospheric air in the
room is at 101.3 kPa and 300 K. A valve is opened and air is allowed to enter the tank. The
valve is closed when the pressure in the tank reaches 101.3 kPa. The air can be assumed to be
an ideal gas with constant specific heats. What is the final temperature of the air in the tank?

5.13 A rigid insulated tank of volume 1 m3 contains an ideal gas (molecular weight = 29, 
g = 1.4) at a pressure of 200 kPa and temperature 400 K. The tank is connected to a pipe-line
carrying the same gas at 5 MPa and 650 K through a valve. The valve is opened and the gas is
allowed to enter the tank till the pressure reaches 5 MPa. Determine 
(a) the temperature attained by the gas in the tank and (b) the amount of gas admitted into the
tank.

5.14 A rigid tank 0.1 m3 in volume initially contains saturated water vapour at 425 K. The tank is
connected by a valve to a supply line that carries steam at 1400 kPa and 523 K. Now the valve
is opened and steam is allowed to enter the tank. Heat transfer takes place with the surroundings
such that the temperature in the tank remains constant at 425 K at all times. The valve is closed
when it is observed that one-half of the volume of the tank is occupied by liquid water. Specific



volume of saturated liquid and saturated vapour at 425 K are 1.093 � 10–3 and 0.3749 m3/kg,
respectively. Internal energy of saturated liquid and saturated vapour at 425 K are 639.7 and
2561.2 kJ/kg, respectively. Enthalpy of superheated steam at 1400 kPa and 523 K is 2927.2
kJ/kg. Determine (a) the amount of steam that has entered the tank, and (b) the heat transferred.

5.15 A rigid tank of volume 1 m3 initially contains equal volumes of water and water vapour at
523 K. Water is discharged as saturated liquid from the bottom of the tank at a constant flow rate
by opening a valve. The contents in the tank are kept at the constant temperature of 523 K by
transfer of heat. The valve is closed when one half of the initial mass has been discharged.
Determine the quality (mass fraction of vapour) of the vapour-liquid mixture left in the tank and
the heat transferred.

5.16 An ideal gas confined in a piston-cylinder assembly at a pressure of 101.3 kPa and 
300 K occupies a volume of 0.015 m3 initially. The cylinder is connected through a valve to a
pipeline through which the same gas is flowing at steady state at a pressure of 
700 kPa and 400 K. The valve is opened and the gas is admitted into the cylinder keeping the
pressure inside constant at 101.3 kPa. The valve is closed when the volume of gas in the
cylinder has become double the original volume. Assume the specific heat at constant pressure
and constant volume are, respectively, 29.4 and 21 kJ/kmol K. Determine the final temperature
of the gas in the cylinder.

5.17 Air, assumed to be an ideal gas with molar heat capacity CP = 30 kJ/kmol K, is flowing

through a pipe of diameter 0.15 m at a rate of 0.3 m3/s at 100 kPa and 300 K before entering a
compressor. A cooler removes heat from the compressed gas at a rate of 
75.0 kJ/s. The gas at 315 K and 550 kPa is then carried away through a pipe of diameter 0.03 m.
What is the power input to the compressor?

5.18 A pump is used to transfer a solution of density 1200 kg/m3 from a mixing vessel to a storage
tank through a pipe of diameter 0.08 m at velocity 1 m/s. The level difference between the liquid
in the mixing vessel and the storage tank is 20 m. Both tanks are open to the atmosphere.
Frictional loss is estimated to be 300 W. Determine the pressure increase over the pump. What
is the power input to the pump?

5.19 A pump is used to transfer a solution of density 1250 kg/m3 at a rate of 12 m3/h from an open
storage tank to the top of an absorption tower which is operated at a pressure of 
500 kPa. The pump discharges into the tower through openings equivalent in area to a 
25 � 10–3 m pipe. The point of discharge is 30 m above the level of solution in the tank. The
pump intake is through a pipe of diameter 50 � 10–3 m which extends to a depth of 2 m below
the level of solution in the tank. The friction head in the suction line is estimated to be 1.5 m of
water and that in the discharge line is 10 m of water. If the efficiency of the pump is 70%, what
is the power input to the pump? What pressures will be indicated by the pressure gauges at the
inlet and exit of the pump?

5.20 Steam at 700 kPa and 553 K enters a nozzle with negligible velocity and discharges at a
pressure of 475 kPa. Determine:



(a) The exit velocity
(b) The cross-sectional area at the nozzle exit for a flow rate of 0.5 kg/s.

5.21 Steam at 1400 kPa and 598 K enters a convergent-divergent nozzle with negligible velocity.
The nozzle may be assumed to act isentropically. The cross-sectional area at the throat is 6.5 �
10–4 m2. Determine the state of the steam at the discharge end of the nozzle if the pressure there
is 350 kPa. What is the mass flow rate of the steam?

5.22 Calculate the maximum Mach number at the discharge of the divergent section of the
convergent-divergent nozzle under the conditions given in Example 5.4, assuming that
supersonic velocity is realised in the nozzle.

5.23 Air expands through a nozzle from a negligible initial velocity to a final velocity of 
350 m/s. What is the temperature drop of air, if air is assumed an ideal gas with CP = 
(7/2)R?

5.24 Steam at 6000 kPa and 773 K enters a converging-diverging nozzle and discharges to a
constant pressure region at 2000 kPa. If the expansion in the nozzle is isentropic, determine the
velocity and temperature of the discharge steam.

5.25 Steam at 700 kPa and 573 K enters a nozzle with a velocity 30 m/s. The nozzle operates
isentropically. Determine the area of cross-section at a point in the nozzle where the pressure is
400 kPa, as a fraction of the inlet area. Take the necessary data from the steam tables.

5.26 Steam at 700 kPa and 573 K enters a nozzle with a velocity 30 m/s. The nozzle operates
isentropically and the steam may be assumed to behave as an ideal gas with g = 1.3. Determine:

(a) The critical pressure ratio and the velocity at the throat.
(b) The discharge pressure, if the Mach number at the discharge is 2.
5.27 A wind tunnel is fed with air through a nozzle at a Mach number 1.5 and temperature 

300 K. The diameter of the discharge end of the diverging section of the nozzle is 
0.15 m. Assume air to be an ideal gas with CP = 30 kJ/mol K. Calculate the temperature and
pressure of the air fed to the nozzle.

5.28 Discuss the effect of clearance on the work required and on the volumetric efficiency of a
multi-stage adiabatic compressor.

5.29 Saturated steam at 175 kPa is compressed adiabatically to 650 kPa in a centrifugal
compressor at a rate of 1.5 kg/s. The compressor efficiency is 75%. What is the power
requirement of the compressor and what are the enthalpy and entropy of steam leaving the
compressor?

5.30 A single-stage compressor is used to compress 1500 m3/h of ammonia gas at 255 K and 100
kPa to 550 kPa. The isentropic compression efficiency is 75% and volumetric efficiency is
85%. Calculate:
(a) The power required for compression
(b) Piston displacement in m3/s.

(Refer Perry and Chilton, Chemical Engineer’s Handbook for the T-S diagram of ammonia.)
5.31 A single-stage compressor is used to compress 800 m3/h of carbon dioxide measured at 288



K and 1 bar from its initial state of 0.5 bar and 300 K to a final pressure of 1.5 bar. A
volumetric efficiency of 75% and a compression efficiency of 85% may be assumed. Assuming
adiabatic compression, calculate the power required for driving the compressor, the piston
displacement in m3/s, and the discharge temperature.

5.32 A two-stage compressor is used to compress 800 m3/h of carbon dioxide measured at 
288 K and 1 bar from its initial state of 0.5 bar and 300 K to a pressure of 1.5 bar with inter-
cooling to 300 K. A compression efficiency of 85% may be assumed in each stage. Calculate the
power required to run the compressor and the discharge temperature.

5.33 Determine the coefficient of performance of an ideal Carnot engine operating between a low
temperature 280 K and surrounding temperature 300 K.

5.34 The work output from a Carnot engine operating between two thermal reservoirs at 
500 K and 300 K respectively, is utilised by a Carnot refrigeration machine for absorbing heat
at the rate of 4 kJ/s from a cold room at 270 K and discarding heat to the surroundings at 300 K.
Determine the quantity of heat absorbed by the engine at 500 K. If the COP of the refrigerator
and the efficiency of the engine are two-third of the ideal values, what is the quantity of heat
absorbed by the engine at 500 K?

5.35 The work output of an ideal Carnot engine operating between two thermal reservoirs, one at
1000 K and the other at 300 K is utilised to drive the compressor of a vapour-compression
refrigeration unit working on Freon-12. The heat rejected by the engine is 30 kW. The
refrigerator operates between 240 K and 300 K. The enthalpy of saturated Freon-12 liquid at
300 K = 61.9 kJ/kg, the enthalpy of saturated Freon-12 vapour at 
240 K = 172.8 kJ/kg. Determine the COP, the refrigerator capacity, and the circulation rate of
the refrigerant.

5.36 An ordinary vapour-compression cycle uses steam as the working fluid. The steam leaves the
condenser at 303 K and is evaporating at 278 K. The enthalpy of saturated vapour at 278 K is
2510.6 kJ/kg and the enthalpy of saturated liquid at 303 K is 125.78 kJ/kg. Calculate the
circulation rate for a refrigeration load of 1000 MJ/h.

5.37 A vapour-compression refrigerator employing Freon-12 works between pressure limits of
182.5 kPa and 960.6 kPa. The heat transfer from the condenser is found to be 72 kJ per minute
and the heat absorbed in the evaporator is 3200 kJ/h. The refrigerant vapour leaves the
evaporator in the saturated state. Calculate:
(a) The refrigerant flow rate through the system in kg per minute
(b) The energy input to the compressor and
(c) The COP of the system.

The enthalpy of saturated vapour at 182.5 kPa = 181.2 kJ/kg and the enthalpy of saturated liquid
at 960.6 kPa = 76.2 kJ/kg.

5.38 Ammonia is being used in an ordinary vapour-compression machine rated at 5 ton. The
evaporator is at 273 K and the condenser is at 303 K. The saturation pressures of ammonia
corresponding to these temperatures are 4.29 bar and 11.67 bar respectively. The allowable
temperature rise for cooling water in the condenser is 10 K. The enthalpy of saturated liquid and
vapour at 273 K are 168 kJ/kg and 1300 kJ/kg respectively. The enthalpy of saturated liquid and



vapour at 303 K are 300 and 1327 kJ/kg respectively. The enthalpy of superheated vapour
leaving the compressor at 11.67 bar is 1445 kJ/kg. Determine the following:
(a) The theoretical minimum horse power to drive the unit
(b) The refrigerant circulation rate
(c) The cooling water circulation rate
(d) The coefficient of performance

5.39 A standard vapour-compression refrigeration unit using ammonia produces a refrigeration
equivalent to 210 kJ/minute. The unit operates between a condenser temperature of 
308 K and a refrigerator temperature of 258 K. Assuming that the compression process is
reversible adiabatic and the vapour leaves the refrigerator saturated, calculate the 
COP and the ammonia circulation rate. The following data are available:

T (K) PS (bar) HL (kJ/kg) HV (kJ/kg)

308 12.05 324 1474

258 2.44 113 1430

The enthalpy of vapour leaving the compressor is 1650 kJ/kg.
5.40 A refrigerator with Freon-12 as refrigerant operates with an evaporator temperature of 

248 K (P = 1.2 bar, S = 0.7130 kJ/kg K, H = 176.22 kJ/kg) and a condensation temperature of
298 K (P = 6.4 bar, S = 0.224 kJ/kg K, H = 59.17 kJ/kg). The saturated liquid leaving the
condenser is passed through an expansion valve and an evaporator. The vapour leaving the
evaporator is saturated.
(a) If the refrigerator is rated at 1.5 ton, what is the circulation rate of Freon-12?
(b) By how much the circulation rate would be reduced, if the throttle valve were replaced by a

turbine?
(c) The liquid leaving the condenser is passed through a counter-current heat 

exchanger where it gives off its heat to the vapour leaving the evaporator. The liquid leaving
the condenser is at 298 K and the vapour leaving the evaporator is at 248 K. In the
exchanger the vapour gets heated to 292 K (P = 1.2 bar, H = 203.53 kJ/kg, 
S = 0.8164 kJ/kg K). What would be the circulation rate of Freon-12?

(d) What is the COP in each of the above cases?
Enthalpy of superheated vapour at 6.4 bar and having an entropy 0.7130 kJ/kg K = 
204.69 kJ/kg. Enthalpy of superheated vapour at 6.4 bar and having an entropy 
0.8164 kJ/kg K = 241.90 kJ/kg. Enthalpy and entropy of superheated vapour at 
P = 1.2 bar and T = 248 K are 203.53 kJ/kg K and 0.8164 kJ/kg K respectively.

5.41 A refrigerating machine using ammonia as the refrigerant is employed for producing 
500 kg/h of ice from water. Ammonia boils at 266 K and condenses at 293 K. The water in the
condenser gets heated from 283 K to 288 K. Calculate the theoretical minimum power of the
compressor and the rate of circulation of cooling water. The latent heat of fusion of water is
339.1 kJ/kg.

5.42 A refrigeration system requires 1 kW of power for a refrigeration rate of 3 kJ/s. Determine:
(a) The coefficient of performance



(b) The heat rejected by the system
(c) The lowest temperature that the system can maintain if the heat is rejected at 308 K.

5 .43 An ideal vapour-compression unit with Freon-12 as refrigerant operates between an
evaporator temperature of 243 K and a condenser temperature of 308 K. If the power input to the
compressor is 50 kW, what is the refrigeration capacity (in tons) of refrigeration? The enthalpy
of saturated liquid Freon-12 at 308 K is 69.55 kJ/kg. The enthalpy of saturated vapour at 243 K
is 174.2 kJ/kg. The enthalpy of superheated vapour leaving the compressor is 200 kJ/kg.

5.44 A cold room is to be maintained at 261 K using an air-refrigeration system which should
absorb 1000 kJ/minute. Cooling water is available at 293 K. Air leaves the compressor at 506.5
kPa and later expanded to 101.3 kPa. Assume air to behave as an ideal gas and calculate COP
and power requirements. Take CP = 1.008 kJ/kg K and g = 1.4.

5.45 A heat pump is used for heating the inside of a building in the winter and for air-conditioning
in the summer. The average winter temperatures are 278 K outside and 
293 K inside. The average summer temperatures are 303 K outside and 299 K inside. A 5 K
temperature approach is allowed in all cases. Determine the work required in both cases as a
fraction of heat input assuming ideal cycle.

5.46 Nitrogen at 200 K and 200 bar is expanded reversibly through an adiabatic turbine to
saturation and is then allowed to pass through a throttle valve to a pressure of 1 bar.
(a) What percentage of the gas is liquefied?
(b) The gas leaving the separator is passed through a heat exchanger kept between the turbine

and the valve for cooling the high-pressure stream to the valve. A 5 K approach is desired at
the hot end of this exchanger. Determine the per cent of nitrogen liquefied.

(Refer Perry and Chilton: Chemical Engineer’s Handbook for enthalpy data of nitrogen.)
5.47 Air is to be liquefied in a Linde-liquefaction system. The air enters the throttle valve at 300 K

and 100 bar and is expanded there to 1 bar. The flow rate of air is 85 m3/h at a temperature of
289 K and pressure of 1 bar. Assume no heat losses, zero temperature difference at the warm
end of the exchanger, and adiabatic compression. Determine:
(a) The rate of production of liquid in kg/h and the fraction of air liquefied
(b) The rate of production of liquid and the fraction of air liquefied if a heat loss of 

2.5 kJ/kg and a temperature approach of 15 K are to be accounted.
5.48 The low-pressure side of the throttle valve in the Linde process for the liquefaction of

methane is maintained at 1 bar (the enthalpy of saturated liquid and vapour at 1 bar are 285
kJ/kg and 797 kJ/kg respectively). The gas leaves the compressor at 60 bar and 
300 K (H = 1140 kJ/kg). The uncondensed gases are passed through the heat exchanger where it
gets heated to 295 K (H = 1189 kJ/kg). Determine:
(a) The fraction of the gas liquefied
(b) The temperature of the gas at the high-pressure side of the valve.

5.49 In the Linde process for liquefaction, air is compressed from a pressure of 1 bar to 200 bar.
Air at a rate of 200 kg/h is treated. The air entering the compressor is at 298 K 
(H = 510 kJ/kg) and that leaving it is cooled to 298 K (H = 474 kJ/kg). The air is throttled to a
pressure of 1 bar. The enthalpy of saturated liquid at 1 bar is 92 kJ/kg. Heat loss from the unit is



estimated to be 8.3 kJ/kg of air. Determine:
(a) The rate of liquefaction
(b) The power requirement.

5.50 An ideal regenerative cycle operates with steam supplied at 2800 kPa and 773 K and
condenser pressure of 5 kPa. Extraction points provided are at 350 kPa and 75 kPa, one closed,
and the other open. Neglecting pump work, calculate the thermal efficiency of the plant.

5.51 In a steam power plant operating on the Rankine cycle, the turbine is supplied with
superheated steam at 2600 kPa and 573 K. The steam leaving the turbine containing 93% vapour
is sent to a condenser operated at 13.6 kPa. The feed water pump takes in water at 13.0 kPa and
319 K and delivers water to the boiler at 2900 kPa. Superheated steam as it leaves the boiler is
at 2800 kPa and 598 K. Determine the following for kg steam flowing through the plant:
(a) Pump work
(b) Turbine work
(c) Heat transfer in the line between boiler and turbine
(d) Heat transfer in boiler
(e) Heat transfer in condenser.

5.52 In a steam power plant, steam is supplied to the high-pressure turbine at 2800 kPa and 648 K.
It is expanded to 558 kPa and sent to the boiler where it is heated to 558 kPa and 648 K. It is
then expanded to a final pressure of 2.5 kPa in the low-pressure turbine. Determine:
(a) The ideal reheat cycle efficiency
(b) The ideal Rankine cycle efficiency in the absence of reheating.

5.53 A steam turbine power plant operates on a regenerative cycle. Steam enters the turbine at
3500 kPa and 710 K. A fraction of the steam is extracted at 211 kPa and sent to an open heater
and the remainder is condensed at 7 kPa. Neglecting pump work, determine the thermal
efficiency.

5.54 In a steam power plant of the regenerative type, steam is supplied to the turbine at 2800 kPa
and 648 K. The condenser is operated at 7 kPa. The steam is extracted from the turbine at 684
kPa and 81.5 kPa and sent separately to two closed heaters. Determine the thermal efficiency of
the cycle.

5.55 The turbine of a 1-MW steam power plant is supplied with superheated steam at 3000 kPa
and 573 K, where it is expanded to the condenser pressure of 5 kPa. The isentropic efficiency of
the turbine is 85%. The saturated liquid leaving the condenser is pumped to the boiler pressure
by means of the feed water pump, the thermodynamic efficiency of which is 80%. Determine:
(a) The efficiency of the ideal Rankine cycle
(b) Thermal efficiency of the cycle
(c) The rate of production of steam.

5.56 The high-pressure turbine of a steam power plant is supplied with superheated steam at 3000
kPa and 773 K. After expansion to 600 kPa, the exhaust steam is returned to the boiler to heat it
to 773 K and 600 kPa. It then enters the low-pressure turbine and expanded to 5 kPa. The
exhaust steam leaving the turbine is taken to a condenser operated at 5 kPa. The saturated liquid
leaving the condenser is pumped to the boiler pressure by means of feed water pump. The



isentropic efficiency of the turbine is 
0.85 and that of the pump is 0.7. What is the thermal efficiency of the plant?

5.57 Superheated steam at 3000 kPa and 573 K is supplied to the turbine of a steam power plant
operating on the regenerative cycle. A fraction of the steam at 400 kPa is extracted from the
turbine and is sent to the feed water-heater and the remainder is expanded to the condenser
pressure of 10 kPa and admitted to the condenser. The saturated liquid leaving the condenser is
pumped to a pressure of 400 kPa and enters the heater where it exchanges heat with the extracted
steam. The exit streams leaving the heater are combined together and pumped to the boiler.
Determine the thermal efficiency of the cycle.

5.58 A thermal power plant operating on Rankine cycle is rated at 1 MW. Superheated steam at
5000 kPa and 673 K enters the turbine where it is expanded to the condenser pressure of 7 kPa.
The saturated liquid leaving the condenser is pumped to the boiler pressure, the isentropic
efficiency of the pump being 75%. The isentropic efficiency of the turbine is 80%. Determine:
(a) Thermal efficiency of the plant
(b) The rate of production of steam.

5.59 An 80-MW steam power plant is operated on Rankine cycle. The turbine is fed with
superheated steam at 8600 kPa and 773 K where it is expanded to the condenser pressure of 10
kPa. The saturated liquid leaving the condenser is pumped to the boiler. The isentropic
efficiencies of both the pump and the turbine are 75%. Determine:
(a) The thermal efficiency of an ideal Rankine cycle for the stated conditions
(b) Thermal efficiency of the cycle
(c) Rate of production of steam
(d) Rate of heat input in the boiler and the condenser.

5.60 Superheated steam enters the turbine of a steam power plant operating on regenerative cycle at
4100 kPa and 700 K. After expansion to 404 kPa, some of the steam is extracted from the turbine
for the purpose of heating the feed water in an open feed water heater. The pressure in the feed
water heater is 404 kPa and the water leaving it is saturated liquid at 404 kPa. The steam not
extracted is expanded to a pressure of 7 kPa. What is the thermal efficiency of the cycle?

5.61 It is desired to determine the effect of turbine inlet pressure on the performance of a Rankine
cycle. Steam enters the turbine at 650 K and exhausts at 14 kPa. Calculate the cycle thermal
efficiency and moisture content of steam leaving the turbine for the turbine inlet pressure of 700
kPa, 3500 kPa, 7000 kPa and 14000 kPa.

5.62 It is desired to study the effect of turbine inlet temperature on the performance of an ideal
Rankine cycle. Steam enters the turbine at 3500 kPa and exhausts at 14 kPa. Calculate the cycle
thermal efficiency and moisture content of the steam leaving the turbine for the inlet temperatures
of 573 K, 623 K, 873 K and 923 K.

5.63 An air-standard Otto cycle operates with a compression ratio of 8 and a maximum
temperature per cycle of 1400 K. If the temperature and pressure at the beginning of
compression stroke are 300 K and 100 kPa respectively, determine the following assuming air
to be an ideal gas with constant specific heats CP = 1.005 kJ/kg K and CV = 
0.718 kJ/kg K:
(a) The heat supplied



(b) The work produced
(c) The thermal efficiency.

5.64 Determine the thermal efficiency and the work output per kg of air of an air-standard Otto
cycle with a compression ratio of 8. The temperature and pressure at the beginning of
compression stroke are 300 K and 100 kPa. Heat supplied to the engine is 2000 kJ/kg. Assume
air as an ideal gas with CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K.

5.65 For an air-standard Otto cycle the temperature and pressure at the beginning of compression
stroke are 310 K and 100 kPa respectively. The maximum temperature and pressure permitted
are 3000 K and 7000 kPa respectively. Assuming air as an ideal gas with 
CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K, determine
(a) The compression ratio
(b) The thermal efficiency
(c) The net work output from the engine.

5.66 In an air-standard Otto cycle, the work output per kg air is 1000 kJ and the temperature at the
end of heat addition is 3500 K and that at the end of compression process is 
800 K. Determine the compression ratio of the engine assuming air as an ideal gas with CP =
1.005 kJ/kg K and CV = 0.718 kJ/kg K.

5.67 In an air-standard Diesel cycle, the temperature, pressure, and volume at the beginning of the
compression stroke are respectively 300 K, 100 kPa, and 0.05 m3. The pressure at the end of
compression stroke is 4000 kPa and the heat supplied is 500 kJ/kg. Assuming air as an ideal gas
with CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K, determine:
(a) The compression ratio
(b) The cut-off ratio
(c) The work done per cycle
(d) The thermal efficiency.

5.68 An air-standard Otto cycle operates on 5 kg of air with a compression ratio of 10. If the
temperature and pressure at the beginning of compression stroke are 310 K and 80 kPa and the
heat supplied is 500 kJ, determine the following, assuming air to be an ideal gas with constant
specific heats of CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K.
(a) The pressure and temperature for each step in the process
(b) The net work output
(c) The thermal efficiency.

5.69 Compare the thermal efficiency of an Otto cycle of compression ratio 8 and operating with air
(g =1.4) with that of an air-standard Diesel cycle of the same compression ratio and a cut-off
ratio of 2. How does the comparison change if the cut-off ratio is 3?

5.70 A 6-cylinder reciprocating engine operates on air-standard Diesel cycle, each cylinder having
115 mm bore and 125 mm stroke and a speed of 2000 rpm. The temperature and pressure at the
beginning of compression stroke are 300 K and 100 kPa respectively and the maximum
temperature permitted is 1650 K. The clearance volume is one-eighth of the stroke volume.
Assume air as an ideal gas with CP = 1.005 kJ/kg K and CV = 



0.718 kJ/kg K. Calculate:
(a) The compression ratio
(b) The temperature and pressure after compression
(c) The thermal efficiency
(d) The power output from the engine.

5.71 For an air-standard Diesel cycle, the temperature and pressure at the beginning of the
compression stroke are 325 K and 100 kPa. The pressure after compression is 4000 kPa. The
heat supplied is 600 kJ/kg of air. Assume air as an ideal gas with CP = 1.005 kJ/kg K and CV =
0.718 kJ/kg K. Determine
(a) The compression ratio
(b) The cut-off ratio
(c) The work output
(d) The thermal efficiency.

5.72 In an air-standard Diesel cycle, the pressure and temperature at the beginning of 
the compression stroke are 100 kPa and 295 K respectively, and the heat supplied is 
1500 J/mol, what are the compression ratio and the expansion ratio of the cycle if the pressure at
the end of combustion step is 400 kPa. Assume air to be an ideal gas with 
CP = (7/2)R and CV = (5/2)R.

5.73 An air-standard Diesel cycle operates with a compression ratio of 16. If the temperature and
pressure at the beginning of compression stroke are 310 K and 100 kPa and the heat supplied is
accompanied by an increase in entropy of 1.2 kJ/kg K determine the following, assuming air to
be an ideal gas with constant specific heats of CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K.
(a) The maximum temperature
(b) The cut-off ratio
(c) The heat supplied
(d) The thermal efficiency.

5.74 In an air-standard Diesel cycle operating with 5 kg air, the temperature and pressure at the
beginning of compression stroke are 310 K and 80 kPa. The heat rejected per cycle is 4000 kJ
and the maximum temperature per cycle is 3000 K. If the efficiency of the cycle is 60 per cent
determine the compression ratio assuming air to be an ideal gas with constant specific heats of
CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K.

5.75 An air-standard Diesel cycle has an initial pressure and temperature of 100 kPa and 
300 K. The compression ratio is 14. Temperature at the end of heat supply is 1980 K. The
specific heat ratios are 1.37, 1.34, and 1.31 respectively for the compression, heat supply, and
expansion processes. Determine:
(a) The thermal efficiency
(b) The work output from the cycle per kg air
(c) The entropy change for the heat supply process.

5.76 In an air-standard Diesel cycle, the compression ratio is 16 and the cut-off ratio is 3. The
conditions at the beginning of the compression stroke are 100 kPa and 300 K. Assuming air as an



ideal gas with CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K, determine the following:
(a) The heat supplied
(b) The net work output
(c) The thermal efficiency.

5.77 In air-standard dual cycle, the temperature and pressure at the start of the compression stroke
are 300 K and 100 kPa. The compression ratio is 15 and the maximum temperature is 3000 K.
The maximum pressure is 7000 kPa. Determine:
(a) The work done per kg air
(b) The heat supplied.

Assume air to be an ideal gas with CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K.
5.78 In a gas-turbine cycle, the air enters the compressor at 100 kPa and 300 K and leaves at 500

kPa. The maximum temperature is 1200 K. Assume a compressor efficiency of 80 per cent, a
turbine efficiency of 85 per cent and a pressure drop between the compressor and turbine of 15
kPa. Take CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K. Determine:
(a) The compressor work
(b) The turbine work
(c) The cycle efficiency.

5.79 In an air-standard gas-turbine cycle with a pressure ratio of 8, the temperature and pressure of
the air entering the compressor are 300 K and 100 kPa. The permissible maximum temperature
is 1300 K. Determine:
(a) The temperature and pressure at each point in the cycle
(b) The compressor work
(c) The turbine work
(d) The thermal efficiency.

5.80 A gas-turbine power plant operates with a pressure ratio of 6. The temperature of the air
entering the compressor is 300 K and the maximum permissible temperature in the turbine is
1100 K. Determine:
(a) The efficiency of an ideal gas-turbine cycle if g = 1.4,
(b) The thermal efficiency of the power plant if the compressor and the turbine operate

adiabatically but reversibly with efficiencies 83 per cent and 86 per cent respectively.
5.81 The pressure ratio across the compressor of an air-standard Brayton cycle is 4. The

conditions of air at the beginning of the compression stroke are 290 K and 100 kPa. 
The maximum temperature in the cycle is 1100 K. Assume constant specific heats 
CP = 1.005 kJ/kg K and CV = 0.718 kJ/kg K. The rate of airflow is 10 kg/s. Determine:
(a) The compressor work
(b) The turbine work
(c) The thermal efficiency of the cycle
(d) The mean effective pressure, if this cycle were utilised for a reciprocating machine.

5.82 A stationary gas-turbine power plant operates on the ideal Brayton cycle and delivers 20,000
hp to an electric generator. The maximum temperature and pressure are 1100 K and 420 kPa



respectively and the minimum temperature and pressure are 290 K and 
100 kPa.
(a) What is the power output of the turbine?
(b) What fraction of the output of the turbine is used to drive the compressor?
(c) What is the rate of circulation of air in kg/s?

5.83 The compressor of a gas-turbine power plant operating on Brayton cycle is supplied with air
at 300 K and 100 kPa. The temperature of air at the inlet to the turbine is 900 K. The pressure
ratio is 4. The pressure drop in the combustion chamber is 10 kPa and that in the exit line from
the turbine is 5 kPa. Determine:
(a) The temperature and pressure at each point
(b) The thermal efficiency of the cycle.



6

Thermodynamic Properties 
of Pure Fluids
Determination of thermodynamic properties of a fluid that cannot be measured directly necessitates
relating such properties to measurable quantities. In this chapter some new thermodynamic functions
are introduced and the equations giving the interrelationships between various thermodynamic
properties are discussed. These equations are derived using the method of partial derivatives. The
method of Jacobians for the systematic derivation of thermodynamic relations is also presented and
the method is illustrated with some typical examples. Relationships formulated in this chapter would
be useful in evaluating numerical values of all types of thermodynamic properties which, in turn, are
necessary for the practical calculations like the evaluation of the heat and work requirements in
industrially important processes. Using these relations, the thermodynamic properties of pure fluids
can be evaluated from the measurable quantities like pressure-volume-temperature relationship, heat
capacity data and coefficients of expansion and compressibility.

6.1 CLASSIFICATION OF THERMODYNAMIC PROPERTIES
Thermodynamic properties of fluids can be classified into three broad groups: the reference
properties, the energy properties and the derived properties.

6.1.1 Reference Properties
Also known as primary properties, these properties are the ones that are used to define the state of
the system. They have absolute values, as against energy properties, which are measured relative to
some arbitrary reference state. Examples of reference properties are temperature, pressure, volume,
and entropy. Of these, temperature and pressure are intensive, and volume and entropy are extensive.
In addition to these, in dealing with the solutions, the composition is also treated as a reference
property.

6.1.2 Energy Properties
The four energy properties are the internal energy (U), enthalpy (H), the Helmholtz free energy (A),
and the Gibbs free energy (G). All are extensive thermodynamic properties and are known relative to
some reference state. These are referred to as energy properties, because, the changes in these
thermodynamic functions indicate useful work under certain conditions of restraint.

6.1.3 Derived Properties
These are partial derivatives of energy properties or the reference properties. Examples include
specific heat (C), coefficient of expansion (b), Joule–Thomson coefficient (m), and coefficient of



compressibility (k).
Among the four energy properties, the internal energy and enthalpy were introduced in earlier
chapters. In the following sections, the Helmholtz work function and the Gibbs free energy are
defined. Both these functions involve entropy in their definition and in many cases it is convenient to
work with these properties rather than the entropy itself.

6.2 WORK FUNCTION (HELMHOLTZ FREE ENERGY)
The Helmholtz free energy (A) of a system is defined as

A = U – TS………(6.1)

where U, T, and S are the internal energy, temperature, and entropy of the system respectively. Since
U, T, and S are characteristic of the system and depend only on its thermodynamic state, Helmholtz
free energy is a state function. Since U and S are both extensive, A also is an extensive property.
To understand the physical significance of the work function, consider an isothermal reversible
change occurring from state 1 to state 2. Then from Eq. (6.1), the change in the work function
accompanying this process is

DA = DU – TDS………(6.2)

DA, DU , and DS denote the changes in the work function, the internal energy and the entropy
respectively of the system during the process. Since the process is reversible, the heat absorbed QR =
TDS, and Eq. (6.2) can be written as

DA = DU – QR………(6.3)

According to the first law of thermodynamics for a closed system,
DU = Q – W………(6.4)

Substituting this result in Eq. (6.3), we get
DA = – WR

or
WR = – DA………(6.5)

The right-hand side of Eq. (6.5) is the decrease in the work function. The equation therefore means
that the decrease in the work function accompanying a process at constant temperature is equal to the
reversible work done by the system during the process. Since the reversible work is the maximum
work obtainable from any change in state, the decrease in the work function in an isothermal process
is a measure of the maximum work available from a given change of state. In any actual isothermal
process, the work done by the system would be less than the decrease in the Helmholtz free energy,
but the maximum work that can be done by the system is equal to 
– DA in the limit of a reversible process.
Consider an irreversible chemical reaction in which zinc reacts with dilute sulphuric acid producing
zinc sulphate and hydrogen at constant temperature and pressure. No work, other than the small
amount done against the atmosphere by the evolved hydrogen, is available from this process. The
same reaction may be carried out reversibly in a galvanic cell in which an electrode made of zinc is



connected through an external circuit to another electrode of hydrogen in contact with a platinised
electrode. The electrical energy now produced can be utilised to run a device such as an electric
motor. If at every instant the external electric system is made to exert such a large counter e.m.f., that,
when infinitesimally increased, would force current in the opposite direction, thus reversing the
reaction. The decrease in the work function in this process would be equal to the total work done by
the system, which include both the electrical work and the work of expansion.
Helmholtz free energy being a state function, –DA would be the same for reversible as well as for
irreversible process occurring between the same end states. But, whereas in the former it represents
the maximum work obtained, in the latter, it represents the maximum work which would have
resulted, had all irreversibilities been eliminated. It should also be noted that any change in state,
isothermal or otherwise, is accompanied by a definite change in the work function, but it is only for
an isothermal process that this change is a measure of the maximum work.

6.3 GIBBS FREE ENERGY
For the process in which zinc metal is allowed to react with dilute acid reversibly in a galvanic cell,
we have seen that the decrease in Helmholtz free energy determines the maximum work, which
includes the electrical energy, and the work of expansion resulting from the reaction. The maximum
‘useful work’, which in this case, is the amount of electrical energy produced, is given by the
decrease in another thermodynamic property known as the Gibbs free energy. It is denoted by G, and
like the work function, makes use of entropy in its definition.

G = H – TS………(6.6)

Like the work function A, Gibbs free energy G is a single valued function of the thermodynamic state
of the system and is an extensive property. It is widely used in the study of phase equilibria and
chemical reaction equilibria. Since by definition, enthalpy H = U + PV, Eq. (6.6) can be written as

G = (U + PV) – TS = A + PV………(6.7)

Equation (6.7) reveals that A is related to G in the same way as U is related to H
The physical significance of the Gibbs free energy function can be made clear if we consider a
reversible process at constant temperature and pressure. Equation (6.7) gives DG, the change in free
energy for a finite change in the state of the system as

DG = DA + D(PV)………(6.8)
We have already seen that DA = –WR for a reversible process at constant temperature. For a constant
pressure process, D(PV) = P(DV). Therefore, Eq. (6.8) becomes

DG = – WR + PDV

or
– DG = WR – PDV………(6.9)

WR represents the total reversible work obtainable from a given change of state, which includes in
addition to work of expansion, other forms of work such as electrical and surface work. Thus, we see
that the decrease in Gibbs free energy in a process occurring at constant temperature and pressure is
the maximum work other than the work of expansion available from the process, or the maximum ‘net



work’, , obtainable from the process.
 = – DG………(6.10)

It is because of the fact that the change in Gibbs function G measures the net useful work, it is known
as the ‘free energy’.
For the electrochemical cell that we have considered earlier, the total work obtained (WR) includes
electrical work and the work done against the constant pressure of the atmosphere (PDV). The latter
work is always done whether the process is reversible or irreversible. Thus, the maximum electrical
work that could be done by the system undergoing a given change in state is less than the total
maximum work, – DA, by the expansion work and is measured by the decrease in the Gibbs free
energy, – DG.
The value of DG in any process is quite definite, no matter under what conditions the process is
carried out, but only when the temperature and pressure are constant the free energy change would
represent the maximum net work available from the given change in state.

6.4 RELATIONSHIPS AMONG THERMODYNAMIC PROPERTIES
The method of partial derivatives is used here to develop the important thermodynamic relationships.
The major thrust of this section is to express thermodynamic properties in terms of measurable
quantities.

6.4.1 Exact Differential Equations
Let z be a single-valued continuous function of two independent variables x and y.

z = f(x, y)
Then the total differential of z can be written in terms of its partial derivatives with respect to
independent variables x and y as

This value is independent of the path followed in bringing about the change from the initial condition
1 to final condition 2. The thermodynamic properties, in general, possess these characteristics of the
function z. For example, the work function or the free energy can be regarded as single valued
functions of the thermodynamic state, and dA and dG can be treated as exact differentials. Equation
(6.11) can be written as

dz = M dx + N dy………(6.12)
where M = (∂z/∂x)y and N = (∂z/∂y)x.



Also, we can write

A property of exact differential equation that we will be using frequently is shown by Eq. (6.13).

6.4.2 Fundamental Property Relations
The differentials of energy properties form the basis for the derivation of a large number of equations
relating thermodynamic properties. These are developed below for systems of constant mass and
composition in which the only external force is the pressure and the process occurring is reversible.
The first law for non-flow process is provided by Eq. (2.5) as dU = dQ – dW. For the present case,
the heat and work terms are related to the properties of the system as dQ = T dS and 
dW = P dV, so that Eq. (2.5) becomes

Equations (6.14), (6.16), (6.17), and (6.18) are the fundamental differential equations which express
the energy properties in terms of the four reference properties P, V, T, and S. It can be seen that each
of the energy properties is functionally related to a special pair of variables. For example, Eq. (6.18)
shows that

G = f(P, T)
Thus P and T are the canonical variables or special variables for Gibbs free energy G. Canonical
variables for the work function are V and T.

6.4.3 Maxwell’s Equations



Maxwell’s equations  are helpful in replacing unmeasurable quantities appearing in thermodynamic
equations by measurable quantities. Using these relations, the partial derivatives of entropy with
respect to pressure and volume are expressed as derivatives possessing easily identifiable physical
meaning. Each of the four Maxwell’s equations is derived from the exact differential equations of the
four energy properties.
Consider the exact differential of internal energy, i.e. Eq. (6.14). At constant volume, it becomes

This is the first of the four Maxwell’s equations. The remaining three equations are obtained in a
similar way starting from Eqs. (6.16), (6.17), and (6.18). The results are given below.



Mnemonic diagram. A square drawn with the diagonal arrows pointing upwards is shown in 
Fig. 6.1. The sides of the squares are labelled with the energy properties in alphabetical order 
(A, G, H, and U) starting with the topside. The corners are labelled with the canonical variables of
the energy properties in such a way that each energy property is flanked by its canonical variables.

The above diagram can be used as a convenient tool for writing the differential equations for the
energy properties as well as the Maxwell’s equations. The differential equations 
contain the differentials of its natural variables and their coefficients. The differentials 
are obtained from the variables adjacent to the energy property under consideration, and the
coefficients are obtained from the variables that are diametrically opposite to these variables. 
The sign of the coefficient is to be decided from the direction in which the arrows are 
pointing. If the arrow is pointing away from the canonical variable, the coefficient is positive 
and if the arrow is pointing towards the canonical variable, the coefficient is negative. For example,
dU is written in terms of its canonical variables dS and dV. The coefficients are respectively 
T and P which are diametrically opposite to S and V. Since the arrow is pointing away from 
S and towards V the sign of T is positive and that of P is negative. Therefore, dU = T dS – P dV.
To get Maxwell’s equations, Fig. 6.1 is thus used: Consider, for illustration, the topside of the square.
The partial derivative formed by the canonical variables is (∂T/∂V). The suffix to be used is the
variable that is diametrically opposite to the first variable, i.e. S. Then one of the partial derivatives
in the desired relation is (∂T/∂V)S. The other derivative is obtained from 
the opposite side of the square in a similar way. This is (∂P/∂S)V. Since the direction of arrows
being opposite, i.e. towards T and away from P, the sign of the derivatives will be opposite.
Therefore,

EXAMPLE 6.1 The molar volume of an organic liquid at 300 K and 1 bar is 0.1 m3/kmol and its
coefficient of expansion is 1.25 � 10–3 K–1. What would be the change in entropy if the pressure is



increased to 20 bar at 300 K? What assumption is involved in the solution?
Solution The coefficient of volume expansion is defined as

The change in entropy is

DS = –1.25 � 10–4 (P2 – P1) = – 1.25 � 10–4 (20.0 – 1.0) � 105 = – 237.5 J/kmol K

It is assumed that the derivative (∂V/∂T)P is constant in the pressure range 1 to 20 bar.

6.4.4 Clapeyron Equation
The Clapeyron equation predicts the dependence of equilibrium pressure on temperature when two
phases of a given substance coexist. It is given by

………(6.25)
where DH and DV are the enthalpy and volume change accompanying a phase change. It can be
derived from Maxwell’s relation Eq. (6.23), which is applicable to any closed, homogeneous or
heterogeneous system in equilibrium, with an external pressure. Consider a single component system
containing two phases, say liquid and vapour, in thermodynamic equilibrium. By the phase rule, the
system is univariant, i.e. only one intensive parameter can be varied independently. The equilibrium
pressure (for the present case, the vapour pressure), is dependent on temperature only and is
independent of volume. Thus, the partial derivative (∂P/∂T)V in Eq. (6.23) can be replaced by
(dP/dT) without the constant volume restriction. Moreover, (∂S/∂V)T = DS/DV, where DS is the
entropy change when a given quantity of the substance is transferred from one phase to the other at
constant temperature and DV is the accompanying volume change. (DS/DV) is a constant at a given
temperature, for both DS and DV are extensive quantities that are proportional to the amount of
material transferred. As we are dealing with equilibrium and therefore with a reversible process, DS
= Q/T = DH/T, where DH is the change in enthalpy during the phase change or the latent heat of phase
change. Substituting these into Eq. (6.23) we get the Clapeyron equation, Eq. (6.25):



Clapeyron equation may be used for various purposes. It can be used to calculate the heat of
vaporisation, if the variation of vapour pressure with temperature is known. Alternatively, if the heat
of vaporisation is available, it is possible to predict the vapour pressure variation with temperature.
[Note: An alternative derivation for the Clapeyron equation is provided in Chapter 8. See 
Example 8.3.]

Clausius-Clapeyron equation. If the temperature is not too near the critical point, the volume of
the liquid is small in comparison with the volume of vapour. The volume change accompanying
vaporisation DV = VG – VL is therefore approximately equal to VG, the molar volume of vapour.
Equation (6.25) now becomes

EXAMPLE 6.2 Calculate the vapour pressure of water at 363 K, if the vapour pressure at 373 K is
101.3 kPa. The mean heat of vaporisation in this temperature range is 2275 kJ/kg.

Solution Refer Eq. (6.28). T1 = 363 K; T2 = 373 K;  = 101.3 kPa; DH = 2275 � 18 kJ/kmol; R =
8.314 kJ/kmol K.
Substituting the values in Eq. (6.28), we get



EXAMPLE 6.3 Mercury has a density of 13.69 � 103 kg/m3 in the liquid state and 14.193 � 
103 kg/m3 in the solid state, both measured at the melting point of 234.33 K at 1 bar. If the heat of
fusion of mercury is 9.7876 kJ/kg, what is the melting point of mercury at 10 bar?
Solution The Clapeyron equation [Eq. (6.25)], can be rearranged as:

6.4.5 Entropy–Heat Capacity Relationships
Maxwell’s equations provide the partial derivatives of entropy with pressure or volume. The partial
derivatives of entropy with temperature are provided by the entropy–heat capacity relationships.
The specific heats at constant pressure (CP) and constant volume (CV) are discussed in 
Section 2.7. These are defined as under,



An important use of Eqs. (6.31) and (6.32) is in the determination of entropy change of a system at
constant pressure or at constant volume respectively, for a specified change in temperature. Equation
(6.31) on integration gives

If CP varies with temperature, the required integration can be performed analytically provided CP is
expressed as a function of temperature. In the absence of such a relationship, graphical integration
will give the desired result. In the graphical method, the values of CP/T are plotted against T (or, CP
against ln T) and the area under the curve between T1 and T2 (or, between ln T1 and ln T2) will give
DS.
EXAMPLE 6.4 Determine the increase in entropy of solid magnesium when the temperature is
increased from 300 K to 800 K at atmospheric pressure. The heat capacity is given by the following
relation

CP = 26.04 + 5.586 � 10–3 T + 28.476 � 104 T–2



where CP is in J/mol K and temperature in K.

Solution Equation (6.31) on integration gives

6.4.6 Differential Equations for Entropy
The state of a pure homogeneous fluid is uniquely determined by specifying any two thermodynamic
properties. Choosing temperature and pressure as variables, other properties like entropy are related
to them as S = f(P, T). The total differential of S is

Substituting Eqs. (6.24) and (6.31) into the above

The partial derivative (∂P/∂T)V appearing in Eq. (6.37) can be expressed in terms of (∂V/∂T)P and
(∂V/∂P)T which, in turn, are related to the coefficient of volume expansion and compressibility of the
substance respectively. This is done as below.
Let the volume V be expressed as a function of P and T. V = f(P, T). Then the total differential of V
can be written as



6.4.7 Modified Equations for U and H
Changes in the internal energy and enthalpy can now be expressed in terms of changes in measurable
quantities like pressure, volume, temperature, and specific heat of the fluid. Equations (6.14) and
(6.16) give the differentials of internal energy and enthalpy respectively. Modified equations for U
a nd H would result when Eq. (6.35) or Eq. (6.39) is substituted into Eqs. (6.14) and (6.16).
Rewriting Eq. (6.14) using Eq. (6.39), we get



EXAMPLE 6.5 Develop equations for evaluating the change in internal energy and change in enthalpy
for process involving ideal gases.
Solution Equations (6.40) and (6.41) are used for evaluating dU and dH.



The preceding two equations indicate that the internal energy and enthalpy of an ideal gas are
functions of temperature alone, and for isothermal process there would be no change in these
properties.
EXAMPLE 6.6 The equation of state of a certain substance is given by the expression 
V = RT/P – C/T3, and the specific heat is given by the relation CP = A + BT where A, B, and C are
constants. Derive expressions for changes in internal energy, enthalpy and entropy for
(a) an isothermal process
(b) an isobaric process.

Solution Since V = RT/P – C/T3,



(b) Isobaric process: dP = 0. Equation (6.42) reduces to dU = CP dT – P dV. Since

From Eq. (6.35), change in the entropy is

6.4.8 Effect of Temperature, Pressure and Volume on U, H and S
The most useful relations for the estimation of various thermodynamic properties of a fluid in a given
state are those which give the effect of temperature and pressure on entropy and enthalpy. The partial
derivatives representing these effects are given below in terms of measurable quantities, although
these effects are contained in the equations developed in previous sections.
The effects of pressure and temperature on entropy are given by the Maxwell’s equation, 
Eq. (6.24), and the heat capacity relation, Eq. (6.31), respectively. They are reproduced below.



The effects of temperature and volume on internal energy are obtained from Eq. (6.40), which reduces
to the following forms under constant volume and constant temperature restrictions.

The second identity in Eq. (6.47) follows from Eq. (6.38).
Equations to predict the variation of enthalpy with temperature and pressure are derived from 
Eq. (6.41) under the constraints of constant pressure and constant temperature. At constant pressure,
Eq. (6.41) gives

At constant temperature Eq. (6.41) becomes

The method of calculation of entropy and enthalpy of a fluid in a given thermodynamic state using
Eqs. (6.24), (6.31), (6.48) and (6.49) is explained below. Other thermodynamic properties easily
follow from these values. It is assumed that the following data are available.

1. The pressure-volume-temperature relationship for the fluid either as an equation of state or as a
tabulated experimental result.

2. The heat capacity CP0 at pressure P0 and temperature T0.
3. The enthalpy H0 and entropy S0 at temperature T0 and pressure P0.



Assume that the properties are to be evaluated at temperature T and pressure P. This state is
represented by point B in Fig. 6.2.

The entropy (S0) and enthalpy (H0) are known at temperature T0 and pressure P0, the fluid in this
state being represented by point A in Fig. 6.2. Since S and H are state functions, DS and DH for the
fluid will be the same when it undergoes a change of state from state A to state B, as the DS and DH
calculated for any process occurring between states A and B. We can, for convenience, devise a two-
step process for bringing about this change so that the enthalpy and entropy changes in these separate
steps are easily evaluated. During process AC the fluid is heated from T0 to T at constant pressure P0
(step 1) and during the process CB the fluid is compressed from pressure P0 to P at constant
temperature T (step 2). DS and DH for these steps are evaluated thus:

Step 1: Let H� and S� be the enthalpy and entropy at point C. Then by Eqs. (6.48) and (6.31), we
get

Since H0 and S0 are known, H� and S� are readily evaluated by these equations.

Step 2: For process CB, the enthalpy and entropy changes are obtained from Eqs. (6.49) and (6.24)
respectively.



Using the values of H� and S� obtained in step 1 the enthalpy (H) and entropy (S) at point B are
calculated.
The integrals appearing in the preceding two equations are evaluated using the P-V-T data. If the data
are available in the form of an equation of state, the derivative (∂V/∂T)P is obtained by
differentiation, and the integration is performed analytically. Instead, if the P-V-T data are available
as a tabulated result, the integration has to be performed graphically. This is done by plotting V
against T for various constant pressures and measuring the slopes at temperature T. These slopes give
the partial derivative (∂V/∂T)P. These are then plotted against P, and the area under the curve
between pressure P0 and P is found out which gives the integral in Eq. (6.51). For evaluating the
enthalpy, the whole terms within the brackets in Eq. (6.50) are plotted against P and the area is
determined as before.

EXAMPLE 6.7 Calculate the internal energy, enthalpy, entropy and free energy for one mole of
nitrogen at 773 K and 100 bar assuming that nitrogen behaves as an ideal gas. The molal heat capacity
of nitrogen at 1 bar is given as CP = 27.3 + 4.2 � 10–3T, where T is in K and CP is in 
J/mol K. Enthalpy of nitrogen is zero at 273 K and 1 bar. The entropy of nitrogen is 192.4 J/mol K at
298 K and 1 bar.



Solution Assume that the nitrogen is initially at 273 K and 1 bar for evaluation of enthalpy, and at
298 K and 1 bar for evaluation of entropy. Let the gas undergo a change of state in two steps. First, a
constant pressure process at 1 bar when its temperature is increased to 773 K. Secondly, a constant
temperature process at 773 K when the pressure of the gas increases to 100 bar.
Step 1:

EXAMPLE 6.8 Calculate the change in internal energy of 25 kmol of CO2 gas when it is isothermally



expanded from 1.0132 � 104 kPa to 1.0132 � 102 kPa at 373 K. Assume CO2 to obey

Solution The change in internal energy in an isothermal process is given by Eq. (6.47):

Here V1 is the initial volume of the gas which is evaluated from the equation of state.



EXAMPLE 6.9 A gas obeys the equation of state P(V – B) = RT + (AP2)/T, where A and B are
constants. The mean specific heat (CP) at atmospheric pressure is 33.6 J/mol K. If

A = 1.0 � 10–3 m3 K/(bar) mol; B = 8.0 � 10–5 m3/mol
calculate
(a) The entropy change when the state of the gas is changed from state 1 (4 bar, 300 K) to state 2 (12
bar, 400 K).
(b) The mean heat capacity at 12 bar.
Solution (a) The proposed change is assumed to take place in three steps in series as illustrated in
Fig. 6.4.



Step 1: Process AC, isothermal at 300 K
Step 2: Process CD, isobaric at 1 bar.
Step 3: Process DB, isothermal at 400 K
Since the equation of state is

P(V – B) = RT + (AP2)/T
differentiation yields,



6.4.9 Relationship between CP and CV
We have seen that the partial derivatives of entropy with respect to temperature are related to the
specific heats as given by Eqs. (6.31) and (6.32).



which can be rearranged as

If the P-V-T behaviour of the fluid is known either as an equation of state or as a graphical result, Eq.
(6.54) can be used to evaluate the difference between CP and CV over wide ranges of temperature
and pressure.
Equation (6.54) can be written in terms of coefficient of volume expansion (b) and coefficient of
compressibility (k) which are defined as below.



Equation (6.55) is the most convenient form for the calculation of CP – CV of solids and liquids.
Equations (6.54) and (6.55) are particularly valuable because most of the laws developed under
statistical thermodynamics on specific heat deal with CV, though these are rarely determined
experimentally. These equations provide useful tools for calculating CV from experimentally
determined values of CP.
EXAMPLE 6.10 Show that for ideal gases CP – CV = R.

Solution For ideal gases, PV = RT, or V = RT/P. Also,

EXAMPLE 6.11 The coefficient of compressibility and coefficient of volume expansion of mercury
at 273 K and 1 bar are 3.9 � 10–6 (bar)–1 and 1.8 � 10–4 K–1 respectively. Calculate CV for

mercury given that CP = 0.14 kJ/kg K and density = 13.596 � 103 kg/m3.

Solution Using Eq. (6.55),

EXAMPLE 6.12 Show that for a gas obeying van der Waals equation of state,

where a and b are van der Waals constants.
Solution The van der Waals equation is

Differentiate Eq. (3.29) with respect to V at constant T



6.4.10 Ratio of Heat Capacities
Combining Eqs. (6.31) and (6.32) we see that

Rearranging this equation we get



It is to be noted that it is impossible to write the ratio of heat capacities in terms of P-V-T data alone;
entropy appears in at least one of the partial derivatives.

6.4.11 Effect of Pressure and Volume on CP and CV
The change in entropy with changes in temperature and pressure is given by Eq. (6.35).

The above equation reduces to the Maxwell’s equation, Eq. (6.24), under constant temperature (i.e.
when dT = 0) and the heat capacity relation, Eq. (6.31), under constant pressure (i.e. when dP = 0).

Differentiate Eq. (6.24) with respect to temperature, keeping the pressure constant and Eq. (6.31)
with respect to pressure keeping the temperature constant. This results in Eqs. (6.60) and (6.61)
respectively.



Compare Eq. (6.60) with Eq. (6.61). The right-hand sides of these equations are equal. That is,

Equations (6.62) and (6.63) represent the effect of pressure and volume on CP.
The following two equations that give the effect of pressure and volume on CV can be derived in a
manner similar to that used for the derivation of Eqs. (6.62) and (6.63)

Equations (6.62)–(6.65) hold good for any homogeneous substance; however, they are usually
applied to gases.

EXAMPLE 6.13 Show that CP and CV of ideal gases are independent of pressure and volume.

Solution Since PV = RT,

EXAMPLE 6.14 A certain gas is found to obey the following equation of state.



(a) Develop a relation to predict the effect of pressure on CP
(b) What is CP – CV?

Solution Equation (6.62) gives the effect of pressure on CP. The partial derivatives in this equation
are evaluated first.

EXAMPLE 6.15 A gas obeys the relation P(V – b) = RT and has a constant CV. Show that

(a) U is a function of temperature alone
(b) g is constant

(c) P(V – b)g is constant for a reversible adiabatic process.
Solution (a) To prove that U depends only on temperature, it is enough to show that U does not
change with P or V at constant T. Consider Eq. (6.40). At constant temperature this equation can be
simplified to

Since the equation of state is P(V – b) = RT,



Equations (6.67) and (6.68) together mean that U depends only on T
(b) Equation (6.54) gives CP – CV as

Consider S as a function of P and V. That is, S = f(P, V)



This can be written as

6.4.12 Joule–Thomson Coefficient
As discussed in Section 5.3, the Joule–Thomson expansion is employed for cooling and liquefying of
gases. It involves adiabatic throttling of a gas. The enthalpy remains constant during the process. The
Joule–Thomson coefficient (m) is the fall in temperature associated with a unit decrease in pressure
under this condition.

Generally, a gas cools on throttling, so that the Joule–Thomson coefficient is positive. However, it
may take negative values if the temperature increases with the expansion of the gas.
The gas, which is initially at a state represented by the point P in Fig. 6.5, is undergoing Joule–
Thomson expansion. It will experience a rise in temperature till the point Q is reached, and thereafter
the temperature decreases with further decrease in pressure. The slope of the isenthalp is equal to the
Joule–Thomson coefficient as per the defining relation Eq. (6.69). It is positive only in the region
where pressure is less than that at Q and is zero at point Q, where the isenthalp exhibits a maximum.
The locus of the maximum in the isenthalp curves forms the Joule–Thomson inversion curve as
shown in the figure. To the left of this, m is positive and to the right it is negative. Figure 6.6 shows



the complete range of a typical Joule–Thomson inversion curve.

The region bounded by this curve and the temperature axis indicates the conditions under which the
gas would cool on Joule–Thomson expansion, whereas in the region outside this curve throttling
process results in increase in temperature.
The Joule–Thomson coefficient may be calculated from the P-V-T behaviour and specific heat data as
detailed below. The modified differential of enthalpy [Eq. (6.41)] may be taken as the starting point.



EXAMPLE 6.16 Show that the Joule–Thomson coefficient is zero for ideal gases.

Solution For ideal gases, (∂V/∂T)P = R/P. The right-hand side of Eq. (6.70) therefore becomes zero,
which means that the Joule–Thomson coefficient (m) is zero.
EXAMPLE 6.17 Prove that the reversible adiabatic expansion of a gas always results in a
temperature decrease. Prove also that this decrease in temperature is greater than that resulting from
Joule–Thomson expansion between the same initial and final pressures.
Solution For a reversible adiabatic process dS = 0 and Eq. (6.35) reduces to the following form.



6.4.13 Gibbs–Helmholtz Equation
The Gibbs–Helmholtz equation provides the effect of temperature on Gibbs free energy. Consider Eq.
(6.18).

dG = – S dT + V dP………(6.18)
At constant pressure, the above equation reduces to

Even though this equation gives the effect of temperature on G it will be convenient for practical
calculations to replace S in terms of measurable quantities. This can be done as follows.
Noting that d(u/v) = (v du – u dv)/v2, the derivative of G/T can be written as

where H� is a constant of integration whose value is known by the choice of reference state at which
enthalpy is arbitrarily set equal to zero. Expressing CP as a power function of T as 

CP = a + bT + cT2, H = H� + aT + (1/2) bT2 + (1/3) cT3. Substituting these in Eq. (6.74), we get



In Eq. (6.75), I (=G� – a) is a constant which should be evaluated first for applying it for the
calculation of G.

6.5 METHOD OF JACOBIANS
Jacobians are determinants, the elements of which are partial derivatives. The method of Jacobians
can be used as a very powerful but simple tool for deriving the relationships between thermodynamic
properties. In the earlier sections we have developed these relationships through partial derivatives.
All these relations may be derived using the method of Jacobians. Here we discuss the method in
general, and derive a few typical equations which were derived in previous sections using the method
of partial derivatives.

6.5.1 Properties of Jacobians
Let us consider three variables, x, y and z, each of which is a function of the independent variables u
and v. Then,
x = x(u, v), y = y(u, v), z = z(u, v)
The Jacobian of x and y, denoted by [x, y]/[u, v], is defined as,

The following are some of the properties of the Jacobians that are useful in the derivation of
thermodynamic relationships.



The properties 1–5 can be easily verified by writing the Jacobians as determinants and expanding
them. To verify property 6 consider the total differential:

dz = M dx + N dy………(6.84)
Divide this by dv, keeping u constant we get,

Using the property 4, the partial derivatives in the above equation may be eliminated in favour of the
Jacobians as:

and using the property 4, Eq. (6.83) can also be easily verified.
Another relationship among Jacobians which is found to be extremely useful in the derivation of
thermodynamic relations may be developed as follows. Divide Eq. (6.83) by dv, keeping u constant
and express the result in terms of Jacobians.



6.5.2 Thermodynamic Relations through the Method of Jacobians
Fundamental property relations. Consider the differentials of the energy properties that were
developed in section 6.4.2. They are given by Eqs. (6.14) and (6.16)–(6.18). Using property 6, these
equations may be expressed in terms of the Jacobians Eqs. (6.86)–(6.89) respectively, as:

[U, w] = T[S, w] – P[V, w]………(6.86)
[H, w] = T[S, w] + V[P, w]………(6.87)
[A, w] = – S[T, w] – P[V, w]………(6.88)
[G, w] = – S[T, w] + V[P, w]………(6.89)

In Eqs. (6.86)–(6.89), w stands for any thermodynamic property other than the energy property.
Maxwell’s equations. It can be shown that all Maxwell’s equations can be expressed as

[P, V] = [T, S]
For example, consider Maxwell’s equation, Eq. (6.23)

Using property 4, Eq. (6.80), the partial derivatives in Eq. (6.23) may be replaced by the Jacobians.



Coefficients of expansion and compressibility. The volume coefficient of expansion (b) and
coefficient of isothermal compressibility (k) are two other measurable quantities like heat capacities
at constant pressure and constant volume. They are defined as

Hence, we see that all thermodynamic properties can be expressed in terms of measurable quantities
by the method of Jacobians. If the equations contain energy properties U, H, A or G , they may be
eliminated in terms of the reference properties P, V, T and S. Fundamental property relations in terms



of Jacobians, Eqs. (6.86)–(6.89) may be used for this purpose. To eliminate entropy S, Maxwell’s
relations, Eq. (6.90), or the heat capacity relations Eq. (6.91) or Eq. (6.92) may be used. By
introducing wherever possible, b, the volume coefficient of expansion, and k, the coefficient of
isothermal compressibility, the resulting relationships get fully expressed in terms of measurable
quantities. A few examples would be helpful to illustrate the method.

EXAMPLE 6.18 Derive the following by the method of Jacobians:

Solution (a) If entropy were treated as function of temperature and pressure, then



(b) If entropy were treated as function of temperature and volume, then S = f(V, T)

Using Eq. (6.81), Eq. (6.102) may be written as



EXAMPLE 6.19 Derive the following relation between CP and CV using the method of Jacobians:

Solution The heat capacity at constant pressure is given by Eq. (6.91) and heat capacity at constant
volume by Eq. (6.92).

The relationship between Jacobians [S, P] and [S, V] may be obtained using Eq. (6.85).
[x, u] [y, z] + [y, u] [z, x] + [z, u] [x, y] = 0

Put x = S, y = P, z = V, and u = T in the above equation.
[S, T] [P, V] + [P, T] [V, S] + [V, T] [S, P] = 0

On rearrangement, we get



Using Maxwell’s equation, Eq. (6.107) can be written as



EXAMPLE 6.20 Using the method of Jacobians show that

Solution The differential equation for enthalpy in Jacobian notation is given as
[H, w] = T[S, w] + V[P, w]………(6.87)

Let w = T. Then
[H, T] = T[S, T] + V[P, T]………(6.110)

The property 2 of Jacobians permits us to express the (∂H/∂V)T as

EXAMPLE 6.21 Using the method of Jacobians, derive a relationship for the Joule–Thomson
coefficient in terms of measurable quantities.



Solution By definition, the Joule–Thomson coefficient is m = (∂T/∂P)H. In Jacobian form,

6.6 FUGACITY
The concept of fugacity was introduced by G.N. Lewis (1901) and is widely used in solution
thermodynamics to represent the behaviour of real gases. The name fugacity is derived from the Latin
for ‘fleetness’ or the ‘escaping tendency’. It has been used extensively in the study of phase and
chemical reaction equilibria involving gases at high pressures. Though the ‘fugacity’ is mainly
applied to mixtures, the present discussion is limited to pure gases.
For an infinitesimal reversible change occurring in the system under isothermal conditions, Eq. (6.18)
reduces to

dG = V dP
For one mole of an ideal gas V in the above equation may be replaced by RT/P, so that

………(6.117)
Equation (6.117) is applicable only to ideal gases. If, however, we represent the influence of
pressure on Gibbs free energy of real gases by a similar relationship, then the true pressure in the
above equation should be replaced by an ‘effective’ pressure, which we call fugacity f of the gas. The
following equation, thus, provides the partial definition of fugacity.

dG = RT d(ln f)………(6.118)



Equation (6.118) is satisfied by all gases whether ideal or real. Integration of this equation gives
G = RT ln f + C………(6.119)

where C is a constant of integration that depends upon the temperature and nature of the gas. Fugacity
has the same dimension as pressure, usually atmosphere or bar.

6.6.1 Standard State for Fugacity
Consider the molar free energies of a gas in two states both at the same temperature. Let G1 and G2
be the free energies and f1 and f2 be the corresponding fugacities in these states. By Eq. (6.119), the
change in free energy is

………(6.120)
The free energy change can be experimentally measured and by the above equation the measured free
energy change gives the ratio of fugacities f2/f1. The fugacity in any state can be evaluated if the
fugacity is assigned a specific value in a particular reference state.
For an ideal gas integration of Eq. (6.117) gives the free energy change as

………(6.121)
Whereas Eq. (6.121) is applicable only to ideal gases, Eq. (6.120) is valid for all fluids, ideal or
real. It follows that in the case of ideal gases, f2/f1 = P2/P1, or fugacity is directly proportional to
pressure. The proportionality constant is chosen to be unity for convenience. That is, f/P = 1 or f = P,
for ideal gases. The fugacity is always equal to the pressure for an ideal gas. However, for real
gases, fugacity and pressure are not proportional to one another, and f/P is not constant. As the
pressure of the gas is reduced, the behaviour of the real gas approaches that of an ideal gas. That is, at
very low pressures, the fugacity of a real gas should be the same as its pressure. So the gas at a very
low pressure P0 is chosen as the reference state and it is postulated that the ratio of fugacity to
pressure at this state is unity. Thus the definition of fugacity is completed by stating that

Thus, the standard state of a real gas is a hypothetical state in which the gas is at a pressure P0 where
it behaves perfectly. By this choice, the standard state has the simple properties of an ideal gas. If the
standard state were chosen as the one for which f is equal to say, 1 bar, the standard state of different
gases would have different and complex properties. If the standard state chosen were the gas at zero
pressure, the free energy would have become – � at the standard state. The choice of the
hypothetical standard state standardises the interaction between the particles by setting them to zero.
Since all intermolecular forces are absent in the standard state chosen, the differences in the standard
free energies of different gases arise solely from the internal structure and properties of the
molecules, and not from the way they interact with each other.
Equation (6.122), which sets the fugacity of the real gas equal to its pressure at low pressures,



permits the evaluation of absolute values for fugacities at various pressures. It is this property that
makes fugacity a widely accepted thermodynamic property in practical calculations.

6.6.2 Fugacity Coefficient
The ratio of fugacity to pressure is referred to as fugacity coefficient and is denoted by f. It is
dimensionless and depends on nature of the gas, the pressure, and the temperature. Integrating 
Eq. (6.118) between pressures P and P0,

For ideal gases, by Eq. (6.120), G = G0 + RT ln P/P0. Combining this result with Eq. (6.124) we see
that the free energy of a real gas = free energy of an ideal gas + RT ln f. The quantity RT ln f,
therefore, expresses the entire effect of intermolecular interaction.
Since all gases becomes ideal as pressure approaches zero, we can say that

f � P…as…P � 0
f � 1…as…P � 0

6.6.3 Effect of Temperature and Pressure on Fugacity
In Eq. (6.123), G0 and f0 refer to the molar free energy and fugacity respectively at a very low
pressure where the gas behaves ideally. This equation can be rearranged as

H is the molar enthalpy of the gas at the given pressure and H0 is the enthalpy at a very low pressure.



H0 – H can be treated as the increase of enthalpy accompanying the expansion of the gas from
pressure P to zero pressure at constant temperature. Equation (6.125) indicates the effect of
temperature on the fugacity.
The effect of pressure on fugacity is evident from the defining equation for fugacity [Eq. (6.118)].

dG = V dP = RT d(ln f)………(6.118)
which on rearrangement gives:

6.6.4 Determination of Fugacity of Pure Gases
Using compressibility factor, Z. The compressibility factor Z of a real gas is the ratio of its
volume to the volume of an ideal gas at the same temperature and pressure.

As (Z – 1)/P is finite as pressure approaches zero, there is no difficulty in using Eq. (6.127) for the
evaluation of f. The values of the compressibility factor, Z, from zero pressure to pressure P are
calculated from the volume of the gas at the corresponding pressures. The integral in 
Eq. (6.127) is found out graphically by plotting (Z – 1)/P against P.
EXAMPLE 6.22 Derive an expression for the fugacity coefficient of a gas obeying the equation of
state P(V – b) = RT and estimate the fugacity of ammonia at 10 bar and 298 K, given that 
b = 3.707 � 10–5 m3/mol.



Solution Since, P(V – b) = RT, we have,

Equation (6.127) becomes

Therefore, fugacity f = 10.151 bar.
Using generalised charts. Using Eq. (6.127) in reduced form, a generalised chart similar to the
generalised compressibility chart can be prepared for predicting the fugacity of gases.

The integral in Eq. (6.128) is evaluated graphically at constant temperature by taking compressibility
factors from the isotherms on the generalised compressibility chart. The fugacity coefficient is then
plotted against reduced pressure (Pr) for various constant reduced temperature (Tr) values. This
provides a generalised chart for fugacity of all gases as shown in Fig. 6.7.



If experimental volumetric data are not available, this chart can be used for approximate calculation
of fugacity, provided the critical temperature and pressure are known. The accuracy of the results
depends upon how closely the generalised compressibility charts predicts the actual P-V-T behaviour
of gases.
Using residual volumes. Equation (6.118) relates the fugacity of the gas to the molar 



volume V at temperature T and pressure P
dG = V dP = RT d(ln f)………(6.118)

The residual volume a is defined as the difference between V and the volume occupied by one mole
of an ideal gas at the same temperature and pressure.

This result is integrated between a very low pressure and the given pressure P. At low pressures, f/P
= 1 and the required integral is

To find f, the residual volume a derived from experimentally determined values of molar volumes at
different pressures are plotted against P. Refer Fig. 6.8. The area under the curve between pressures
0 and P is equal to the integral in Eq. (6.130).



EXAMPLE 6.23 From the P-V-T data for a gas it is found that  = – 556.61 J/mol. Find the
fugacity of the gas at 50 bar and 300 K.
Solution Using Eq. (6.130), we obtain

Using equations of state. We have seen that Eq. (6.118) defines fugacity as
dG = V dP = RT d (ln f)

On integrating this between pressure P0 where fugacity is f0 and pressure P where fugacity is f , we
get the following result.

If an analytical equation of state is available, and if it can be put in a form in which V is expressed
explicitly as a function of P, the integral in Eq. (6.131) can be readily evaluated. On the other hand, if
P is expressed as a function of V, the integral is determined by integration by parts. We can use the
following identity for this purpose:



where V0 is volume of the gas at pressure P0. Since the gas behaves ideally under this condition,
P0V0 = RT and Eq. (6.133) becomes

Equation (6.134) can be used for evaluating the integral in Eq. (6.131).
EXAMPLE 6.24 Find the fugacity coefficient at 1 bar, 5 bar, and 10 bar for a gas that follows the
equation of state PV = RT(1 – 0.00513 P), where P is pressure in bar.
Solution According to Eq. (6.118),

EXAMPLE 6.25 Show that the fugacity of a gas obeying the van der Waals equation of state is given
by

where a and b are van der Waals constants.
Solution The van der Waals equation [Eq. (3.29)] can be written in the following form:



Since V0 is very large compared to b, V0 – b � V0. Further, V0 can be replaced by RT/P0 as V0 is
the volume of a gas at a very low pressure P0 at which ideal gas equations are obeyed by the gas.
Also, as V0 is very large, a/V0 can be neglected. With these simplifications, the above equation
becomes

EXAMPLE 6.26 Calculate the fugacity of pure ethylene at 100 bar and 373 K. The van der Waals
constants are a = 0.453 J m3/mol2, b = 0.571 � 10–4 m3/mol, molar volume at 100 bar and 373 K =
2.072 � 10–4 m3/mol.

Solution Substitute a = 0.453, b = 0.571 � 10–4, V = 2.072 � 10–4, R = 8.314, and T = 373 into
Eq. (6.139). Note that RT/(V – b) be multiplied by 10–5 for dimensional consistency.
Thus we get ln f = 4.3 and f = 73.7 bar.
Using values of enthalpy and entropy. Equation (6.123) indicates the free energy change
between the given state where free energy and fugacity are G and f respectively, and a standard state
where the free energy and fugacity are G0 and f0 respectively. By the definition of free energy, G = H



– TS, and G0 = H0– TS0, where H0 and S0 are the enthalpy and entropy values at the standard state.
Using these, Eq. (6.123) becomes

Assuming that the gas behaves ideally at the reference state, f0 = P0, the pressure at the standard
state. The fugacity can be calculated using the values of H, H0, S and S0 in Eq. (6.140)
EXAMPLE 6.27 Determine the fugacity and fugacity coefficient of steam at 623 K and 1000 kPa
using enthalpy and entropy values from steam tables. Assume that steam behaves ideally at 101.3 kPa.
Data from steam tables: At 1000 kPa and 623 K, H = 3159 kJ/kg; S = 7.3 kJ/kg K. At 
101.3 kPa and 623 K, H = 3176 kJ/kg; S = 8.38 kJ/kg K.
Solution Since steam behaves ideally at 101.3 kPa, fugacity at this pressure = 101.3 kPa. Using Eq.
(6.140),

Approximate method for estimation. Experimental evidences suggest that at moderate
pressures, the value of PV for any gas is a linear function of its pressure at constant temperature. The
functional relationship between PV and P may be written as PV = RT + kP, where k is a constant. The
residual volume a, by definition is a = V – RT/P = k. It means that the residual volume a is constant
and is independent of pressure. Substituting this result in Eq. (6.130),

At moderate pressures, f/P is close to unity and therefore, ln (f/P) � (f/P) – 1. (Note: When x
approaches unity, ln x is approximately equal to x – 1). Equation (6.141) can be modified as



Equation (6.142) can be used to determine the approximate value of the fugacity of a gas from its
pressure and molar volume.
EXAMPLE 6.28 The density of gaseous ammonia at 473 K and 50 bar is 24.3 kg/m3. Estimate its
fugacity.

Solution The molar volume of ammonia under the given conditions is

V = 17/(24.3 � 1000) m3/kmol

Pressure, P = 50 � 105 N/m2

Using Eq. (6.142), we get

6.6.5 Fugacities of Solids and Liquids
Every solid or liquid has a definite vapour pressure although it may be immeasurably small, in some
cases. At this pressure, the solid (or the liquid) will be in equilibrium with its vapour. When two
phases of a substance are in thermodynamic equilibrium, the molar free energies in both phases
should be equal. This follows from the criterion of phase equilibrium, which will be discussed in
detail in Chapter 8. By this criterion the molar free energy of the liquid (or the solid) in equilibrium
with its vapour is equal to the molar free energy of the vapour. That is, GL = GV and GS = GV, where
the superscripts L, S and V refer to liquid, solid and gas respectively. Since the molar free energy is
related to the fugacity as G = RT ln f + C, where C is constant that depends only on temperature, it
follows that

fL = fV, fS = fV………(6.143)
Equation (6.143) means that the fugacity of solid (or liquid) is equal to the fugacity of the vapour with
which it is in equilibrium, provided that the reference state is taken to be the same in each case. If the
vapour pressure is not very high, the fugacity of the vapour would be equal to the vapour pressure;
hence, the fugacity of a liquid (or a solid) is approximately equal to its vapour pressure.
If the vapour pressure is very high and the vapour cannot be treated as ideal gas its fugacity is related
to the saturation pressure as in Eq. (6.142)



………(6.142)

PS is the saturation pressure of the gas and fsat is the saturation fugacity. The latter should in turn be
equal to the fugacity of solid or liquid at the desired temperature and the saturation pressure, by Eq.
(6.143). Since, RT d(ln f) = V dP and the liquid can be assumed to be incompressible, the fugacity of
the liquid at any other pressure P is readily obtained as

………(6.144)
where V is the molar volume of the liquid.
EXAMPLE 6.29 Calculate the fugacity of liquid water at 303 K and 10 bar if the saturation pressure
at 303 K is 4.241 kPa and the specific volume of liquid water at 303 K is 1.004 � 10–3 m3/kg.
Solution The molar volume is

EXAMPLE 6.30 Calculate the fugacity of n-butane in the liquid state at 350 K and 60 bar. The
vapour pressure of n-butane at 350 K is 9.35 bar. The molar volume of saturated liquid at 350 K is
0.1072 � 10–3 m3/mol. The fugacity coefficient for the saturated vapour at 350 K is 0.834.

Solution The fugacity of saturated vapour at 350 K = 0.834 � 9.35 = 7.798 bar. Therefore, fugacity
of saturated liquid at 350 K = 7.798 bar = fsat. Using Eq. (6.144),

Thus the fugacity of the liquid at 60 bar and 350 K, f = 9.4 bar.

6.7 ACTIVITY
The vapour pressures of relatively non-volatile solids and liquids may be extremely low, so, an
experimental determination of their fugacity is impractical. When dealing with such substances, it
would be convenient to work with another function called activity rather than with fugacity itself.
‘Activity’ is, in fact, relative fugacity and is defined as the ratio of fugacity to fugacity in the standard
state. It finds wide application in the study of homogeneous chemical reaction equilibria involving



solids and liquids. Activity is denoted by the letter a, where

The standard state at which fugacity is f0 is chosen arbitrarily, but the temperature in the standard
state is the same as the temperature in the given conditions. For gases, the standard state fugacity is
chosen by convenience to be unity, and therefore, fugacity and activity are numerically equal.
The change in the free energy accompanying the process in which the substance is undergoing a
change of state from the standard state to the given conditions is related to the activity of the substance
as

The assumption of constant V is a good approximation and will not introduce much error for solids
and liquids up to very high pressures, provided the temperature is well below the critical value.
Comparison of Eqs. (6.146) and (6.148) shows that

The concept of activity is particularly useful in the study of solutions. The commonly used standard
states and their properties are discussed in detail in Chapter 7.
EXAMPLE 6.31 Determine the activity of solid magnesium (MW = 24.32) at 300 K and 10 bar if the
reference state is 300 K and 1 bar. The density of magnesium at 300 K is 1.745 � 103 kg/m3 and is
assumed constant over this pressure range.
Solution Using Eq. (6.149), we obtain

6.7.1 Effect of Pressure and Temperature on Activity
From Eq. (6.146) we see that,



Equation (6.154) predicts the effect of pressure on activity.

6.8 DEPARTURE FUNCTIONS AND GENERALISED CHARTS
The methods for the evaluation of thermodynamic properties from experimental P-V-T data or
analytical equations of state were discussed earlier. If these data are not available or if very accurate
values of the properties are not required, rough estimate of the thermodynamic properties can be
made through the use of departure functions or residual properties . The residual properties are
defined as the difference between the thermodynamic property at the specified temperature and
pressure and the property that the substance would have exhibited at the same temperature and
pressure, had it been an ideal gas. Representing the properties in the ideal gas state with the
superscript id, the residual enthalpy (HR) and residual entropy (SR) are defined as

HR = H – Hid………(6.155)

SR = S – Sid………(6.156)

HR and SR are also known as enthalpy departure and entropy departure , respectively. These
represent hypothetical property changes because a gas cannot be both real and ideal at a given P and
T.
Equations (6.155) and (6.156) are differentiated with respect to pressure to get the following results.





The values of Z and (∂Z/∂T)P are calculated directly from the experimental P-V-T data and the
integrals in the preceding two equations are evaluated by numerical or graphical methods. Analytical
integration is possible when Z is expressed as an equation of state. Thus, HR and SR and all other
residual properties are readily evaluated. We see that there exists a direct connection between the
experimental data and the residual properties, which makes the latter a very valuable tool for
evaluation of thermodynamic properties.
Once the residual enthalpy and entropy are known, the enthalpy and entropy of the gas can be
calculated using Eqs. (6.155) and (6.156). The enthalpy and entropy of the ideal gas at pressure P and
temperature T for use in these equations can be determined by an arbitrary choice of the reference
state at pressure P0 and temperature T0 where the enthalpy and entropy values are H0 and S0
respectively.



Z and (∂Z/∂Tr)P required for the evaluation of the integral in the above equations can be obtained

from the generalised compressibility charts. The HR/RTC or the SR/R values thus calculated are
plotted against reduced pressure with reduced temperature as parameter to give the generalised
enthalpy departure chart and the entropy departure chart, respectively. [See Hougen O.A., K.M.
Watson and R.A. Ragatz, Chemical Process Principles, Part II.]
It is observed that the uncertainty in Z taken from the generalised compressibility chart is only around
2.5 per cent. However, a greater uncertainty is expected in the reduced residual properties as their
calculation involves the derivatives of Z.

6.9 THERMODYNAMIC DIAGRAMS
Thermodynamic properties of pure fluids or mixtures of constant composition are determined when
any two properties are specified. Thermodynamic diagrams provide these properties in terms of two
independent variables. Various combinations of these independent variables give rise to different
type of thermodynamic diagrams. These diagrams find wide applications in computation of
thermodynamic properties and thermodynamic analysis of processes. We have already used the T-S
diagrams in the analysis of refrigeration cycles and the vapour-power cycles in Chapter 5.

6.9.1 Types of Diagrams
P-H diagram. In a P-H diagram the pressure P (or, ln P) is the Y-axis and enthalpy H is the 
X-axis. The general appearance of a P-H diagram is shown in Fig. 6.9. This chart is particularly used
for calculating the heat loads and temperature changes in refrigeration systems. The refrigeration
cycles have both constant pressure (evaporators and condensers) and constant enthalpy (throttling
valve) processes and the P-H diagrams are very useful in analysing them. The dome-shaped envelope
encloses the two-phase region. Within the envelope, horizontal lines of constant pressure and constant
temperature are shown. Temperature lines are nearly vertical in the liquid-phase region; are
horizontal in the two-phase region and drop steeply in the vapour-phase region. The constant entropy
lines are shown as continuous lines in the vapour as well as in the two-phase region. Constant volume



lines show a point of inflection as they cross from the vapour-phase region to the two-phase region.
Figure 6.9 also shows lines of constant quality (x).

H-T diagram. Enthalpy H forms the Y-axis and temperature T is the X-axis. A typical H-T diagram
is shown in Fig. 6.10. These are useful in the calculations in throttling processes as well as in the
constant pressure flow processes.



The vertical distance between the saturated vapour curve and the saturated liquid curve gives the heat
of vaporisation at a particular temperature and pressure.

T-S diagram. A typical T-S diagram is shown in Fig. 6.11. These are useful in following the
temperature changes in isentropic processes. A reversible adiabatic process is essentially isentropic
and would be represented by a vertical line on the T-S diagram. In the case of turbines and
compressors, a vertical line drawn from the initial pressure to the final pressure shows the 
path followed by the fluid undergoing reversible adiabatic operation. Horizontal lines of constant
pressure, lines of constant enthalpy, and constant quality are drawn within the two-phase region. The
former two lines are drawn in the liquid-phase and vapour-phase regions as well. The horizontal
distance between the saturation curves is l/T, where l is the heat of vaporisation at temperature T.



H-S diagram (the Mollier diagram). Figure 6.12 shows the enthalpy-entropy chart, popularly
known as the Mollier diagram.



The energy requirements in flow processes, in general, and the temperature changes involved in
isentropic and isenthalpic processes are easily determined using these charts. The lines of constant
temperature and pressure shown within the two-phase region, separate in the vapour region into
pressure lines that rise continuously and temperature lines that drop and eventually become
horizontal. Lines of constant quality are also shown in the two-phase region.

6.9.2 Construction of Thermodynamic Diagrams
Thermodynamic charts are prepared by first calculating the ideal gas properties by the standard
methods, followed by measuring the enthalpy and entropy departures to correct for pressure. The
departure functions are obtained from the generalised charts for departure functions. The critical
pressure, temperature and an expression for ideal gas heat capacity as a function of temperature are
the additional required data. The construction of T-H and T-S diagrams is discussed below.
Construction of T-H diagram. Here we discuss how the enthalpy is calculated as function of
pressure at three temperatures. The temperatures chosen are T0, T and TC. T0 is a reference or base
temperature; T is any temperature below the critical temperature and TC is the critical temperature.
Properties below T0 are not generally required for practical calculations. For the present calculations
we assume that the substance exist as saturated liquid at the base temperature. The saturation pressure
is denoted by P0. In Fig. 6.13, the point A represents the system at the reference state.



The various steps in the calculations are given below:
1. Enthalpy HA at point A is assumed to be zero.

2. Enthalpy at point B, HB = HA + l0, where the heat of vaporisation at temperature T0 and pressure
P0 is determined from experimental data or using the enthalpy departure charts. If the latter is

used, , where  and  are the residual enthalpies of saturated vapour and
saturated liquid respectively at Pr = P0/PC and Tr = T0/TC.

3. The enthalpy HC at point C = HB –  where  = HB – HC, the residual enthalpy at Pr = P0/PC
and Tr = T0/TC.

4. The enthalpy at D is calculated using ideal gas heat capacity C�P, which is independent of
pressure.

5. The point E represents the condition of the gas at any pressure, say P1 and temperature T above the

dew point. HE = HD + (HE – HD) = HD + , where  is the residual enthalpy at Pr = P1/PC
and Tr = T/TC and is evaluated from the generalised charts.

6. Point F represents condition of the gas at saturation pressure P2 and temperature T. The residual



enthalpy determined at Pr = P2/PC and Tr = T/TC gives . The enthalpy at F, HF =  + HD.
7. Point G has the same reduced properties as point F. HG – HD is obtained from the liquid line of

the two-phase envelope of the generalised enthalpy departure chart. Let this be . The enthalpy
at G, HG =  – HD.

8. For any pressure above the bubble point pressure, say P3, the enthalpy departure function,  =

HH – HD, where  is the residual enthalpy corresponding to Pr = P3/PC and 

Tr = T/TC. Therefore, HH =  + HD.

9. Point I represents the ideal gas state at temperature TC. Enthalpy at I, HI = .

10. Critical conditions are indicated by point J. The enthalpy departure function  is obtained at Pr
= Tr = 1. The enthalpy at J, HJ = HI + . The enthalpy at any temperature and pressure can be
calculated in this way and the T-H diagram can be constructed.

Construction of T-S diagram. The T-S diagram (refer Fig. 6.14.) is constructed in a similar way
as a T-H diagram, with additional steps for calculating the effect of pressure on entropy of an ideal
gas.

1. Point A represents the entropy of the saturated liquid at the reference temperature, T0.



2. Point B represents the entropy of the saturated gas at T0 and P0. SB = SA + l0/T.
3. The entropy SC of the ideal gas at T0 and P0 is obtained as SC = SB – , where  is the entropy

correction taken from the generalised charts at Tr = T0/TC and Pr = P0/PC.

[Note: In obtaining the pressure correction for entropy, two corrections must be made; one for change
in pressure under ideal behaviour and the other for departure from ideal behaviour at the given T
and P. For ideal behaviour, one isothermal line suffices for enthalpies, whereas for entropies, a
different line is required for each pressure.]

4. The entropy SD� is the entropy of ideal gas at T and P0 represented by point D�. The entropy

SD� is obtained as SD� = SC + . The entropy at D, SD = SD� + , where  is
the residual entropy at Tr = T0/TC and Pr = P0/PC.

5. The entropy of the gas at any pressure P1 (below saturation) and temperature T is obtained by first
making a pressure correction to get SE� and then correcting for departure from ideality. Thus,
SE� = SD� – R ln P1/P0 and SE = SE� + . Here,  is the entropy departure evaluated at Tr
= T/TC and Pr = P1/PC.

6. SF� = SD� – R ln P2/P0 and SF = SF� + . The residual entropy in this equation is the entropy
of saturated vapour at T and P2.

7. SG = SF – l/T.

8. SH� = SD� – R ln P3/P0 and SH = SH� + .

9 . SI� = SC +  and SI = SI� + , the residual entropy in this equation being
evaluated at Tr = 1 and Pr = P0/PC.

10. SJ� = SI� – R ln PC/P0 and SH = SJ� + , where the entropy departure function is evaluated
at Tr = Pr = 1.

Calculations on these lines can be carried out for the construction of the entire T-S diagram.

SUMMARY
This chapter discusses the evaluation of the thermodynamic properties of pure fluids using
measurable quantities like the pressure-volume-temperature relationship, the heat capacity data, and
the coefficients of expansion and compressibility. In addition to the internal energy and the enthalpy
introduced in the earlier chapters, two more energy properties, both involving entropy in their
definitions, were introduced in this chapter. They are the Helmholtz free energy (A) and the Gibbs
free energy (G). It was proved that the decrease in A in an isothermal process is a measure of the
maximum work available from a given change of state, whereas the decrease in G in a process
occurring at constant temperature and pressure is the maximum work other than the work of expansion
available from the process.



The total differentials of the four energy properties are used for the development of the Maxwell’s
equations. These equations help us to eliminate unmeasurable quantities like the partial derivatives of
entropy with respect to the pressure or volume appearing in the thermodynamic relations, in terms of
measurable quantities. More so, the partial derivatives of the entropy with respect to temperature,
which are related to CP and CV through their definitions, were used extensively in this chapter for the
formulation of some important thermodynamic relationships. These include the Clapeyron equation
[Eqs. (6.25) and (6.28)], equations to measure the change in entropy using the P-V-T and specific heat
data [Eqs. (6.35), (6.37) and (6.39)], equation for evaluating the difference between CP and CV in
terms of isothermal compressibility and coefficient of volume expansion of the fluid [Eq. (6.55)],
equation for the Joule–Thomson coefficient in terms of measurable quantities [Eq. (6.70)], the Gibbs–
Helmholtz equation [Eq. (6.73)] to predict the effect of temperature on Gibbs free energy, etc.
The method of Jacobians was shown to be a very powerful tool for deriving the relationships
between thermodynamic properties (Section 6.5). In terms of Jacobians, it was shown that the
Maxwell’s equations could be written as [P, V] = [T, S]. Several relationships were derived to
illustrate the power of the method of Jacobians.
The change in the free energy of an ideal gas in an isothermal process is measured by the relation, dG
= RT d(ln P). The concept of fugacity was introduced so that the free energy change of any fluid could
be measured as dG = RT d(ln f). The fugacity was discussed with emphasis on pure gases. The effect
of temperature and pressure on fugacity and the methods for the estimation of fugacity were also
described. When dealing with non-volatile liquids or solids, it was found that it is convenient to work
with the function known as the activity, rather than the fugacity. A brief discussion of the activity of
pure substances in this chapter (Section 6.7) forms the basis for an exhaustive study on the properties
of mixtures in Chapter 7. The enthalpy and entropy departures were discussed in Section 6.8 with a
view to their application in making rough estimates of the thermodynamic properties of fluids in the
absence of experimental P-V-T data or an analytical equations of state. These functions were found to
be very valuable in the construction of various thermodynamic diagrams (Section 6.9).

REVIEW QUESTIONS
1. Differentiate between reference properties, energy properties, and derived properties.
2. Define Helmholtz free energy, and prove that at constant temperature the decrease in work

function measures the maximum work available from a given change of state.
3. Define Gibbs free energy, and show that at constant temperature and pressure the decrease in the

Gibbs free energy measures the maximum net work available from a given change of state.
4. What are the fundamental differential equations for the energy properties? List the canonical

variables for U, H, A, and G.
5. What are the Maxwell’s equations and what is their importance in establishing relationships

between thermodynamic properties?
6. How would you obtain the Clapeyron equation from Maxwell’s equations? What are the

assumptions involved in the derivation of Clausius–Clapeyron equation from the Clapeyron
equation?

7. How are the definitions of CP and CV useful in eliminating the partial derivatives of entropy



with respect to temperature from thermodynamic property relationships?
8. Derive the equations for change in entropy of a fluid in terms of the P-V-T-relationship and

specific heat data.
9. How would you formulate the general equations for changes in enthalpy and internal energy in

terms of measurable quantities? Predict the effect of temperature and pressure on U and H using
these equations.

10. What are the steps involved in the calculation of the entropy and enthalpy of a fluid at
temperature T and pressure P? What additional data are required for this calculation?

11. Show that the difference between CP and CV can be expressed in terms of the coefficient of
volume expansion and the coefficient of compressibility. What would be CP – CV for (a) Ideal
gas and (b) van der Waals gas?

12. Show that CP and CV of an ideal gas depend on temperature alone.
13. How is Joule–Thomson coefficient evaluated from P-V-T-information? Prove that an ideal gas

will not undergo any temperature change on throttling.
14. What is the importance of the Gibbs–Helmholtz equation? How would you obtain an equation

for the free energy as a function of temperature using the Gibbs–Helmholtz equation?
15. Define fugacity, and show that the fugacity and pressure are identical for ideal gases. What is

the standard state for fugacity for a real gas?
16. The free energy of a real gas can be thought of as the sum of the free energy of an ideal gas at

the same conditions of the gas and the contribution due to the intermolecular interaction. How is
the latter contribution represented in terms of the fugacity coefficient?

17. Explain any three methods for estimating the fugacity of a pure gas.
18. How is a rough estimate of fugacity of a gas made from its pressure and molar volume?
19. How would you estimate the fugacity of a liquid at pressure P and temperature T, if its molar

volume and saturation pressure are given?
20. What is meant by the activity of a pure fluid? How would you estimate the activity of an

incompressible substance?
21. What do you mean by enthalpy and entropy departures? How are they important in the

evaluation of thermodynamic properties?
22. What are the different types of thermodynamic diagrams? List their respective fields of

application.
23. Using the generalised charts for departure functions, explain the method of construction of any

two thermodynamic diagrams.

EXERCISES
6.1 Show that

(a) 



(b) 

(c) 

(d) 
6.2 Maxwell’s equation can be used to evaluate the latent heat of vaporisation of a pure substance.

Choose the appropriate equation and explain the method to estimate the latent heat of
vaporisation as a function of temperature using the vapour pressure data.

6.3 Show that for a gas obeying the van der Waals equation (∂CV/∂V)T = 0.
6.4 A gas is found to obey the equation of state P(V – b) = RT. Show that its CP doesn’t change

with changes in pressure at constant temperature.
6.5 Define Joule–Thomson coefficient and explain how it could be used for determining the heat

capacity of gases.
6.6 Show that

where Z is the compressibility factor. ‘The Joule–Thomson coefficient is negative at pressures
greater than about 9PC, where PC is the critical pressure.’ Justify.

6.7 Show that for a gas obeying the equation of state PV(1 – bP) = RT,

6.8 With the help of Maxwell equations prove that the specific heats of ideal gases are functions of
temperature only.

6.9 Using the method of Jacobians derive a relationship for the ratio of heat capacities CP and CV.
Show that the slope of P-V diagram for a reversible adiabatic process is g times that for a
reversible isothermal process.

6.10 Using the method of Jacobians show that



6.11 A pure gas flowing at a low rate through a well-insulated horizontal pipe at high pressure is
throttled to a slightly lower pressure. The gas obeys the equation of state P(V – b) 
= RT, where b is a positive constant. Does the gas temperature rise or fall by throttling?

6.12 The following relationship between fugacity and pressure has been proposed: f = P + aP2,
where a is a function of temperature only. Find an equation of state for the gas conforming to this
relation. Is the equation of state realistic? Explain.

6.13 Derive an expression for fugacity coefficient of a gas obeying the following equation of state

where a and b are empirical constants.
6.14 Using the generalised compressibility factor method, explain how you would make a

generalised condition of enthalpy departure for a range of pressures.
6.15 Describe the T-S diagram of a pure fluid. Given the equation of state or the generalised



compressibility charts, explain how you would construct the T-S diagram. Give the relevant
thermodynamic relations and the reference states used. What additional data are necessary?

6.16 The melting point of benzene is found to increase from 278.5 K to 278.78 K, when the
external pressure is increased by 100 bar. Heat of fusion of benzene is 128 kJ/kg. What is the
change in volume per kg accompanying the fusion of benzene?

6.17 Carbon tetrachloride boils at 349.75 K at 1 bar. Its latent heat of vaporisation is 
194.8 kJ/kg. What would be the boiling point of carbon tetrachloride at 2 bar?

6.18 The variation of vapour pressure of benzene with temperature is given in the table below.
T, K 280.6 288.4 299.1 315.2 333.6 353.1

P, bar � 102 5.33 8.00 13.30 26.70 53.33 100

Estimate the latent heat of vaporisation of benzene and its vapour pressure at 393 K.
Is it possible to approximate the vapour pressure as an exponential function of temperature?
Does the Clapeyron equation suggest such an approximation?

6.19 If the pressure inside a pressure cooker is 200 kPa, what is the boiling point of water inside
it? The normal boiling point of water is 373 K and the latent heat of vaporisation of water is
2257 kJ/kg at 373 K.

6.20 The vapour pressure and molar volume of water as function of temperature are given below:
T, K 490 500 510

PS, kPa 2181 2637 3163

VG, m3/kg 91.50 � 10–3 75.85 � 10–3 63.23 � 10–3

VL, m3/kg 1.18 � 10–3 1.20 � 10–3 1.22 � 10–3

Calculate the latent heat of vaporisation of water at 500 K using (a) Clapeyron equation; (b)
Clausius–Clapeyron equation.

6.21 (a) Prove the following, where m is the Joule–Thomson coefficient.

(b) If m = – 0.1975 + 138/T – 319 P/T 2 K/bar, and CP = 6.557 + 6.1477 � 10–2 T – 2.148 �
10–7 T2 kJ/kmol K, evaluate the derivative (∂CP/∂P)T at 1 bar and 333 K when T is in K and P
is in bar.

6.22 The volume coefficient of expansion of water at 373 K is 7.8 � 10–4 K–1. Calculate the
change in entropy when the pressure is increased from 1 bar to 100 bar. At 373 K, density of
water is 958 kg/m3.

6.23 Calculate the change in enthalpy, entropy and internal energy when 1 mol liquid water at 273
K and 1 bar is converted into steam at 473 K and 3 bar. List the assumptions used.



Data: At 1 bar the specific heat of steam is CP = 37.002 – 8.00 � 10–3 T + 9.24 � 10–6 T2,
where CP is in kJ/kmol and T is in K. Enthalpy of vaporisation at 373 K = 40.6 kJ/kmol.

6.24 Calculate the change in internal energy, enthalpy, entropy and free energy when one kmol
hydrogen gas at 300 K and 1 bar is heated and compressed to 500 K and 100 bar. The entropy of
hydrogen in the initial state is 131.5 kJ/kmol K. Enthalpy at 273 K may be taken to be zero.
Assume CP = 27.3 + 4.2 � 10–3 T at 1 bar where CP is in kJ/kmol K and T is in K. Hydrogen
may be treated as ideal gas.

6.25 Calculate the enthalpy and entropy of isobutane vapour at 360 K and 15.6 bar from the
following data:
Enthalpy and entropy for saturated liquid at 290 K are both zero. The average specific heat of
isobutane liquid between 290 K and 295 K is 2.34 kJ/kg K. The heat of vaporisation at 295 K is
335 kJ/kg. The vapour pressure of isobutane is 3.1 bar at 295 K. The specific heat of the gas at
3.1 bar varies with temperature as given below:

T, K 295 310 328 345 360

CP, kJ/kg K 1.806 1.806 1.777 1.806 1.856

The specific volumes of gaseous isobutane in m3/kg are as follows:
P, bar 310 K 328 K 345 K 360 K 378 K

2.7 0.151 0.160 0.169 0.179 0.188

4.1 0.096 0.103 0.110 0.116 0.122

6.8 – 0.057 0.062 0.066 0.070

10.2 – – 0.037 0.041 0.044

13.6 – – – 0.028 0.031

15.6 – – – 0.023 0.026

6.26 Calculate CP – CV for CO2 at 1 bar and 273 K given that the van der Waals constants for

CO2 are a = 0.365 J m3/mol2 and b = 42.8 � 10–6 m3/mol.
6.27 Calculate the CP of CO2 gas at 100 bar and 373 K given that CP at 1 bar and 373 K 

is 40.6 J/mol K. The van der Waals constants are a = 0.365 J m3/mol2 and b = 42.8 � 
10–6 m3/mol.

[Hint: 

Assume various values of P and find (∂2V/∂T2)P in each case. Plot – T(∂2V/∂T2)P against P
and find the area under the curve between P = 1 and P = 100 bar. The area thus determined
equals DCP].

6.28 Wet steam at 20 bar is throttled to a pressure of 1.5 bar and a temperature of 411 K. What was



the initial quality of steam? Take the data from the steam tables.
6.29 Calculate (∂U/∂P)T, (∂H/∂P)T and m of a substance at 298 K and 1 bar, if the following data

are given:

CP = 138 kJ/kmol K, V = 0.09 m3/kmol, (∂V/∂T)P = 9.0 � 10–8 m3/kmol K and (∂V/∂P)T = –

9.0 � 10–9 m3/kmol bar.
6.30 Show that for any gas whose volume varies linearly with temperature at a given pressure, the

Joule–Thomson coefficient is zero.
6.31 At 200 K, the compressibility factor of oxygen varies with pressure as given below. Evaluate

the fugacity of oxygen at this temperature and 100 bar.

P, bar 1.00 4.00 7.00 10.00 40.00 70.00 100.00

Z 0.99701 0.98796 0.97880 0.96956 0.8734 0.7764 0.6871

6.32 (a) Calculate the fugacity of CO at 50 bar and 400 bar, if the following data are applicable at
273 K.

P, bar 25 50 100 200 400 800 1000

Z 0.9890 0.9792 0.9741 1.0196 1.2482 1.8057 2.0819

(b) Using the values of Z at 50 and 400 bar, calculate the van der Waals constants for CO. From
these determine the fugacities at these pressures and compare the results with the previous ones.

6.33 Calculate the fugacity of methane gas at 322 K and 55 bar, given that the critical constants are
190.7 K and 46.4 bar.

6.34 Calculate the fugacity of nitrogen at 800 bar from the following data at 273 K.

P, bar 50 100 200 400 800 1000

PV/RT 0.9846 0.9846 1.0365 1.2557 1.7959 2.0641

6.35 Find the per cent increase in the fugacity of gaseous oxygen per degree rise in temperature in
the neighbourhood of 298 K and 200 bar, if under these conditions, the Joule–Thomson heat is
1457 J/mol. (Joule–Thomson heat = H0 – H.)

6.36 Estimate the fugacity of gaseous propane at 12 bar and 310 K using the following data.

P, bar 1.7 3.4 6.8 10.2 11.7 13.6 34

V, m3/kg 0.3313 0.1609 0.0754 0.0468 0.0382 0.021 – 0.00207

Also compute the fugacity of propane at 310 K and 70 bar given that the vapour pressure of
propane at 310 K is 13 bar.

6.37 The experimental pressure–volume data for benzene at 675 K from a very low pressures up to
about 75 bar may be approximated by the equation V = 0.0561(1/P – 0.0046), where V is in
m3/mol and pressure P is in bar. What is the fugacity of benzene at 1 bar and 675 K?

6.38 In the previous problem what is the fugacity of benzene at 75 bar and 675 K assuming that the



fugacity of benzene at 1 bar is unity?

6.39 (a) The compressibility of a gas may be represented by PV/RT = A + BP + CP2 + DP3, where
A, B, C and D are functions of temperature and P is measured in bar. Derive an expression for
fugacity as a function of pressure at a given temperature.
(b) Evaluate the fugacity of nitrogen at 273 K and 300 bar, given that at 273 K the constants in
the equation of state given in part (a) are A = 1.00, B = – 5.314 � 10–4, C = 4.276 � 10–6 and
D = – 3.292 � 10–9.

6.40 (a) Find an expression for the fugacity coefficient of a gas that obeys the equation of state

(b) Use the result in part (a) to estimate the fugacity of argon at 1.00 bar and 273 K if the
constants B and C are respectively – 21.13 � 10–6 m3/mol and 1054 � 10–12 m6(mol)–2.

6.41 Derive an expression for fugacity coefficient of a gas obeying the equation of state z = a + bP
+ cP2, where P is in bar. Determine fugacity of oxygen at 293 K and 100 bar, given that a = 1.0;
b = – 0.753 � 10–3, and c = 0.15 � 10–5.



7

Properties of Solutions
We have seen in Chapter 6 that the thermodynamic properties of homogeneous pure substances
depend only on the state of the system. The relationships developed for pure fluids are not applicable
to solutions and need modification. The thermodynamic properties of solutions and heterogeneous
systems consisting of more than one phase are influenced by the addition and removal of matter. The
term solution includes homogeneous mixtures of two or more components in the gas, liquid or solid
phase. The pressure, temperature and the amount of various constituents present determine the
extensive state of a solution; and pressure, temperature and composition determine the intensive state.
In this chapter, we discuss how the thermodynamic properties of a solution are determined and
introduce certain concepts that are essential to the study of phase equilibria and chemical reaction
equilibria.

7.1 PARTIAL MOLAR PROPERTIES
The properties of a solution are not additive properties of its components. For example, the volume of
a solution is not the sum of the volumes of the pure components constituting the solution. It means that
when a substance becomes part of a solution it loses its identity. But it still contributes to the property
of the solution as is evident from the fact that by changing the amount of substance, the solution
property also changes. Thus we need a new set of concepts that enable us to apply thermodynamics to
solutions of variable composition. In this connection, the concept of partial molar properties is of
great use. The term partial molar property is used to designate the property of a component when it is
in admixture with one or many components. To be more precise, the partial molar property of a
particular component in a mixture measures the contribution of that component to the mixture
property. If Mt is the total value of any extensive thermodynamic property of a solution, the partial
molar property  of the component i in the solution is defined as

In Eq. (7.1), n is the total number of moles and M is the molar property of the solution. ni denotes the

number of moles of component i in solution, so that n = Sni.

In general, any partial molar property  is the increase, in the property Mt of the solution resulting
from the addition at constant temperature and pressure, of one mole of that substance to such a large
quantity of the system that its composition remains virtually unchanged. It is an intensive property and
its value depends only on the composition at the given temperature and pressure. The subscript njπi
indicates that the number of moles of all components in the solution other than the number of moles of



i are kept constant.

7.1.1 Physical Meaning of Partial Molar Properties
To understand the physical meaning of partial molar properties let us consider the partial molar
volume, the simplest partial molar property to visualise. It is the contribution that a component in the
solution makes to the total volume. Consider an open beaker containing a huge volume of water.
Assume that one mole of water is added to it. The volume increases by 18 � 10–6 m3, which is the
molar volume of pure water. If the same amount of water is added to a large amount of pure ethanol
taken in the beaker, the increase in volume will be approximately 14 � 10–6 m3, which is the partial
molar volume of water in pure ethanol. The difference in the increase in volumes can be explained
thus: the volume occupied by a given number of water molecules depends on the molecules
surrounding them. When water is mixed with a large volume of alcohol, there is so much alcohol
present that each water molecule is surrounded by pure ethanol. Consequently, the packing of the
molecules would be different from that in pure water, and the molecules occupy lesser volume.
If one mole water is added to an equimolar mixture of alcohol and water, the increase in volume of
the solution would be different from that resulted when the same quantity were added to pure alcohol.
The partial molar properties of the components of a mixture vary with composition because the
environment of each type of molecule changes as the composition changes. The intermolecular forces
also get changed resulting in the changes in the thermodynamic properties of solutions with
compositions. The variation of partial molar volumes with concentration is shown in Fig. 7.1 for
ethanol (E) – water (W) system.

We have seen that the effective molar volume of water added to the ethanol–water solution, i.e. the



partial molar volume  in the solution is less than the molar volume VW of pure water at the same
temperature and pressure. To be specific, when pure water is added to an ethanol water solution of
volume Vt and allowed sufficient time for heat exchange so that temperature remains the same as that
before addition, the increase in volume of the solution DVt π DnWVW, where DnW is the moles of
water added. The increase in volume is given by

In this process, a finite drop of water was added which may cause a finite change in composition. If 
 were to represent a property of the solution, it must be based on data for the solution at this

composition. For an infinitesimal amount of water added, Eq. (7.3) becomes

and it denotes the incremental change in mixture volume which occurs when a small quantity of
component i is added at constant pressure and temperature. The amount of i added is so small that no
detectable change in composition occurs. While the molar volume is always positive, the partial
molar volume may even be negative. The partial molar volume of MgSO4 in water at infinite dilution

(i.e. in the limit of zero concentration) is –1.4 � 10–6 m3/mol which means that the addition of one
mole of MgSO4 to a large volume of water results in a decrease in volume of 

1.4 � 10–6 m3. The contraction may be due to the breaking up and subsequent collapse of the open
structure of water as the ions become hydrated.
Though different from molar properties of the pure components, to get a physical picture of the
concept of partial molar properties, we can treat them as the molar properties of the components in



solution. However, it is to be borne in mind that the components of a solution are intimately
intermixed and cannot have individual properties of their own. The partial molar properties in fact,
represent the contribution of individual components constituting the solution to the total solution
property as described in the following section.

7.1.2 Partial Molar Properties and Properties of Solution
Consider any thermodynamic extensive property (such as volume, free energy, heat capacity, etc.), its
value for a homogeneous system being completely determined by the temperature, pressure and the
amounts of various constituents present. Let M be the molar property of a solution and Mt be the total

property. Then, Mt = nM, where n is n1 + n2 + n3 + . . . . Here, n1, n2, n3, . . . are the number of
moles of the respective components 1, 2, 3, . . . of the system. The solution property is a function
represented by

Mt = f(P, T, n1, n2, . . ., ni, . . .)………(7.6)

If there is a small change in the pressure, temperature and the amounts of various constituents, then

It is evident that the partial molar properties  are not extensive properties, but are intensive
properties of the solution. They depend, therefore, not upon the total amount of each constituent, but
only upon the composition, or the relative amounts of the constituents. If we add several constituents
simultaneously to a given solution at constant temperature and pressure, keeping the ratio of the
various constituents constant, the partial molar properties are not changed. Then, the change in
property



This equation along with Eq. (7.9), which can be written in the following form serves as the
relationship between partial molar properties and total solution property.

We see that the partial molar property  of any constituent may be regarded as the contribution of
one mole of that constituent to the total value of the property under the specified conditions. In other
words, the partial molar properties may be treated exactly as though they represent the molar
properties of the components in the solution.
EXAMPLE 7.1 Give an alternative derivation for Eqs. (7.12) and (7.14) starting from Eq. (7.9)
Solution Equation (7.9) gives

n represents the total amount of various constituents and dn the changes in the total number of moles.
One is free to choose any value for n as well as dn. In short, n and dn can be independently changed.
For all possible values of n and dn, the above equation is to be satisfied. This is possible only if the



terms in brackets reduce to zero.

EXAMPLE 7.2 Will it be possible to prepare 0.1 m3 of alcohol-water solution by mixing 
0.03 m3 alcohol with 0.07 m3 pure water? If not possible, what volume should have been mixed in
order to prepare a mixture of the same strength and of the required volume? Density of ethanol and
water are 789 and 997 kg/m3 respectively. The partial molar volumes of ethanol and water at the
desired compositions are: Ethanol = 53.6 � 10–6 m3/mol; water = 18 � 10–6 m3/mol.
Solution Let us first find out the number of moles of ethanol and water mixed and their mole fractions
in the resultant mixture.

Moles of ethanol in the solution = (0.03 � 789 � 103)/46 = 514.57 mol

Moles of water in the solution = (0.07 � 997 � 103)/18 = 3877.22 mol
Mole fraction of ethanol desired = 514.57/(514.57 + 3877.22) = 0.1172
Mole fraction of water = 1 – 0.1172 = 0.8828

Actual volume of solution is

514.57 � 53.6 � 10–6 + 3877.22 � 18 � 10–6 = (0.02758 + 0.06979) = 0.09737 m3

That is, by mixing 0.03 m3 alcohol with 0.07 m3 water, we would get only 0.09737 m3 of solution.
To prepare 0.1 m3 of solution the volumes to be mixed are:

Ethanol = (0.03/0.09737) � 0.1 = 0.03081 m3 and Water = (0.07/0.09737) � 0.1 = 0.07189
m3

EXAMPLE 7.3 A 30 per cent by mole methanol-water solution is to be prepared. How many 
cubic metres of pure methanol (molar volume, 40.727 � 10–6 m3/mol) and pure water (molar
volume, 18.068 � 10–6 m3/mol) are to be mixed to prepare 2 m3 of the desired solution? The
partial molar volumes of methanol and water in a 30 per cent solution are 38.632 � 10–6 m3/mol
and 17.765 � 10–6 m3/mol, respectively.
Solution Molar volume of the desired solution is

V =  = (0.3 � 38.632 � 10–6 + 0.7 � 17.765 � 10–6) = 24.0251 � 10–6

m3/mol

Therefore, 2 m3 of the desired solution contains



2/(24.0251 � 10–6) = 83.2463 � 103 mol

Number of moles of methanol in 2 m3 of solution = 83.2463 � 103 � 0.3 = 24.9739 � 103
mol

Number of moles of water in 2 m3 of solution = 83.2463 � 103 � 0.7 = 58.2724 � 103 mol

Volume of methanol to be taken = 24.9739 � 103 � 40.727 � 10–6 m3 = 1.0171 m3

Volume of water to be taken = 58.2724 � 103 � 18.068 � 10–6 m3 = 1.0529 m3

EXAMPLE 7.4 Laboratory alcohol containing 96% alcohol and 4% water is to be diluted to a
solution containing 56% alcohol and 44% water. All percentages are on weight basis. The partial
specific volumes are as follows: In 96% alcohol solution,  = 0.816 � 10–3 m3/kg,  = 1.273 �
10–3 m3/kg. In 56% alcohol solution,  = 0.953 � 10–3 m3/kg,  = 1.243 � 10–3 m3/kg. The
density of water may be taken as 0.997 � 103 kg/m3.

(a) How much water should be added to 2 � 10–3 m3 of the laboratory alcohol?
(b) What is the volume of the dilute alcohol obtained?

Solution Basis: 2 � 10–3 m3 laboratory alcohol.

1 kg laboratory alcohol � (0.96 � 1.273 + 0.04 � 0.816) � 10–3 = 1.255 � 10–3 m3

2 � 10–3 m3 of laboratory alcohol � 2 � 10–3/(1.255 � 10–3) = 1.594 kg
(a) Let the mass of water added be m kg. Taking an alcohol balance, we get

1.594 � 0.96 = (m + 1.594) 0.56
Thus mass of water added is,

m = (1.594 � 0.96)/0.56 – 1.594 = 1.1386 kg
and volume of water added is

1.1386/(0.997 � 103) = 1.142 � 10–3 m3

(b)
Mass of dilute alcohol obtained = 1.594 + 1.1386 = 2.7326 kg

Specific volume of 56% alcohol = (0.56 � 1.243 + 0.44 � 0.953) � 10–3 = 1.115 � 10–3 m3/kg
Therefore,
Volume of dilute alcohol obtained = 1.115 � 10–3 � 2.7326 = 3.0468 � 10–3 m3

7.1.3 Determination of Partial Molar Properties
Method 1 (Analytical). If the volume of a solution is known as a function of its composition, the
partial molar volume of a constituent may be found by partial differentiation with respect to the
amount of that constituent.



Method 2 (Graphical). Let Vt, the volume of the solution containing a fixed amount of one of the
constituents (say, n1) is known for several values of the amount of other constituent (say, n2). We

may plot Vt against n2. See Fig. 7.2. The slope of the tangent to the curve is (∂Vt/∂n2)P,T,n1 which,

by definition is , the partial molar volume of component 2. The volume of solution is assumed so
large that no significant change in composition occurs when n2 is changed. This method has limitation

of not yielding values of  directly. Also, it is not advisable to use this method for determination of 
 when n2 is large compared to n1. The method of tangent intercepts is free from such limitations

and is therefore preferred for the determination of partial molar properties.

Method 3 (The tangent-intercept method). This is also a graphical method widely used for
the determination of partial molar properties of both components in a binary solution. The molar
volume V is plotted against mole fraction of one of the components (say, x2, the mole fraction of
component 2). To determine the partial molar volumes, draw the tangent to the curve at the desired
mole fraction. The intercept that this tangent makes with the vertical axis at x2 = 1 gives  and the

intercept on the vertical axis at x2 = 0 (or x1 = 1) gives . In Fig. 7.3, BD =  and AC = .



To prove this result, consider a binary solution containing n1 moles of component 1 and n2 moles of

component 2. Let the total volume be Vt and let V be the molar volume. Then



In Fig. 7.3, the length BD = BE + ED, where BE is the slope of the tangent at P times the length PE.
That is,

BE = (1 – x2) (∂V/∂x2)

and ED = V, the molar volume at the mole fraction x2. Thus

BD = V + (1 – x2) (∂V/∂x2)

which, by Eq. (7.22) is . Similarly, the length
AC = FC – FA = V – x2 (∂V/∂x2) = 

The above methods are applicable for the determination of various other partial molar properties
also. Of the various mixture properties, only the volume can be determined absolutely. For the
determination of other properties like , etc., it becomes necessary to work with property changes
on mixing (discussed later in this chapter) like DG, DH, etc. The method of tangent intercept for the

determination of, say , requires the plot of DG per mole versus x2.
EXAMPLE 7.5 At 300 K and 1 bar, the volumetric data for a liquid mixture of benzene and
cyclohexane are represented by V = 109.4 � 10–6 – 16.8 � 10–6x – 2.64 � 10–6x2, where x is the
mole fraction of benzene and V has the units of m3/mol. Find expressions for the partial molar
volumes of benzene and cyclohexane.
Solution The molar volume of the solution as a function of composition is given:

V = 109.4 � 10–6 – 16.8 � 10–6x1 – 2.64 � 10–6x12………(7.23)

where x1 = mole fraction of component 1 (in this case, benzene). By Eq. (7.20),



EXAMPLE 7.6 The enthalpy at 300 K and 1 bar of a binary liquid mixture is
H = 400x1 + 600x2 + x1x2(40x1 + 20x2)

where H is in J/mol. For the stated temperature and pressure, determine:
(a) Expressions for  and  in terms of x1
(b) Numerical values for the pure component enthalpies H1 and H2

(c) Numerical values for the partial molar enthalpies at infinite dilution .
Solution The molar enthalpy of the solution as function of concentrations of the constituents is given:

H = 400x1 + 600x2 + x1x2(40x1 + 20x2)………(7.26)

(a) Differentiating Eq. (7.26), we get



Since x1 = 1 – x2, dx1 = – dx2 and ∂x2/∂x1 = –1, the above equation simplifies to

EXAMPLE 7.7 The volume of an aqueous solution of NaCl at 298 K was measured for a series of
molalities (moles of solute per kg of solvent) and it was found that the volume varies with molality
according to the following expression.

V = 1.003 � 10–3 + 0.1662 � 10–4m + 0.177 � 10–5m1.5 + 0.12 � 10–6m2

where m is the molality and V is in m3. Calculate the partial molar volumes of the components at m =
0.1 mol/kg.
Solution The partial molar volume of NaCl:



Differentiating Eq. (7.29) with reference to m,

Partial molar volume of water = 18.05 � 10–6 m3/mol
Partial molar volume of NaCl = 17.48 � 10–6 m3/mol

7.2 CHEMICAL POTENTIAL
The chemical potential, denoted by the symbol m, is a widely used thermodynamic property. It is
used as an index of chemical equilibrium in the same manner as temperature and pressure are used as
indices of thermal and mechanical equilibrium. The chemical potential mi of component i in a

solution is the same as its partial molar free energy in the solution, . That is, chemical potential of a
component i in a solution can be defined as

………(7.30)

The total free energy Gt of a solution is a function of pressure, temperature and number of moles of
various components.

Gt = f(P, T, n1, n2, . . ., ni, . . .)………(7.31)

The total differential dGt is



We have shown that for a closed system, when there is no change in the amount of various
constituents,

dG = V dP – S dT (6.18)
Considering the total properties of the system,

dGt = Vt dP – St dT
from which, it follows that

By reasoning analogous to that used in the derivation of Eq. (7.12), we have, at constant temperature
and pressure,

Gt = S mini
For a binary solution, the molar free energy of the solution is

G = x1m1 + x2m2
The chemical potential of a component is thus seen to be the contribution of that component to the
Gibbs free energy of the solution. The chemical potential is an important property of solution
extensively used in the study of phase and chemical equilibria.

7.2.1 Effect of Temperature and Pressure on Chemical Potential
Effect of temperature. Consider Eqs. (7.30) and (7.34). Differentiate Eq. (7.30) with respect to
temperature. Then



where  is the partial molar entropy of the component i in the solution. This result, though gives the
variation of chemical potential with temperature, can be put in a more useful form [compare with Eq.
(6.73)] as follows: Since

Equation (7.41) predicts the effect of temperature on chemical potential.

Effect of pressure. Equations (7.30) and (7.34) are further differentiated to develop equations that
predict the effect of pressure on chemical potential. Differentiating Eq. (7.30) with respect to
pressure, we obtain



The rate of change of chemical potential with pressure is thus equal to the partial molar volume of the
constituent.
EXAMPLE 7.8 Prove the alternative definition of chemical potential that mi = (∂U/∂ni)S,V,nj.

Solution The internal energy of a system may be expressed as a function of thermodynamic state and
moles of the components like the Gibb’s free energy. For the present purpose, it is convenient to
express it as

Ut = f(St, Vt, n1, n2, . . ., ni, . . .)

which gives

But, we know that
G = H – TS = U + PV – TS

so that
dG = dU + P dV + V dP – T dS – S dT



The change in the total free energy at constant temperature and pressure is therefore,

Equation (7.50) is an alternative definition of chemical potential. But it should be understood that
(∂Ut/∂ni)S,V,njπi is not partial molar internal energy, for it refers to constant entropy and volume and
not to constant temperature and pressure. Partial molar internal energy is not equal to chemical
potential.

EXAMPLE 7.9 Show that for an ideal gas,

Solution For a mixture of ideal gases,



7.3 FUGACITY IN SOLUTIONS
The concept of fugacity was discussed in Chapter 6 with reference to pure substances. It was pointed
out that fugacity is a useful concept in dealing with mixtures. For pure fluids, the definition of
fugacity is provided by Eq. (6.118) and (6.122):

7.3.1 Fugacity in Gaseous Solutions
The fugacity of a component i in a gaseous solution is given by Eq. (7.51). Equation (7.44) gives the
effect of pressure on chemical potential.



For a mixture of ideal gases, we have the following simple equation of state:



PVt = (n1 + n2 + n3 + . . .) RT

which states that the fugacity of a component in a mixture of ideal gases is equal to the partial
pressure of that component in the mixture. However, this is not true for real gases. Equation (7.57)
provides the means for computing fugacities in the real gaseous solution. But this requires the
evaluation of  as a function of pressure, which in turn requires the knowledge of how the solution
volume varies with composition at each pressure. These types of data are rarely available, and hence
rigorous calculation of fugacities in gaseous mixtures using Eq. (7.57) is rarely done.

7.3.2 Lewis–Randall Rule
As the calculation of fugacity in a mixture of gases through the general equation [Eq. (7.57)] is very
difficult, we devise a model for mixtures known as the ideal solution model the fugacity of which can
be easily evaluated. The fugacity in actual solution is then determined by taking into account the
deviation of the actual solution from this ideal model behaviour. As an ideal gaseous solution we can
consider a gas mixture formed without any volume change on mixing the components. A gas mixture
that follows the Amagat’s law is an ideal gaseous solution. For such solutions, the volume of the
mixture is a linear function of the mole numbers at a fixed temperature and pressure. That is,

Vt = S niVi………(7.60)

where Vi is the molar volume of pure i at the same temperature and pressure. For such ideal
solutions,

Note that the right-hand side of Eq. (7.57) reduces to the same result as that given by Eq. (6.128)
where the residual volume for the pure component is given by a = Vi – RT/P. That is, for pure
components at a temperature T and pressure P,



Subtracting Eq. (7.62) from Eq. (7.63),

which is commonly known as Lewis–Randall rule or Lewis fugacity rule. It states that fugacity of a
component in an ideal solution is directly proportional to the mole fraction of the component in the
solution. In Eq. (7.65),  is the fugacity of the species i in an ideal gaseous solution, and fi is the
fugacity of pure i evaluated at the temperature and pressure of the mixture. Thus, we have now, 

 for ideal gaseous solution and,  for ideal (perfect) gases.
For a gas mixture to behave as an ideal solution, it requires only that the molar volume in the pure
state and the partial molar volume in the solution be the same, or . For the mixture to be an ideal

gas it requires that , which means that the molar volumes of all the components are the
same whether in the mixture or in the pure state. For ideal solutions, the volumes of components may
differ from one another. In short, the concept of an ideal gaseous solution is less restrictive than that
of a mixture of ideal gases.
The Lewis–Randall rule is a simple equation and is therefore widely used for evaluating fugacities of
components in gas mixtures. It allows the fugacity of a component in the mixture to be calculated
without any information about the solution except its composition. However, it is not reliable because
of the severe simplification inherent in Amagat’s law of additive volumes. But at high pressures it is
often a very good assumption, because, at liquid like densities, fluids tend to mix with little or no
change in volume (J.M. Prausnitz et al., 1986). Lewis fugacity rule is valid for systems where the
intermolecular forces in the mixture are similar to those in the pure state. Thus, it can be said that this
rule is valid



1. At low pressures when the gas phase behaves ideally
2. At any pressure if the component is present in excess
3. If the physical properties of the components are nearly the same
4. At moderate and high pressures, the Lewis–Randall rule will give incorrect results if the

molecular properties of the components are widely different and the component under
consideration is not present in excess.

7.3.3 Fugacities in Liquid Solutions
Calculation of fugacity of a component in a liquid solution using Eq. (7.57) is not practical because
the volumetric data at constant temperature and composition are rarely available. These data are
required for the integration over the entire range of pressures from the ideal gas state to the pressure
of the solution including the two-phase region. For calculation of fugacities in liquid solutions,
another approach is used. We define an ideal solution whose fugacity can be easily calculated
knowing its composition and measure the departure from ideal behaviour for the real solution. A
quantitative measure of the deviation from ideality is provided by the function known as the activity
coefficient which will be discussed in Section 7.6.

7.3.4 Ideal Solutions and Raoult’s Law
A solution in which the partial molar volumes of the components are the same as their molar volumes
in the pure state is called an ideal solution. There is no volume change when the components are
mixed together to form an ideal solution. That is, for an ideal solution V = S xi  = S xiVi, where V

is the molar volume of the solution, Vi and  are the molar volume and partial molar volume
respectively of the component i, and xi is the mole fraction of component i in the solution. If a mixture
of two liquids is to behave ideally, theoretical considerations reveal that the two types of molecules
must be similar. The environment of any molecule and hence the force acting on it is then not
appreciably different from that existing in the pure state. We have shown that for ideal gaseous
solutions, the Lewis–Randall rule is applicable which states that fugacity of each constituent is
directly proportional to the number of moles of the constituent in the solution. The Lewis–Randall
rule is applicable to ideal liquid solutions also. It can be written as

………(7.66)
where  is the fugacity of component i in the solution, fi is the fugacity of i in the pure state, and xi is
the mole fraction of component i in the solution.
While the ideal solution model is adequate for many gas mixtures for reasonable temperature and
pressure, the same is not true for the case of liquid solutions. Very few solutions follow 
Eq. (7.66) over the entire composition range. Ideal liquid solution behaviour is often approximated
by solutions comprised of molecules not too different in size and chemical nature. Thus a mixture of
isomers (e.g. ortho- , meta- and para-xylene), adjacent members of homologous series of organic
compounds (e.g. n-hexane and n-heptane, ethanol and propanol, benzene and toluene, ethyl bromide
and ethyl iodide) etc., are expected to form ideal solutions.

Raoult’s Law. The criterion of phase equilibria permit us to replace the liquid phase fugacities 



and fi with fugacities in the gas phase with which the liquid is in equilibrium. Thus,  under
equilibrium. Here superscripts V and L refer to the vapour phase and the liquid phase respectively.
Thus, fugacity  in Eq. (7.66) is equal to the fugacity of constituent i in the vapour phase. If the vapour
phase is assumed to be ideal gas, which is true if the pressure is not too high, the vapour phase
fugacity  is the same as partial pressure  of component i in the vapour. If the liquid phase is pure
i, the fugacity of pure i in the vapour phase can be replaced with the vapour pressure . Under these
conditions the Lewis–Randall rule, Eq. (7.66), becomes

………(7.67)
This expression is known as Raoult’s Law. This is a simplified form of the Lewis–Randall rule.
Whereas the Lewis–Randall rule is obeyed by all ideal solutions, the Raoult’s law is applicable to
ideal solutions if the vapour phase with which it is in equilibrium is an ideal gas.
Raoult’s law provides a very simple expression for calculating the fugacity of a component in the
liquid mixture which is the same as the partial pressure of the component in the vapour. It says that the
partial pressure is directly proportional to the mole fraction in the liquid solution. Ideal solutions
which conform to Raoult’s law over the entire range of concentrations are rare. A frequently cited
example for ideal solutions is mixtures of optical isomers of organic compounds. Raoult’s law
applies as fair approximation to mixtures of hydrocarbons showing a reasonable similarity in
molecular structure such as are encountered in petroleum industry. In most other cases Raoult’s law
applies only over a limited concentration range.

7.4 HENRY’S LAW AND DILUTE SOLUTIONS
Solutions conforming to Raoult’s law over the entire concentration range are rare as pointed out
earlier. A solution, any of whose components does not obey Raoult’s law is designated as non-ideal
solution. Even non-ideal solutions exhibit a common form of ideal behaviour over a limited
concentration range where the fugacity  (or, the partial pressure ) is directly proportional to the
concentration in the liquid. This behaviour is exhibited by the constituent as its mole fraction
approaches zero, and is generalised by Henry’s law.

Often, the solute portion of the non-ideal liquid solution can be assumed to follow Henry’s law.  is
the partial pressure of the solute over the solution, xi is its mole fraction in the solution and Ki is a

proportionality constant known as Henry’s law constant. Ki may be greater or less than , the

vapour pressure of the solute at the temperature and total pressure in question. When Ki and  are
equal, Henry’s law and Raoult’s law are identical. Henry’s law may be thought of as a general rule of
which Raoult’s law is a special case. Henry’s law is obeyed in all solutions by the solute at
extremely low concentrations. Essentially all liquids will obey Henry’s law close to mole fraction
zero, but many will deviate from the law above 0.01–0.02 mole fraction. And almost all liquids



deviate above 0.1 mole fraction. But in some exceptional cases, Henry’s law is found to be obeyed
quite well up to xi = 0.5.
For ideal solutions, the partial fugacity (or partial pressure) of a component is proportional to its
mole fraction. For a real solution it has been found experimentally that as the mole fraction of the
component approaches unity, its fugacity approximates to the value for an ideal solution, though at
lower mole fractions, the behaviour departs markedly from ideal behaviour.
In Fig. 7.4, the fugacity curve becomes asymptotic to the straight line showing ideal behaviour as
mole fraction approaches unity. In a dilute solution, the component present in larger proportions
designated as solvent, obeys Raoult’s law even though it may depart from ideal solution behaviour in
a more concentrated solution. As the mole fraction of the solute—the component present in smaller
proportions—approaches zero, it will conform to the ideal behaviour predicted by Henry’s law.
Thus, we can generalise by saying that the solute in a dilute solution obeys Henry’s law and the
solvent obeys Raoult’s law . It can be shown that over the range of compositions where the solvent
obeys Raoult’s law, the solute obeys Henry’s law (see Example 7.15).

7.4.1 Ideal Behaviour of Real Solutions
The ideal behaviour exhibited by non-ideal solutions can be summarised by the following
mathematical statements.



7.4.2 Henry’s Law and Gas Solubility
Since the solubility of the gases in liquids is usually very low, the mole fraction of a gas in a
saturated liquid solution is very small. The solute gas obeys Henry’s law and therefore its fugacity
(or the partial pressure) would be directly proportional to its mole fraction, the proportionality
constant being the Henry’s law constant [Eq. (7.69)]. In other words, the mole fraction or the
solubility of the gas in the liquid is proportional to the partial pressure of the gas over the liquid as
given by

where Ki is the Henry’s law constant.

EXAMPLE 7.10 The Henry’s law constant for oxygen in water at 298 K is 4.4 � 104 bar. Estimate
the solubility of oxygen in water at 298 K for a partial pressure of oxygen at 0.25 bar.
Solution Equation (7.72) gives the solubility of a gas in liquid in terms of its mole fraction.
Substituting the values Ki = 4.4 � 104 bar, and  = 0.25 bar in Eq. (7.72) we get xi = 0.0568 

� 10–4. For very dilute solutions, we can write

Therefore, the solubility of oxygen is 0.0568 � 10–4 moles per mole of water. In mass units, it can
be written as

0.0568 � 10–4 � 32 � 1/18 = 0.101 � 10–4 kg oxygen per kg water
EXAMPLE 7.11 The partial pressure of acetone (A) and chloroform (B) were measured at 298 K and
are reported below:

xB 0 0.2 0.4 0.6 0.8 1.0

, bar 0.457 0.355 0.243 0.134 0.049 0

, bar 0 0.046 0.108 0.187 0.288 0.386

(a) Confirm that the mixture conforms to Raoult’s law for the component present in excess and
Henry’s law for the minor component.

(b) Determine the Henry’s law constants.
Solution The partial pressures are plotted against mole fraction xA as shown in Fig. 7.5.



From the data given, it can be seen that  = 0.457 and  = 0.386 bar. The dotted line representing
the ideal behaviour (Raoult’s law) of component A is drawn by joining the origin and (x = 1, p =
0.457) by a straight line. Raoult’s law for component B is also drawn. The dotted lines PA and QB
represent the ideal behaviour. The Henry’s law line PR is drawn tangential to the curve  versus xA
as xA tends to 0 and the line QS is drawn tangential to the  versus xA curve as xA tends to 1.

(a) We see that the partial pressure curve for component A coincides with the Raoult’s law line in
the region where mole fraction of component A approaches unity and in this region, the partial
pressure of component B coincides with the Henry’s law line. Thus, in the region where
Raoult’s law is obeyed by A, Henry’s law is obeyed by B, and vice versa.

(b) The slopes of the Henry’s law line PR gives KA, the Henry’s law constant for A. KA = 0.23 bar.
Similarly slope of QS is KB. KB = 0.217 bar.

7.5 ACTIVITY IN SOLUTIONS
The activity with reference to pure substance was defined [see Eq. (6.145)] and the concept was
discussed in Chapter 6. The activity of a component in a solution can be defined in a similar way. It
is the ratio of fugacity of a component in the solution in a given condition to the fugacity of that
component in the standard state. It is denoted by ai.

Since the fugacities are related to the chemical potential as



Dmi = mi –  is the increase in the chemical potential of species i when it is brought into solution
from its standard state.
The concept of activity plays an important role in solution thermodynamics because activity can be
related to compositions directly. For example, let the standard state for a substance be the pure
component at the temperature and pressure of the solution. Then the activity of that component
becomes equal to its mole fraction in the case of ideal solutions and is a strong function of mole
fraction in the case of real solutions.

For ideal solutions as , the activity ai = xi. For real solutions, the activity can be shown to be
equal to the product of activity coefficient and mole fraction. The activity coefficient is discussed
later in this chapter.
The term activity is a ratio without dimensions. It is a widely used function in solution
thermodynamics, particularly in dealing with property changes of mixing. The relationship between
property change of mixing and activity is discussed later in this chapter.

7.5.1 Selection of Standard States
The numerical values of activity depend upon the choice of the standard state, this choice being based
largely on experimental convenience and reproducibility. For all such standard states, the temperature
is the same as the temperature of the solution under study and it is not a fixed value. Following are the
commonly accepted standard states:

Gases. Two standard states are common:
1. The pure component gas in its ideal state at 1 bar. At this state, the fugacity is unity if expressed

in bar. The activity becomes

That is, the activity of a component in a mixture of gases is equal to its fugacity, numerically. If
the mixture behaves as an ideal gas at the given conditions the activity and partial pressure are
the same. This standard state is used in the study of chemical reaction equilibrium.

2. The pure component gas at the pressure of the system. With this choice the activity of each
component in ideal gas solution becomes equal to its mole fraction.



This standard state becomes hypothetical at temperatures where the total pressure exceeds the
saturation pressure of the component gas in the pure state. Vapour–liquid equilibrium studies
conventionally use this standard state.

Liquids. Two standard states are common for liquids also.
1. The pure component liquid at a pressure of 1 bar. This state is hypothetical if the vapour

pressure of the pure liquid exceeds 1 bar.
2. The pure liquid at the pressure of the system. This state becomes hypothetical at temperatures

above the critical or saturation temperature of the pure liquid. This standard state is used in
vapour–liquid equilibrium studies.

Solids. The standard state chosen for solid is usually the pure component in the solid state at a
pressure of 1 bar.

7.6 ACTIVITY COEFFICIENTS
We have already seen that the concept of ideal solution enables us to calculate the fugacity of a
component in the liquid solution from the knowledge of its concentration in the solution and its
fugacity in the pure state. The calculation of fugacity of a component in a real solution should take into
account the degree of departure from ideal behaviour. Activity coefficients measure the extent to
which the real solution departs from ideality. Activity coefficient of the component i in solution is
denoted by gi and is defined by the following relationship.

where  is the fugacity in the standard state. For ideal solutions gi = 1, and we have

which is same as the Lewis–Randall rule [Eq. (7.66)] with the pure liquid at the system pressure as
the standard state.
Two types of ideal behaviour are observed; the first conforms to Lewis–Randall rule (or Raoult’s
law) in which case , the fugacity of the pure species at the system pressure and the second type
conforms to an ideal dilute solution behaviour (the Henry’s law), in which case , the Henry’s
law constant. Depending upon the standard states on which they are based, the activity coefficients
can take different numerical values. For the standard state in the sense of Lewis–Randall rule or
Raoult’s law,

where ai is the activity of i in the solution. Equation (7.77) is, in fact, Lewis fugacity rule modified by



the factor gi to correct for deviation from ideality. This equation should reduce to Raoult’s law as x
approaches unity and to Henry’s law as x approaches zero. For this to be possible, g must equal unity
as mole fraction approaches unity (Raoult’s law region) and Ki/fi, as mole fraction, approaches zero
(Henry’s law region). In terms of partial pressures, Eq. (7.77) may well be written as

Then the activity coefficient approaches unity as x approaches zero. In Eqs. (7.81) and (7.82),  is
the activity coefficient referred to infinite dilution.
When activity coefficients are defined with reference to an ideal solution in the sense of Raoult’s
law, then for each component i,

gi � 1…as…xi � 1

On the other hand, if activity coefficients are defined with reference to an ideal dilute solution, then
g1 � 1…as…x1 � 1 (solvent)

 � 1…as…x2 � 0 (solute)

Activity coefficients with reference to ideal dilute solution would be useful when dealing with liquid
mixtures that cannot exist over the entire composition range as happens, for example, in a liquid
mixture containing gaseous solute. If the critical temperature of the solute is lower than the
temperature of the mixture, then a liquid phase cannot exist as x2 � 1, and the relations based on an
ideal mixture in the sense of Raoult’s law can be used only by introducing a hypothetical standard
state for component 2. However, relations based on an ideal dilute solution eliminate this difficulty.
Activity coefficients are very strong functions of concentration of solution. The variation of g with x
over the entire range of composition is usually complex, but can often be roughly approximated in
binary solutions by the empirical equations such as the one proposed by Porter:

where b is an empirical constant. These relationships apply best when the components are not too
dissimilar in structure and polarity.

7.6.1 Effect of Pressure on Activity Coefficients
The effect of pressure on fugacity was derived in Chapter 6 [Eq. (6.126)].



The molar volumes  and Vi correspond to the particular phase under consideration. For liquid
solutions, the effect of pressure on activity coefficients is negligible at pressures below atmospheric.
For gaseous mixtures, activity coefficients are nearly unity at reduced pressures below 0.8.

7.6.2 Effect of Temperature on Activity Coefficients
The effect of temperature on fugacity of a pure substance was given by Eq. (6.125) as



Equation (7.88) gives the effect of temperature on activity coefficients. The term (  – Hi) is the
partial heat of mixing of component i from its pure state to the solution of given composition both in
the same state of aggregation and pressure. For gaseous mixtures, this term is negligible at low
pressures.
EXAMPLE 7.12 The partial pressures of acetone (A) and chloroform (B) were measured at 298 K
and are reported below:

xA 0 0.2 0.4 0.6 0.8 1.0

, bar 0 0.049 0.134 0.243 0.355 0.457

, bar 0.386 0.288 0.187 0.108 0.046 0

Calculate the activity and activity coefficient of chloroform in acetone at 298 K,
(a) Based on the standard state as per Lewis–Randall rule
(b) Based on Henry’s law.

Solution The Henry’s law constant was determined in Example 7.11. KB = 0.217 bar. The vapour

pressure of pure chloroform,  = 0.386 bar. The activity was defined by Eq. (7.73) and activity
coefficient by Eq. (7.75). Combining these two we get,

ai = gixi
Based on the Lewis–Randall rule, the activity,



The activity coefficient based on the Lewis–Randall rule is

The above equations are used to calculate the activity and activity coefficients for different
concentrations. A sample calculation is provided below for the second set where

xA = 0.2, xB = 0.8,  = 0.049 bar,  = 0.288 bar, KB = 0.217 bar,  = 0.386 bar

The above calculations are repeated for other concentrations and the results are given below:

xB 0 0.2 0.4 0.6 0.8 1.0

a 0 0.12 0.28 0.48 0.75 1.0

a� 0 0.21 0.50 0.86 1.33 1.78

g 0.60 0.70 0.80 0.94 1.0

g� 1.0 1.05 1.25 1.43 1.66 1.78

EXAMPLE 7.13 The fugacity of component 1 in binary liquid mixture of components 1 and 2 at 298
K and 20 bar is given by

where  is in bar and x1 is the mole fraction of component 1. Determine:
(a) The fugacity f1 of pure component 1



(b) The fugacity coefficient f1
(c) The Henry’s law constant K1
(d) The activity coefficient g1.

Solution (a) When the mole fraction approaches unity, the fugacity of a component in the solution
becomes equal to the fugacity of the pure component. That is,

7.7 GIBBS–DUHEM EQUATIONS
In a mixture, the partial molar properties of the components are related to one another by one of the
most useful equations in thermodynamics, the Gibbs–Duhem equations. It tells us how the partial
molar properties change with compositions at constant temperature and pressure.
We have seen that at constant temperature and pressure, the property Mt of the solution is the sum of
the partial molar properties of the constituents, each weighted according to the number of moles of the
respective constituents.



Dividing throughout by n, the total number of moles in the solution, we get
S xi dmi = 0………(7.96)

Here xi is the mole fraction of component i in the solution and mi is the chemical potential of the
component.

Other forms of Gibbs–Duhem equation. Consider a binary solution made up of components 1
and 2 whose mole fractions in the solution are x1 and x2 respectively. Equation (7.96) can be written
as

x1 dm1 + x2 dm2 = 0………(7.97)

where m1 and m2 are the chemical potentials of components 1 and 2 respectively. This can be
rearranged as

x1 dm1 = – x2 dm2
Dividing by dx1 and noting that dx1 = – dx2 in binary mixtures, the above result gives



Since , the fugacity in the standard state, is independent of the composition of the solution,

The second terms on both sides of the above equation vanish, as they are equal to unity. Therefore,

As the activity coefficients directly measure the departure from the ideal solution behaviour, 
Eq. (7.101) is the most useful form of the Gibbs–Duhem equation.
The various forms of Gibbs–Duhem equations are rigorous thermodynamic relations that are valid for
conditions of constant temperature and pressure. They tell us that the partial molar proper-ties of a
mixture cannot change independently; in a binary mixture, if the partial molar property of one of the
component increases, the partial molar properties of the other should decrease.
Gibbs–Duhem equations find wide applications in solution thermodynamics. These include:

(a) In the absence of complete experimental data on the properties of the solution, Gibbs–Duhem



equations may be used to calculate additional properties. For example, if experimental data are
available for the activity coefficient of one of the components in a binary solution over certain
concentration range, the activity coefficient of the other component over the same composition
range can be estimated using Gibbs–Duhem equations. This is particularly useful wherever the
volatilities of the two components differ markedly. The measurements usually give the activity
coefficient of the more volatile component whereas that of the less volatile component is
calculated using Eq. (7.101). Thermodynamic properties of some high-boiling liquids (e.g.
polymers) dissolved in a volatile liquid (say, benzene) can be computed by measuring the
partial pressure of the latter in the solution.

(b) Thermodynamic consistency of experimental data can be tested using Gibbs–Duhem equations.
If the data on the partial molar property of each component measured directly in experiments
satisfy the Gibbs–Duhem equation, it is likely that they are reliable, but if they do not satisfy the
Gibbs–Duhem equation, it is certain that they are incorrect.

(c) Gibbs–Duhem equations can be used for the calculation of partial pressure from isothermal
total pressure data. Suppose that in an experimental investigation of vapour–liquid equilibrium,
the total pressures are measured as a function of composition of one of the phases (usually the
liquid phase) and the composition of the other phase is not measured. The Gibbs–Duhem
equation facilitates the calculation of the composition of other phase thereby reducing the
experimental work considerably.

(d) Partial pressure data can be obtained from isobaric boiling point data using Gibbs–Duhem
equations. The isobaric T-x data can be easily converted to x-y data.

In the sections that follow the application of Gibbs-Duhem equation is illustrated in the 
derivation of the relationship between Henry’s law and Raoult’s law for a real solution (see Example
7.15), in proving the essential criterion that the vapour and liquid compositions are the same for an
azeotropic mixture (see Example 8.11) etc.
EXAMPLE 7.14 Show that in a binary solution, if the molar volume of one of the components
increases with concentration, the molar volume of the other must decrease.
Solution When Eq. (7.94) is written for one mole of the solution with M replaced by V, we get

It means that if  is positive,  must be negative. That is, if partial molar volume of component 1
increases the partial molar volume of component 2 must decrease.
EXAMPLE 7.15 Prove that if Henry’s law is obeyed by component 1 in a binary solution over
certain concentration range, Lewis–Randall rule (Raoult’s law) will be obeyed by component 2 over
the same concentration range.



Solution Equation (7.99) gives Gibbs–Duhem equations in terms of fugacities

which is the Lewis–Randall rule for component 2.
In Fig. 7.6, Henry’s law applies to component 1 in a binary system over the range 0 to . Lewis–
Randall rule will be applicable to component 2 over the same composition range.



EXAMPLE 7.16 The activity coefficient of component 1 in a binary solution is given by

where a, b, c are constants independent of concentrations. Obtain an expression for g2 in terms of x1.

Solution Using the Gibbs–Duhem equation [Eq. (7.101)], we get



where C� is a constant of integration. Integrating and using the boundary condition that when 
x2 = 1 (or x1 = 0 ), g2 = 1 we get C� = 0. Therefore, we get the required expression:

The above example illustrates how the activity coefficient of one of the species in a binary mixture
can be evaluated if the activity coefficient of the other is known as an analytical equation in x. Now,
suppose that g1 is determined experimentally and is reported as a function of x in a tabular form.
How is g2 evaluated? Rearrange Gibbs–Duhem equation, Eq. (7.101) in the form

The integral in Eq. (7.106) is to be evaluated graphically. For this, plot a graph taking x1/x2 along the
y-axis and ln g1 on the x-axis. The area under the curve from ln g1 at x1 = 0 to the 
ln g1 value at the desired concentration x1 will give the integral in Eq. (7.106). The negative of this
is the value of ln g2 at x1.

7.8 PROPERTY CHANGES OF MIXING
We know that the molar volume of an ideal solution is simply the average of the molar volumes of the
pure components, each weighted according to its mole fraction. That is, V = S xiVi for ideal
solutions. If such a relation could be written for all extensive thermodynamic properties of a solution,
then

M = S xiMi………(7.107)

where M is the molar property of the solution, Mi and xi are the molar property of pure i and its mole
fraction respectively. But Eq. (7.107) is not true even for ideal solutions when the property under
consideration is entropy or entropy related functions like free energy. For non-ideal solutions, this
equation cannot be used for the estimation of thermodynamic properties unless we apply a correction
term DM, known as the property change of mixing. Thus, in general, when thermodynamic properties
of a solution, whether ideal or real, are evaluated from the pure component properties the equation
used should be



M = S xiMi + DM………(7.108)

In Eq. (7.108), DM is the difference in the property of the solution M and sum of the properties of the
pure components that make it up, all at the same temperature and pressure as the solution. Thus

DM = M – S xiMi………(7.109)

Replacing M in Eq. (7.108) by the molar volume V,

V = S xiVi + DV

where DV is the volume change on mixing. DV = 0, for ideal solutions.
A more general definition of DM can be written as

DM = M – S xi ………(7.110)

where  is the molar property of pure i in a specified standard state. If the component exists in the
pure form in the same state of aggregation as the solution and at the temperature and pressure as the
solution, then  = Mi. For example, if all components exist in the pure state as stable liquids at the

temperature and pressure of the solution,  = Vi and DV = V – S xiVi. Here, DV is the volume change
of mixing when one mole of the solution is formed at constant temperature and pressure from the pure
liquid constituents.
Property change of mixing is a function of temperature and pressure like any other thermodynamic
property of solution and its value depends on the standard state specified for the components.
Comparison of Eq. (7.14), which relates the properties of the solution to the partial molar properties
of the constituent species, with Eq. (7.108) yields

DM = S xi ………(7.111)

The quantity  can be treated as the change in the property of component i when one mole of
pure i in its standard state is brought to the solution of given composition at the same temperature and
pressure. Using Eq. (7.111), the volume change of mixing and free energy change of mixing can be
written as

DV = S xi ………(7.112)

DG = S xi ………(7.113)

7.8.1 Activity and Property Change of Mixing
Free energy change of mixing, DG. Using the definition of fugacity, Eq. (6.118), the change in
the free energy of a substance when it is brought from its standard state to the solution, can be written
as



Volume change of mixing, DV. The partial molar free energy (the chemical potential ) varies
with pressure as

 are the partial molar volume and molar volume of component i in the standard state

respectively. Replacing  in Eq. (7.112) in terms of  using the preceding two
relations, we get

Enthalpy change of mixing, DH. The Gibbs–Helmholtz equation [see Eqs. (6.73) and (7.41)]
relates the free energy of the substance in the pure state or in the solution to the corresponding
enthalpies of the substance as



Substituting Eq. (7.114) into this, we get

Entropy change of mixing, DS. The partial molar entropy  and molar entropy of component i
in the standard state  are related to the free energy of i in the solution and free energy of pure i as
given below.



Equations (7.115), (7.117), (7.119) and (7.120) reveal that all property changes of mixing can be
written in terms of activity of the components in solution.

7.8.2 Property Changes of Mixing for Ideal Solutions

For ideal solutions fugacity is given by Lewis–Randall rule, . With reference to the pure
component standard state, the activity is given as ai = /fi = xi. Replacing ai with xi in the results in
the previous section and noting that the concentration is independent of pressure and temperature, we
have the following results for the property changes of mixing of ideal solutions.

DG = RT S xi ln xi………(7.121)

DV = 0
DH = 0
DS = – R S xi ln xi………(7.122)

Thus, we see that the volume change of mixing, and enthalpy change of mixing of ideal solution are
zero. This is true for internal energy change and heat capacity change of mixing as well. But, the free
energy change of mixing and entropy change of mixing are not zero. As an ideal gas is a special case
of an ideal solution, the above equations are applicable for ideal gas mixtures also.



7.9 HEAT EFFECTS OF MIXING PROCESSES
Since the energy of interaction between like molecules is different from that between unlike
molecules, the energy of a solution is different from the sum of the energies of its constituents. This
difference between the energy of the solution and the energy of the constituents leads to the absorption
and evolution of heat during the mixing process. The heat of mixing, DH (or the enthalpy change of
mixing), is the enthalpy change when pure species are mixed at constant pressure and temperature to
form one mole (or unit mass) of solution. For binary mixtures,

DH = H – (x1H1 + x2H2)………(7.123)

Knowing the enthalpies of the pure constituents H1 and H2 and the heat of mixing at the given
concentration, the enthalpy of the solution can be computed as

H = (x1H1 + x2H2) + DH………(7.124)

When solids or gases are dissolved in liquids, the accompanying enthalpy change is usually measured
as heats of solution, which is defined as the enthalpy change when one mole of the solute dissolves in
the liquid. Thus

………(7.125)
where DHS is the heat of solution per mole of solute (component 1). When the constituents are all
liquids and solutions of all proportions are possible, the heat effect is usually termed as heat of
mixing. Figures 7.7 and 7.8 illustrate the two types of presentation of heat of mixing.



In Fig. 7.7, the heat of mixing of ethanol–water is shown from which it is clear that mixing process at
lower temperatures and concentration of ethanol is exothermic and at higher temperatures and high



concentrations it is endothermic. In Fig. 7.8, heats of solution of various substances in water are
plotted with moles of water per mole of solute as abscissa.
Using the heat of mixing at one temperature and heat capacity data of pure species and the solution,
the heat of mixing at any temperature can be calculated. The method of calculation is similar to the
one employed for the calculation of standard heat of reaction at any temperature from the values at
298 K.
EXAMPLE 7.17 The enthalpy change of mixing for a binary liquid solution at 298 K and 1 bar is
given by the equation DH = x1x2(40x1 + 20x2), where DH is in J/mol and x1 and x2 are the mole
fractions of components 1 and 2 respectively. The enthalpies of the pure liquids at the same
temperature and pressure are 400 and 600 J/mol respectively. Determine numerical values of the

partial molar enthalpies at infinite dilution  at 298 K and 1 bar.
Solution Refer Eqs. (7.20) and (7.21) and replace V by H.



EXAMPLE 7.18 At 300 K and 1 bar, the volumetric data for a liquid mixture of benzene and
cyclohexane are represented by V = 109.4 � 10–6 – 16.8 � 10–6x – 2.64 � 10–6x2, where x is the
mole fraction of benzene and V has the units of m3/mol. Determine the expression for volume change
of mixing for the standard state based on Lewis–Randall rule.
Solution The expressions for the partial molar volumes of benzene (1) and cyclohexane (2) were
derived in Example 7.5. They are

EXAMPLE 7.19 A vessel is divided into two compartments. One contains 100 moles nitrogen at 298
K and 1 bar and the other contains 100 moles of oxygen at the same conditions. The barrier separating
them is removed and the gases are allowed to reach equilibrium under adiabatic conditions. What is
the change in entropy of the contents of the vessel?
Solution As the gases are ideal, the temperature and pressure before and after mixing will be the
same. For one mole of the mixture the change in entropy on its formation from pure components is



given by Eq. (7.122).

DS = – R S xi ln xi
Since xi = 0.5,

DS = – R ln 0.5 = 8.314 � ln 2 = 5.763 J/mol K
For 200 moles of the mixture, DS = 1152.57 J/K
EXAMPLE 7.20 The heat of formation of LiCl is – 408.610 kJ/mol at 298 K. The heat of solution for
1 mol LiCl in 12 moles water is –33.614 kJ at 298 K. Calculate the heat of formation of LiCl in 12
moles water at 298 K.
Solution The chemical reaction of formation of LiCl and the physical change of dissolution of LiCl in
water can be represented by the following:

EXAMPLE 7.21 A container is divided into two compartments. One contains 3.0 moles hydrogen at
298 K and 1.0 bar and the other contains 1.0 mol nitrogen at 298 K and 3.0 bar. Calculate the free
energy of mixing when the partition is removed.
Solution Assume that the gases behave ideally. The volume occupied by hydrogen is
(nRT)/P = 3RT
Volume occupied by nitrogen is
(nRT)/P = RT/3
Therefore, the total volume occupied after the partition is removed is
3RT + RT/3 = (10/3)RT
The final pressure attained by the mixture is

It is assumed that the process is taking place in two steps. In the first, the individual gases are
separately brought to the final pressure at constant temperature and in the second, the gases are mixed
at constant pressure and temperature. For the first step, the change in free energy is due to change in
the pressure and is equal to



EXAMPLE 7.22 Calculate the mean heat capacity of a 20 mole per cent solution of alcohol in water
at 298 K, given the following:
Heat capacity of water: 4.18 � 103 J/kg K; Heat capacity of ethanol: 2.18 � 103 J/kg K; Heat of
mixing for 20 mole per cent ethanol–water at 298 K: – 758 J/mol; Heat of mixing for 20% (mole)
ethanol–water at 323 K: – 415 J/mol. Assume that the heat capacities of pure liquids are constant
between 298 and 523 K.
Solution The enthalpy change when 0.8 moles of water and 0.2 moles of ethanol both at 
323 K are mixed together is given by the heat of mixing at 323 K which is equal to – 415 J/mol of
solution. 0.8 mol water at 323 K + 0.2 mol ethanol at 323 K � 1.0 mole 20 per cent ethanol–water;
DH = – 415 J/mol. This change can be assumed to be taking place in four steps as detailed below:

Step 1: 0.8 mol water is cooled from 323 K to 298 K. Let DH (1) be the enthalpy of cooling. Then
DH(1) = 0.8 � 18 � 4.18 � (298 – 323) = – 1504.8 J

Step 2: 0.2 mol ethanol is cooled from 323 K to 298 K. Let DH(2) be the enthalpy of cooling.
DH(2) = 0.2 � 46 � 2.58 � (298 – 323) = – 593.4 J

Step 3: 0.8 mol water and 0.2 mol ethanol at 298 K are mixed together. Heat of mixing is
DH(3) = –758 J/mol

Step 4: 20 per cent ethanol–water solution is heated to 323 K. The enthalpy of heating is
DH(4) = CPm(323 – 298)



where CPm is the mean specific heat of solution.

DH = DH(1) + DH(2) + DH(3) + DH(4)
– 415 = – 1504.8 – 593.4 – 758 + CPm (323 – 298)

Thus the mean heat capacity of a 20 per cent solution is CPm = 97.65 J/mol K
EXAMPLE 7.23 What temperature will be attained when a 20% mole ethanol–water mixture is
adiabatically formed from the pure liquids at 298 K? Heat of mixing for 20% mole ethanol–water at
298 K: –758 J/mol. The mean heat capacity of a 20% mole solution of alcohol in water at 
298 K: 97.65 J/mol K.

Solution The adiabatic mixing process involves no change in enthalpy or DH = 0. It means the
temperature of the solution will increase or decrease on mixing depending upon whether heat is
absorbed or evolved during the process. Let T be the temperature attained by the solution on mixing.
Then its enthalpy above 298 K is CP m (T – 298), where CPm is its mean heat capacity. The
temperature T can be evaluated by assuming that the process is occuring in steps as shown in 
Fig. 7.10.

DH = DHS + CPm(T – 298)

0 = – 758 + 97.65(T – 298)
Therefore, T = 305.8 K.

7.10 EXCESS PROPERTIES
The difference between the property of a real solution and that of an ideal solution is important in
chemical thermodynamics, especially in the treatment of phase equilibria. The excess property,  ME,
is defined as the difference between an actual property and the property that would be calculated for
the same temperature, pressure and composition by the equations for an ideal solution.

ME = M – Mid………(7.131)

M is the molar property of the solution and Mid is the property of an ideal solution under the same
conditions.
The excess property change of mixing is defined in a similar manner.



DME = DM – DMid………(7.132)

DME is the excess property change of mixing, DM and DMid are the property changes of mixing for a
real solution and an ideal solution respectively, both under the same conditions. As

DM = M – S xi , DMid = Mid – S xi
Equation (7.132) can be written as

DME = M – Mid………(7.133)
Compare Eq. (7.131) with Eq. (7.133). We see that

DME = ME………(7.134)
Equation (7.134) means that the excess property change of mixing and the excess property are the
same.
Let us consider the excess volume VE of a solution.

VE = DVE = DV – DVid

Since ideal solution involves no volume change of mixing, DVid = 0. Therefore, the excess volume of
a solution and the volume change of mixing DV are the same. The same is true for some other
extensive thermodynamic properties like enthalpy, internal energy, heat capacity, etc. Excess
properties in these cases do not represent new thermodynamic properties. However, for entropy and
entropy related functions, the excess properties are different from property changes of mixing and they
represent new and useful quantities.
Excess functions indicate the deviations from ideal solution behaviour and are easily related to
activity coefficients. Excess functions may be positive or negative; when the excess Gibbs free energy
of a solution is positive the solution is said to exhibit positive deviation from ideality, whereas if it is
less than zero, the deviation from ideality is negative.
The definition of partial molar excess functions is analogous to that of partial molar thermodynamic
properties [see Eq. (7.1)].

Equation (7.136) says that the molar excess property ME of a solution is the average of the partial
molar excess property of each component weighted according to its mole fractions.

7.10.1 Excess Gibbs Free Energy
For phase equilibrium studies the most useful excess property is the partial molar excess Gibbs free
energy which can be directly related to the activity coefficient. Excess Gibbs free energy is defined



as

GE = G – Gid………(7.137)
Using Eq. (7.136), we can write the excess Gibbs free energy as

In Eq. (7.140) the fugacity  is related to xi,, �i and  as , so that Eq. (7.140) becomes

Dmi = RT ln xigi………(7.143)

Substituting Eq. (7.142) and Eq. (7.143) into Eq. (7.139), the result is

EXAMPLE 7.24 The two-suffix-Margules equation is the simplest expression for excess Gibbs free



energy that is obeyed by chemically similar materials.

GE = Ax1x2………(7.147)

where A is an empirical constant independent of composition. Derive the expressions for the activity
coefficients that result from this expression.
Solution Write Eq. (7.146) for components 1 and 2. Then



SUMMARY
A proper understanding of the thermodynamic properties of solutions is essential for the analysis of
many chemical engineering problems such as the phase equilibria and chemical reaction equilibria.
New concepts were found necessary to deal with the solutions, the concept of partial molar
properties being the most important among them. The general definition of partial molar property was
given by Eq. (7.1). The partial molar property of a substance in a solution is an intensive property
strongly dependent on the concentration. It gives the increase, in the property of the solution resulting
from the addition at constant temperature and pressure, of one mole of the substance, to such a large
quantity of the system that its composition remains virtually unchanged. The method of tangent
intercepts was found to be most suitable for the determination of partial molar properties. The partial
molar free energy of a substance was designated as its chemical potential. It is the contribution that
the component makes towards the total free energy of the solution. It is a widely used thermodynamic
property and serves as an index of chemical equilibrium in the same manner as temperature and
pressure are used as indices of thermal and mechanical equilibrium.
The concept of fugacity introduced in Chapter 6 was extended to take care of mixtures through Eqs.
(7.51) and (7.52). For the evaluation of fugacity of mixtures, data on the variation of the solution
volume with composition at different pressures is necessary [Eq. (6.57)]. Since such data are scarce,
the fugacity in the solution is to be evaluated by devising an ideal solution model and by measuring
the extent to which the real solutions deviate from it. The Lewis–Randall rule allows the fugacity of a
component in the mixture to be calculated without any information about the solution except its
composition. It states that the fugacity of a component in an ideal solution is directly proportional to
the mole fraction of the component in the solution [Eq. (7.65)]. For ideal liquid solutions, if the
vapour phase with which it is in equilibrium is assumed to behave as an ideal gas, the Lewis–Randall
rule may be simplified to the Raoult’s law [Eq. (7.67)]. The Raoult’s law states that the partial
pressure of a component in the vapour phase is directly proportional to the mole fraction of that
component in the liquid, which is in equilibrium with the vapour. Even for non-ideal solutions, the
fugacity (or the partial pressure) was found to be directly proportional to the mole fraction in the
liquid as the mole fraction approaches zero (Henry’s law). Often, the solute portion of a dilute non-
ideal liquid solution can be assumed to follow the Henry’s law and the solvent portion, the Raoult’s
law. The activity of a component in a solution (Section 7.6) can be related to compositions directly
and hence plays an important role in solution thermodynamics. Activity coefficients (Section 7.6)
measure the extent to which real solutions deviate from ideal behaviour. Two types of ideal
behaviour are observed; one conforming to the Lewis–Randall rule and the other conforming to the
Henry’s law, thus giving rise to two types of activity coefficients.
In Section 7.7, the Gibbs–Duhem equations were developed relating the partial molar properties of
the components to one another. They tell us that the partial molar properties of a mixture cannot
change independently; in a binary mixture, if the partial molar property of one of the component
increases, that of the other should decrease. Various forms of the Gibbs–Duhem equations applicable
for binary solutions were also developed.
The property changes of mixing were defined (Section 7.8) as the difference in the property of the
solution and the sum of the properties of the pure components constituting the solution, all at the same
temperature and pressure as the solution. The property changes were presented in terms of the activity
of the constituents as shown by Eq. (7.115) for the free energy, Eq. (7.117) for the volume, Eq.



(7.119) for the enthalpy and Eq. (7.120) for the entropy change on mixing. The difference between the
energy of the solution and the energy of the constituents leads to absorption and evolution of heat
during the mixing process. The heat effects of mixing process were dealt with in detail in Section 7.9.
The excess property (Section 7.10) was defined as the difference between an actual property and the
property that could be calculated for the same temperature, pressure and composition by the equations
for an ideal solution. For phase equilibrium studies the most useful excess property is the partial
molar excess Gibbs free energy which can be directly related to the activity coefficient. A simple
relationship was shown to exist between activity coefficient and excess chemical potential which
makes it possible to express the activity coefficient as a function of the composition.

REVIEW QUESTIONS
1. Distinguish between molar volume and partial molar volume. Does the partial molar volume of a

substance vary with the concentration of the substance in the solution?
2. Express the partial molar property as the partial derivative of the total property of the solution.

Is it an intensive property or an extensive property?
3. How are the partial molar volumes of the constituents of a binary mixture related to their mole

fractions of the constituents and the molar volume of the solution? Explain how these equations
are useful for the determination of partial molar volumes by the tangent-intercept method.

4. Define chemical potential. What is its physical significance?
5. Chemical potential can be equated to the partial derivatives of U, A, H or S under certain

constraints. However, it cannot be treated as the partial molar internal energy, partial molar
enthalpy, etc. Explain.

6. Show that the rate of change of chemical potential of a substance with pressure is equal to its
partial molar volume in the solution.

7. What are the characteristics of an ideal solution? What is Lewis–Randall rule?
8. “The concept of an ideal gaseous solution is less restrictive than the concept of an ideal gas

mixture.” Explain.
9. State Raoult’s law. Show that it is a simplified form of the Lewis–Randall rule.
10. State Henry’s law and show that the Raoult’s law is a special case of the Henry’s law.
11. Given the Henry’s law constant, how would you determine the solubility of a gas in a liquid?
12. Define activity and show that the activity and mole fraction in an ideal solution are identical.
13. The activities in a gas mixture may be numerically equal to the fugacities or the mole fractions

in the mixture. Explain.
14. Define activity coefficient. How do you distinguish between the activity coefficient based on

the Lewis–Randall rule and that based on the ideal dilute solution?
15. Do the activity coefficients vary with composition or not? What is the effect of temperature and

pressure on the activity coefficient?
16. Discuss the Gibbs–Duhem equation and its various forms. What are the major fields of

application of the Gibb’s Duhem equations?
17. What do you mean by property changes of mixing? How are these related to the activities of the



components in the mixture?
18. “All property changes of mixing are zero for ideal solutions”. Do you agree? Explain.
19. Define excess property. Under what circumstance the property change of mixing and the excess

properties are identical?
20. How is the activity coefficient related to the excess free energy?

EXERCISES
7.1 Prove the following:

(a) 

(b) 

(c) 
7.2 Discuss the method for the calculation of entropy of solutions.
7.3 Discuss the variable pressure and variable temperature modifications of Gibbs–Duhem

equations.

7.4 Derive an expression for partial molar volumes  using the following relation for the
molar volume of the binary liquid mixture of components 1 and 2.

V = x1V1 + x2V2 + x1x2[B + C(x2 – x1)]

where x1 and x2 are the mole fractions and V1 and V2 are the molar volumes in the pure state.
7.5 Describe schematically an experimental technique for the determination of volume change and

enthalpy change on mixing.
7.6 The activity coefficients in a binary mixture based on the Lewis–Randall rule standard state are

given by

Derive expressions for activity coefficients based on Henry’s law in terms of composition.
7.7 Show that the Henry’s law constant varies with pressure as

where  is the partial molar volume of the solute at infinite dilution.
7.8 The enthalpy of a binary liquid mixture containing components 1 and 2 at 298 K and 

1.0 bar is given by
H = 400x1 + 600x2 + x1x2(40x1 + 4x2)

where H is in J/mol. Determine



(a) Pure component enthalpies
(b) Partial molar enthalpies.

7.9 The volume of a mixture of two organic liquids 1 and 2 is given by
V = 110.0 – 17x1 – 2.5

where V is the volume in m3/mol at 1.0 bar and 300 K. Find the expressions for .
7.10 If the partial molar volumes of species 1 in a binary liquid solution at constant temperature

and pressure is given by

derive the equat3ion for . What equation for V is consistent with this?
7.11 The molar enthalpy of a binary mixture is given by

H = x1(a1 + b1x1) + x2(a2 + b2x2)

Derive an expression for .
7.12 Using the method of tangent intercepts plot the partial molar volume of HNO3 in aqueous

solution at 293 K using the following data where w is the mass percentage of HNO3.

w 2.162 10.98 20.80 30.00 39.20 51.68 62.64 71.57 82.33 93.4 99.60

r � 10–3, kg/m3 1.01 1.06 1.12 1.18 1.24 1.32 1.38 1.42 1.46 1.49 1.51

7.13 On addition of chloroform to acetone at 298 K, the volume of the mixture varies with
composition as follows:

x 0 0.194 0.385 0.559 0.788 0.889 1.000

V � 103, m3/kmol 73.99 75.29 76.50 77.55 79.08 79.82 80.67

where x is the mole fraction of chloroform. Determine the partial molar volumes of the
components and plot against x.

7.14 The partial molar volumes of acetone and chloroform in a mixture in which mole fraction of
acetone is 0.5307 are 74.166 � 10–6 m3/mol and 80.235 � 10–6 m3/mol respectively. What
is the volume of 1 kg of the solution?

7.15 The volume of a solution formed from MgSO4 and 1.0 kg of water fits the expression

V = 1.00121 � 10–3 + 34.69 � 10–6(m – 0.070)2

where m is the molality of the solution. Calculate the partial molar volume of the salt and
solvent when m = 0.05 mol/kg.

7.16 Calculate the partial molar volumes of methanol and water in a 40 per cent (mol) methanol
solution given the following data at 1 bar and 298 K. (x = mole fraction of methanol)

x 0 0.114 0.197 0.249 0.495 0.692 0.785 0.892 1.0

V � 103, m3/mol 0.0181 0.0203 0.0219 0.023 0.0283 0.0329 0.0352 0.0379 0.0407

7.17 The standard enthalpy of formation of HCl (in kJ/mol) from the elements at 298 K are given



below:

nw 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 50.0 100.0 �
92.66 119.0 141.67 149.73 156.96 158.81 161.16 162.42 166.22 166.79 205.9

Calculate the partial molar enthalpies of HCl and water in a solution containing 10 kmol
HCl/m3 of solution.

7.18 The following table gives the molality and density of aqueous solutions of KCl at 
298 K. Determine the partial molar volume of KCl at m = 0.3.

m, mol/kg 0.0 0.1668 0.2740 0.3885 0.6840 0.9472

r, kg/m3 997.07 100.49 100.980 101.271 102.797 103.927

7.19 Calculate the concentration of nitrogen in water exposed to air at 298 K and 1 bar if Henry’s
law constant for nitrogen in water is 8.68 � 104 bar at this temperature. 
Express the result in moles of nitrogen per kg water (Hint: Air is 79 per cent nitrogen by
volume).

7.20 The partial pressure of methyl chloride in a mixture varies with its mole fraction at 
298 K as detailed below:

x 0.0005 0.0009 0.0019 0.0024

, bar 0.27 0.48 0.99 1.24

Estimate the Henry’s law constant of methyl chloride.
7.21 Two moles of hydrogen at 298 K and 2.0 bar and 4.0 moles of nitrogen at 298 K and 

3.0 bar are mixed together. What is the free energy change on mixing and what would be the
value had the pressures been identical initially?

7.22 Calculate the activity and activity coefficient of acetone based on Lewis–Randall rule and
Henry’s law for the data given in Example 7.12.

7.23 The activity coefficient data for a binary solution at fixed temperature and pressure are
correlated as

Do these equations satisfy Gibbs–Duhem equations?
7.24 In a binary mixture, the activity coefficient g1 of component 1, in the entire range of

composition, is given by

where R, A and B are constants. Derive expression for the activity coefficient of 
component 2.

7.25 For a mixture of acetic acid and toluene containing 0.486 mole fraction toluene, the partial
pressures of acetic acid and toluene are found to be 0.118 bar and 0.174 bar respectively at 343
K. The vapour pressures of pure components at this temperature are 0.269 bar and 0.181 bar for
toluene and acetic acid respectively. The Henry’s law constant for acetic acid is 0.55 bar.



Calculate the activity and activity coefficient for acetic acid in the mixture
(a) Based on Lewis–Randall rule
(b) Based on Henry’s law.

7.26 Calculate the activity and activity coefficients for toluene for the conditions in Exercise 7.24
assuming pure liquid standard state.

7.27 Partial pressure of ammonia in aqueous solutions at 273 K varies with concentration as:
x 0.05 0.10 0.15 0.50 1.00

, bar 0.0179 0.0358 0.062 1.334 4.293

Calculate
(a) The activity coefficient of ammonia in 10 mole per cent solution using pure liquid standard

state
(b) The Henry’s law constant if the system obeys Henry’s law.

7.28 The activity coefficient of n-propyl alcohol in a mixture of water (A) and alcohol (B) at 298 K
referred to the pure liquid standard state is given below:

xB 0 0.01 0.02 0.05 0.10 0.20

gB 12.5 12.3 11.6 9.92 6.05 3.12

Find gA in the solution containing 10 per cent (mole) n-propyl alcohol.
7.29 The activity coefficient of thallium in amalgams at 293 K are given below.

x2 0 0.00326 0.01675 0.04856 0.0986 0.168 0.2701 0.424

g2 1.0 1.042 1.231 1.776 2.811 4.321 6.196 7.707

Determine the activity coefficient of mercury (component 1) at various compositions.
7.30 A vessel is divided into two parts. One part contains 2 mol nitrogen gas at 353 K and 

40 bar and the other contains 3 mol argon gas at 423 K and 15 bar. If the gases are allowed to
mix adiabatically by removing the partition determine the change in entropy. Assume that the
gases are ideal and CV is equal to 5/2 R for nitrogen and 3/2 R for argon.

7.31 A stream of nitrogen flowing at the rate of 7000 kg/h and a stream of hydrogen flowing at the
rate of 1500 kg/h mix adiabatically in a steady flow process. If the gases are ideal and are at the
same temperature and pressure, what is the rate of entropy increase in 
kJ/h K as a result of the process?

7.32 The molar volume of a binary liquid mixture is given by

90 � 10–3x1 + 50 � 10–3x2 + x1x2(6 � 10–3x1 + 9 � 10–3x2)

Obtain expressions for  and show that they satisfy Gibbs–Duhem equations.
7.33 Water at a rate of 54 � 103 kg/h and Cu(NO3)2 ◊ 6H2O at a rate of 64.8 � 103 kg/h are

mixed together in a tank. The solution is then passed through a heat exchanger to bring the
temperature to 298 K, same as the temperature of the components before mixing. Determine the
rate of heat transfer in the exchanger. The following data are available. Heat of formation at 298



K of Cu(NO3)2 is –302.9 kJ and that of Cu(NO3)2 ◊ 6H2O is –2110.8 kJ. The heat of solution
of Cu(NO3)2 ◊ nH2O at 298 K is – 47.84 kJ per mol salt and is independent of n.

7.34 If pure liquid H2SO4 is added to pure water both at 300 K to form a 20 per cent (weight)
solution, what is the final temperature of the solution? The heat of solution of sulphuric acid in
water is H2SO4 (21.8 H2O) = –70 � 103 kJ/kmol of sulphuric acid. Standard heat of formation
of water = – 286 kJ/mol. Mean heat capacity of sulphuric acid may be taken from Chemical
Engineer’s Handbook.

7.35 LiCl � H2O (c) is dissolved isothermally in enough water to form a solution containing 
5 mol of water per mole of LiCl. What is the heat effect? The following enthalpies of formation
are given:
LiCl (c) = – 409.05 kJ, LiCl◊H2O (c) = – 713.054 kJ
LiCl (5H2O) = – 437.232 kJ, H2O (l) = – 286.03 kJ

7.36 Calculate the heat effects when 1.0 kmol of water is added to a solution containing 
1.0 kmol sulphuric acid and 3.0 kmol of water. The process is isothermal and occurs at 298 K.
Data: Heat of mixing for H2SO4 (3H2O) = – 49,000 kJ per kmol H2SO4. Heat of mixing for
H2SO4 (4H2O) = – 54,100 kJ per kmol H2SO4.

7.37 A single effect evaporator is used to concentrate a 15% (weight) solution of LiCl in water to
40%. The feed enters the evaporator at 298 K at the rate of 2 kg/s. The normal boiling point of a
40% LiCl solution is 405 K and its specific heat is 2.72 kJ/kg K. For what heat transfer rate in
kJ/h, should the evaporator be designed? The heat of solution of LiCl in water per mole of LiCl
at 298 K are:
DHS for LiCl(13.35 H2O) = – 33.8 kJ, for LiCl (3.53 H2O) = – 23.26 kJ. Enthalpy of
superheated steam at 405 K, 1 bar = 2740.3 kJ/kg. Enthalpy of water at 298 K = 104.8 kJ/kg.
Molecular weight of LiCl = 42.39.

7.38 The excess Gibbs free energy of solutions of methyl cyclohexane (MCH) and tetrahydrofuran
(THF) at 303 K are correlated as

GE = RTx(1 – x)[0.4587 – 0.1077(2x – 1) + 0.0191(2x – 1)2]
where x is the mole fraction of methyl cyclohexane. Calculate the Gibbs free energy change on
mixing when 1 mol MCH and 3 mol THF are mixed.

7.39 Derive the relation between the excess Gibbs free energy of a solution based on the Lewis–
Randall rule and that based on the asymmetric treatment (Lewis–Randall rule for solvent and
Henry’s law for solute) of solution ideality.

7.40 The excess enthalpy of a solution is given by

HE = x1x2(40x1 + 20x2) J/mol

Determine expressions for  as functions of x1.
7.41 Given that

ME = x1x2[A + B(x1 – x2) + C(x1 – x2)2]



derive expressions for . What are the limiting values for  and 
ME/x1x2 as x1 � 0 and x1 � 1?

7.42 The excess Gibbs free energy is given by

GE/RT = – 3x1x2(0.4x1 + 0.5x2)

Find expressions for ln g1 and ln g2.
7.43 Do the following equations satisfy Gibbs–Duhem equations?

Find expressions for GE/RT.
7.44 The excess volume (m3/kmol) of a binary liquid mixture is given by

VE = 0.01 x1x2(3x1 + 5x2)

at 298 K and 1 bar. Determine  for an equimolar mixture of components 1 and 2 given
that V1 = 0.12 m3/kmol and V2 = 0.15 m3/kmol.



8

Phase Equilibria
A system is said to be in a state of equilibrium if it shows no tendency to depart from that state either
by energy transfer through the mechanism of heat and work or by mass transfer across the phase
boundary. Since a change of state is caused by a driving force, we can describe a system at
equilibrium as one in which there are no driving forces for energy or mass transfer. That is, for a
system in a state of equilibrium, all forces are in exact balance. It may be noted here that the state of
equilibrium is different from a steady state condition. Under steady state there exist net fluxes for
material or energy transfer across a plane surface placed anywhere in the system. Under equilibrium
the net flux is zero.
Transfer of material or energy across phase boundaries occurs till equilibrium is established between
the phases. In our daily experience, we come across a number of processes in which materials are
transferred from one phase to another. During breathing we take oxygen from the air through the lungs
and dissolve it in the blood. During the preparation of tea or coffee we extract the soluble
components in the powder into boiling water. Dilute aqueous solution of alcohol is concentrated by
distillation in which a vapour rich in alcohol is produced from the boiling solution. The phase
equilibrium thermodynamics is of fundamental importance in many branches of science, whether
physical or biological. It is particularly important in chemical engineering, because majority of
manufacturing processes involve transfer of mass between phases either during the preparation of the
raw materials or during the purification of the finished products. Gas–liquid absorption, distillation,
liquid–liquid extraction, leaching, adsorption, etc., are some of the important separation techniques
employing mass transfer between phases. In addition to these, many industrial chemical reactions are
carried out under conditions where more than one phase exist. A good foundation in phase
equilibrium thermodynamics is essential for the analysis and design of these processes.
In this chapter due emphasis is given to the development of the relationship between the various
properties of the system such as pressure, temperature and composition when a state of equilibrium is
attained between the various phases constituting the system. The temperature–pressure-composition
relationships in multiphase system at equilibrium form the basis for the quantitative treatment of all
separation processes. The two types of phase equilibrium problems that are frequently encountered
are:

1. The determination of composition of phases which exist in equilibrium at a known temperature
and pressure

2. The determination of conditions of temperature and pressure required to obtain equilibrium
between phases of specified compositions.

The present chapter tries to provide solutions to these problems.

8.1 CRITERIA OF PHASE EQUILIBRIUM
Consider a homogeneous closed system in a state of internal equilibrium. The criteria of internal



thermal and mechanical equilibrium are that the temperature and pressure be uniform throughout the
system. For a system to be in thermodynamic equilibrium, additional criteria are to be satisfied.
Consider a closed system consisting of two phases of a binary solution, for example, the vapour and
liquid phases of an alcohol–water solution. The requirement of uniformity of temperature and
pressure does not preclude the possibility of transfer of mass between the phases. If the system is in
thermodynamic equilibrium, mass transfer also should not occur. It means that additional criteria are
necessary for establishing the state of thermodynamic equilibrium.
A system can interact with the surroundings reversibly or irreversibly. In the reversible process,  a
state of equilibrium is maintained throughout the process. So it can be treated as a process connecting
a series of equilibrium states. The driving forces are only infinitesimal in magnitude and the process
can be reversed by an infinitesimal change (either increase or decrease) in the potential for the system
or the surroundings. The irreversible process,  in contrast, occurs with a finite driving force, and it
can not be reversed by infinitesimal changes in the external conditions. However, all irreversible
processes tend towards a state of equilibrium. We have shown in Chapter 4 under ‘Clausius
inequality’,

In this equation, the equality sign refers to a reversible process which can be treated as a succession
of equilibrium states and the inequality refers to the entropy change for a spontaneous process whose
ultimate result would be an equilibrium state. The first law of thermodynamics expressed
mathematically by Eq. (2.5) can be rewritten as

dQ = dU + dW………(8.1)
Substituting Eq. (8.1) into Eq. (4.44), we get

T dS ≥ dU + dW
dU � T dS – dW………(8.2)

dW in Eq. (8.2) may be replaced by P dV so that
dU � T dS – P dV………(8.3)

Equation (8.3) is valid for cases where external pressure is the only force and the work is, therefore,
the work of expansion only. By this, we exclude other effects like those due to gravitational and
electromagnetic fields and surface and tensile forces. Equation (8.3) can be treated as the combined
statement of the first and second law of thermodynamics applied to a closed system which interact
with its surroundings through heat transfer and work of volume displacement. This equation is utilised
for deriving the criteria of equilibrium under various sets of constraints, each set corresponding to a
physically realistic or commonly encountered situation. These different criteria are discussed now.

Constant U and V. An isolated system does not exchange mass, heat or work with the
surroundings. In Eq. (8.1), dQ = 0, dW = 0 and hence dU = 0. A well-insulated vessel of constant
volume would closely approximate this behaviour. Thus in Eq. (8.3) dU = 0 and dV = 0 so that

The entropy is constant in a reversible process and increases in a spontaneous process occurring in a



system of constant U and V. Since an irreversible process leads the system to an equilibrium state, the
entropy is maximum at equilibrium when no further spontaneous processes are possible.

Constant T and V. Helmholtz free energy is defined by Eq. (6.1).
A = U – TS

Rearranging Eq. (6.1), we get
U = A + TS
dU = dA + T dS + S dT

Substitute this result in Eq. (8.3) and rearrange the resulting expression to the following form
dA � – P dV – S dT………(8.5)

Under the restriction of constant temperature and volume, the latter implying no work, the equation
simplifies to

Equation (8.6) means that the spontaneous process occurring at constant temperature and volume is
accompanied by a decrease in the work function and consequently, in a state of thermodynamic
equilibrium under these conditions the Helmholtz free energy or the work function is a minimum.

Constant P and T. Equation (6.6) defines Gibbs free energy as
G = H – TS

Since H = U + PV we can write Eq. (6.6) as
G = U + PV – TS

Taking the differentials
dG = dU + P dV + V dP – T dS – S dT

rearranging these as
dU = dG – P dV – V dP + T dS + S dT

and combining this result with Eq. (8.3), we obtain
dG � V dP – S dT………(8.7)

At constant temperature and pressure, Eq. (8.7) reduces to

Equation (8.8) means that the free energy either decreases or remains unaltered depending upon
whether the process is spontaneous or reversible. It implies that for a system in equilibrium at a given
temperature and pressure the free energy must be minimum.
Since most chemical reactions and many physical changes are carried out under conditions of constant
temperature and pressure, Eq. (8.8) is the commonly used criterion of thermodynamic equilibrium. It
also provides a very convenient and simple test for the feasibility of a proposed process. No process
is possible which results in an increase in the Gibbs free energy of the system, because according to
Eq. (8.8) the Gibbs free energy always decreases in a spontaneous process and in the limit of the
reversible process, the free energy doesn’t change at all.



In the equilibrium state, differential variations can occur in the system at constant temperature and
pressure without producing any change in the Gibbs function. Thus, the equality in Eq. (8.8) can be
used as the general criterion of equilibrium or as a thermodynamic statement that characterises the
equilibrium state.

dG = 0 (at constant T and P)………(8.9)
To apply this criterion for phase equilibrium problems we need formulate an expression for dG as
function of the number of moles of the components in various phases and set it equal to zero. This
equation along with the mass conservation equations provides the solutions to phase equilibrium
problems.

8.2 CRITERION OF STABILITY
It can be shown that the criterion of equilibrium [Eq. (8.8)] can be used to formulate the criterion of
stability for a binary mixture. When two pure liquids at a given temperature T and pressure P are
mixed together, the resulting mixture should have a lower free energy at the same temperature and
pressure. This is because the mixed state is an equilibrium state or stable state compared to the
unmixed state. The molar free energy of the mixture is thus less than the sum of the molar free energies
of the constituents for all possible concentrations. That is,

G – S xiGi < 0………(8.10)

The left-hand side in the above equation is the free energy change on mixing DG. Therefore,
DG < 0………(8.11)

When the free energy change on mixing DG is plotted against x1 —the mole fraction of constituent 1
in the binary mixture—the resulting curve is one of the two types shown in Fig. 8.1. The upper curve
is for a binary mixture, which is miscible for the entire concentration range. Assume that the points A
and B represent two binary mixtures of composition xA and xB respectively. Points on the dotted line
AB represent the composition as well as DG of the mixture of two phases obtained when solutions
represented by the points A and B are mixed together. Since the line AB is above the solid curve that
represents the free energy of the miscible solution, the free energy of the mixture in the miscible state
is the minimum and the mixture exists as a single homogeneous phase. However, this argument is not
valid for the lower curve in Fig. 8.1. The dotted line MN represents the free energy of the two-phase
mixture obtained when two binary mixtures of composition xM and xN, respectively, are mixed
together. It lies below the DG curve of the homogeneous solution. Any point on the line MN
represents the DG that would result for systems consisting of two phases of mole fraction xM and xN..
Thus, when the system moves from the solid curve to the dotted line MN, there is a decrease in the
free energy. That is, the system attains stability when it moves from a homogeneous to a
heterogeneous state. Therefore, for mixtures of composition between points M and N, the equilibrium
or stable state consists of two immiscible phases. We see that the second derivative of DG with
respect to x1 is always positive for stable liquid phase and if it becomes zero or negative, phase
separation occurs. The criterion of stability is that at constant temperature and pressure the free
energy change on mixing DG, its first and second derivatives are all continuous functions of the
concentration x and



EXAMPLE 8.1 Show that for a stable liquid phase, the fugacity of each component in a binary
mixture always increases with increase in concentration at constant temperature and pressure.
Solution The excess free energy of mixing was defined in Chapter 7. It was shown there that

DGE = DG – DGid

DGE = GE = RT S xi ln gi

DGid = RT S xi ln xi
Combining these three equations we find that

DG = RT S xi ln (gixi)

 = S xi ln (gixi) = x1 ln (g1x1) + x2 ln (g2x2)

Differentiating this with respect to x1,



Differentiating Eq. (8.14) again with respect to x1 and noting that fugacities of pure components are
independent of concentration, we get



Equation (8.12) reveals that the left-hand side of the above equation is greater than zero. Therefore,

The last two equations imply that fugacity of components in a stable solution always increase with
increase in concentration.

8.3 PHASE EQUILIBRIA IN SINGLE-COMPONENT SYSTEMS
Consider the thermodynamic equilibrium in a system consisting of two or more phases of a single
substance. Though the individual phases can exchange mass with each other and are therefore open,
the system as a whole is closed. As an example, we can treat the equilibrium between vapour and
liquid phases of a single substance at a constant temperature and pressure. Applying the criterion of
equilibrium [see Eqs. (8.8) and (8.9)] to this closed system,

dG = 0



dGa + dGb = 0………(8.17)

where the dGa and dGb are the changes in free energies of the phases ‘a’ and ‘b’ respectively. Since
each phase is open, the change in its free energy may be due to the changes in temperature, pressure
and the number of moles of the components that constitute the phase. Equation (7.35) expresses this
mathematically as

dG = V dP – S dT +  dni
Applying this equation to the phases ‘a’ and ‘b’, we can write

dGa = Va dPa – Sa dTa + Ga dna, dGb = Vb dPb – Sb dTb + Gb dnb

At constant temperature and pressure,

dGa = Ga dna, dGb = Gb dnb………(8.18)
As the system as a whole is closed,

dna + dnb = 0, or dna = – dnb ………(8.19)
Substituting Eqs. (8.18) and (8.19) into Eq. (8.17), we get

(Ga – Gb)dna = 0………(8.20)
Equation (8.20) means that

Ga = Gb………(8.21)
Whenever two phases of the same substance are in equilibrium under a given temperature and
pressure, the molar free energy is the same in each phase.
We can verify the above result easily by considering the example of boiling water. As long as both
phases are present, an appreciable transfer of material from one phase to the other at constant
temperature and pressure would not disturb the equilibrium. The change in the free energy for the
equilibrium process (or reversible process) of evaporating a mole of liquid water is

DG = DH – TDS………(8.22)
As pressure is constant, DH = Q, and the process being reversible, Q = TDS. Equation (8.22) gives

DG = 0

For vaporisation of 1 mol of liquid, DG = GV – GL, where GL and GV are the molar free energy of
water in the liquid and vapour states at the given T and P. Therefore, under equilibrium

GV = GL………(8.23)
As the molar free energies are related to the fugacity of the substance by

G = RT ln f + C
Equation (8.21) can be expressed in terms of fugacity of the phases.

fa = fb………(8.24)

where fa and fb are the fugacities in phases a and b respectively. It is convenient to work with
fugacities of substances as these have absolute values in contrast to free energies, which are usually



expressed as differences.
The above conclusions can be extended to three phases, which is the maximum number of phases that
can coexist under equilibrium in a system of one component.
EXAMPLE 8.2 Using the criterion of phase equilibrium, show that the change in entropy during
phase changes can be calculated from the latent heat of phase change and the absolute temperature as
DS = DH/T.
Solution Suppose that two phases a and b are in equilibrium. Using the definition of free energy [Eq.
(6.6)],

Ga = Ha – TSa, Gb = Hb – TSb

Here, H and S denote the enthalpy and entropy of the substance. Substituting these results in Eq.
(8.21),

Ha – TSa = Hb – TSb

This equation can be rearranged as,

The left-hand side of the above equation is the entropy change accompanying the phase change of one
mole of the substance (DS), and the numerator on the right-hand side represents the enthalpy change
for the phase change of one mole of the substance or the latent heat of phase change (DH). That is,

EXAMPLE 8.3 Deduce the Clapeyron equation using the criterion of equilibrium, Eq. (8.9).
Solution In Chapter 6 we have derived the Clapeyron equation, Eq. (6.25), using Maxwell’s
relations.

The criterion of equilibrium provides an alternate route for its derivation. Consider any two phases a
and b of the same substance under equilibrium. Since Ga and Gb are both functions of temperature
and pressure, and these functional relationships are different for different phases, the two phases can
coexist only at such values of the temperature and pressure that Ga = Gb. If the temperature and
pressure are altered infinitesimally without disturbing the equilibrium, the change in the free energy
must be the same in each phase.

dGa = dGb………(8.25)
In a phase change there is no work other than the work of expansion, so that

dG = V dP – S dT
Using this in Eq. (8.25),

Va dP – Sa dT = Vb dP – Sb dT………(8.26)



V and S are the molar volume and molar entropy of the fluid with the superscript representing the
phase for which the properties correspond to. Equation (8.26) can be rearranged to the following
form.

This relation gives the increase in pressure that is necessary to maintain the equilibrium between
phases for a pure substance when the temperature is increased. By using the following simplifications
Eq. (8.29) can be modified to yield the Clausius–Clapeyron equation applicable for vapour–liquid
equilibria.
1. The latent heat of vaporisation is constant and independent of temperature.
2. The molar volume of liquid is negligible compared to that of vapour.
3. The vapour behaves as ideal gas.
The Clausius–Clapeyron equation was derived [Eq. (6.28)] in Chapter 6 and is reproduced below.

where  and  are the vapour pressures at temperatures T1 and T2 respectively.

8.4 PHASE EQUILIBRIA IN MULTICOMPONENT SYSTEMS
The criterion of equal molar free energy [Eq. (8.21)] is applicable for equilibrium between phases of
a single component. This criterion needs modification when dealing with heterogeneous
multicomponent systems. A heterogeneous closed system is made up of two or more phases with each
phase behaving as open system within the overall closed system. Because each phase consists of two
or more components in different proportions, it is necessary that the criterion of multicomponent
phase equilibrium be developed in terms of partial molar free energies or the chemical potentials of
the components. The criteria of thermal and mechanical equilibrium are, as discussed earlier, the
uniformity of temperature and pressure. For the system to be in equilibrium with respect to mass
transfer, the driving force for mass transfer—the chemical potential—must have uniform values for



each component in all phases. This criterion of internal equilibrium is derived in the following
paragraphs.
Consider a heterogeneous system consisting of p phases indicated by the letters, a, b, g, ..., p. The
various components that constitute the system are 1, 2, 3, ..., C. The symbol  denotes the chemical
potential of component ‘i’ in phase ‘k’. Suppose that small amounts of various components are
transferred from one phase to another, the system being in equilibrium and the temperature and
pressure kept constant. Since the system as a whole is closed, the proposed transfer should satisfy the
following criterion.

dG = 0 (at constant T and P)………(8.9)
The free energy change in a multicomponent system is given by Eq. (7.35) as

dG = V dP – S dT + S mi dni
At constant temperature and pressure, the above equation becomes

dG = S mi dni
Substitute this into Eq. (8.9) to get

S mi dni = 0………(8.31)

Let  denote the increase in the number of moles of component i in phase k. Equation (8.31) may
then be written as

The variations in the number of moles dni are independent of each other. However, they are subject to
the constraints imposed by Eq. (8.33). For all possible variations , Eq. (8.32) is to be satisfied.
This is possible only if



Equation (8.34) means that when a system consisting of several components distributed between
various phases is in thermodynamic equilibrium at a definite temperature and pressure, the
chemical potential of each component is the same in all the phases. If they are different, the
component for which such a difference exists will show a tendency to pass from the region of higher
to the region of lower chemical potential. Thus the equality of chemical potential along with the
requirement of uniformity of temperature and pressure serves as the general criterion of
thermodynamic equilibrium in a closed heterogeneous multicomponent system. In short, we can write

where C is a constant, an alternative and equally general criterion of equilibrium can be written in
terms of fugacities as

Fugacity is a more useful property than chemical potential for defining equilibrium since it can be
expressed in absolute values, whereas chemical potential can be expressed only relative to some
arbitrary reference state. Equation (8.36) is therefore widely used for the solution of phase
equilibrium problems.

EXAMPLE 8.4 Using the criterion of phase equilibrium show that the osmotic pressure over an ideal
solution can be evaluated as

where xA is the mole fraction of solute and VB is the molar volume of the solvent.

Solution Consider a vessel which is divided into two compartments by a semi-permeable membrane.
Pure solvent (say, water) is taken in one of the compartments and a solution (say, sucrose in water) is
taken in the other. Let T be the temperatures on both sides of the membrane and P be the pressure.
While the membrane is impermeable to the flow of the solute, it permits the flow of solvent into the
solution. This phenomenon of a solvent diffusing through a membrane which is permeable to it, but is



impermeable to the solute, is known as osmosis.
Osmosis is caused by the difference in the chemical potentials of the solvent on the two sides of the
membrane. At a given pressure, the chemical potential of a pure solvent is greater than that of the
solvent in the solution. By increasing the pressure at the solution side of the membrane, the chemical
potential of the solvent in the solution can be increased. When the pressure is increased to P�
keeping the temperature constant, the chemical potential of the solvent in the solution would become
equal to that of the pure solvent at pressure P, and the diffusion would stop. If the pressure is
increased above P�, the direction of diffusion would be reversed. In that event, the solvent would
diffuse from the solution to the pure solvent. This process is known as reverse osmosis. The excess
pressure P� – P to be applied over the solution at constant temperature to arrest the process of
osmosis is known as the osmotic pressure. Thus, osmotic pressure is

Posmotic = P� – P

Let the mole fraction of the solutes constituting the solution be represented by xA and the mole

fraction of the solvent be represented by xB. Let  denotes the chemical potential of the solvent at
pressure P�. Equation (7.51) relates the chemical potential of a component in a solution to its
fugacity. Thus

Combining the preceding two equations, we get

In this equation,  is the chemical potential of pure solvent at pressure P�, fB is its fugacity and 
is its fugacity in the solution. Since the solution is ideal, the above equation may be simplified
utilising the Lewis–Randall rule which relates fB and that . Now we get the following
result for the chemical potential of the solvent in the solution at pressure P�. 



Since volume of a liquid is not affected by change in pressure, the integral in this equation can be
easily determined in terms of the molar volume VB. Thus

VB (P� – P) = – RT ln xB
Noting the definition of the osmotic pressure, the preceding equation may be written as

8.5 PHASE RULE FOR NON-REACTING SYSTEMS
The essence of a phase equilibrium problem is to express quantitatively the relationship between the
variables that describe the state of equilibrium of two or more homogeneous phases, which are free to
interchange energy and matter. For a homogeneous phase at equilibrium the intensive properties are
the same everywhere. In phase equilibrium studies, the intensive properties of interest are pressure,
temperature, density and composition.
The phase rule allows us to determine the number of degrees of freedom , denoted by F, which are
the number of independent variables that must be arbitrarily fixed so as to establish uniquely the
intensive state of the system. The phase rule was developed by J. Willard Gibbs (1875). The
commonly used phase rule variables are the temperature, pressure and composition. By specifying
these, the intensive state of the system at equilibrium is uniquely established. However, all these
variables may not be independent. The phase rule gives the number of variables from this set, which
when arbitrarily specified, would establish the remaining variables at fixed values. Thus, by degrees



of freedom, we mean the number of intensive properties that can be varied without changing the
number of phases or the number of components in any phase.
Consider a homogeneous phase of a pure substance like water contained in a beaker, or carbon
dioxide gas confined in a cylinder. The state of the system is determined whenever two properties are
set at definite values. Here, the number of degrees of freedom is two. This number is not necessarily
two for more complex systems. For example, a mixture of steam and liquid water in equilibrium at
101.3 kPa can exist only at 373.15 K. It is impossible to change the temperature without also changing
the pressure, if the liquid and vapour are to continue to exist in equilibrium. The number of degrees of
freedom in this case is only one, for we can exercise independent control over only one variable,
either the temperature or the pressure, and not both. It is evident that there is a connection between the
number of degrees of freedom (F), the number of phases in equilibrium (p), and the number of
components constituting the system (C). The phase rule gives the relationship between these three
quantities. It states that

F = C – p + 2………(8.37)
The phase rule can be derived using the equilibrium criteria Eq. (8.35). Consider a heterogeneous
system consisting of C components distributed between p phases. The composition of a phase
containing C components is determined by specifying C – 1 concentration terms. This is because if the
mole fractions of all but one of the components in a mixture are known, the mole fraction of the
remaining component is the difference between one and the sum of the C – 1 concentration values.
Since there are p phases, the number of concentration variables required to define the state of the
system is p(C – 1). Recognising that the temperature and pressure are also to be specified,

Total number of variables = p(C – 1) + 2………(8.38)
If the system under consideration were not in internal equilibrium, the number of degrees of freedom
would have been that given by Eq. (8.38). The fact that the system is in thermodynamic equilibrium
implies that the system obeys the principle of equality of chemical potential 
[Eq. (8.35)]. Therefore, all concentrations are not independent. The concentrations of a component in
the different phases are interrelated such that its chemical potential is the same in all phases. For any
component there exist (p – 1) equations connecting the concentration in the p phases. Since there are
C components, there are C(p – 1) independent equations which automatically fixes 
C(p – 1) of the possible variables in Eq. (8.38). Therefore,

Number of variables that are not independent = C(p – 1)………(8.39)
The number of degrees of freedom F, which is equal to the number of variables that are independent,
and hence must be arbitrarily fixed to define the system completely is obtained as the difference
between Eqs. (8.38) and Eq. (8.39).

F = p(C – 1) + 2 – C(p – 1)
F = C – p + 2………(8.40)

Equation (8.40) is the phase rule derived by Gibbs. It may be noted that if a particular component is
absent from any phase, the number of composition variables is reduced correspondingly. At the same
time, there will be a similar decrease in the number of independent equations. The result is that Eq.
(8.40) is valid even if all the components are not present in every phase.



The number C, which stands for the number of components, to be used in Eq. (8.40) is the least
number of independent chemical compounds from which the system can be created. This becomes
important in dealing with systems involving chemical reactions. For example, if a system consisting
of methanol, hydrogen and carbon monoxide is at equilibrium, the number of components is only one
as the chemical reaction CO + 2H2 � CH3OH occurs in the system. The phase rule for the reacting
system is discussed in Chapter 9.
As an example of the application of the phase rule, consider the homogeneous system of a single
substance. Here, C = 1, p = 1, and therefore, F = 2 (bivariant). Two variables, say, temperature and
pressure are to be specified to define the state of the system. Consider a two-phase system, for
example, pure liquid water in equilibrium with its vapour. Here, C = 1, p = 2 and F = 1 (univariant).
One intensive property, either pressure or temperature but not both, may be varied freely. If, solid is
also present in the system, p = 3 and F becomes zero (invariant). In this case, no intensive property
can be varied, and the specification that three phases are in equilibrium, fixes the temperature and
pressure. The triple point of water is at 273.16 K and 618 Pa and that of carbon dioxide is at 216.55
K and 523.9 kPa. For a binary liquid mixture of alcohol and water in equilibrium with its vapour, C =
2, p = 2 and F = 2. Two intensive properties may be freely varied. For example, both temperature
and pressure may be varied freely over restricted ranges in composition of the phases, but all three
variables cannot be independently changed. If the composition of the liquid and the pressure are
specified, the boiling temperature and the equilibrium vapour composition are automatically fixed. A
liquid mixture of benzene and toluene containing 39% benzene is in equilibrium with its vapour at
100 kPa. This determines the equilibrium temperature as 368 K and the composition of the vapour in
equilibrium as 61.2% benzene.

8.6 DUHEM’S THEOREM
The state of a system is completely determined when both the intensive as well as the extensive state
of the system is fixed. The phase rule gives the number of independent intensive variables to be
specified to define the intensive state of the system uniquely. It does not deal with the extensive state
of the system. By extensive state we mean the amount (or the mass) of the various phases present and
the total properties of the system. The Duhem’s theorem helps in establishing the extensive state of the
system. It states that for any closed system formed initially from the given masses of prescribed
chemical species, the equilibrium state is completely determined when any two independent
variables are fixed.
In addition to the phase rule variables, the mass of each phase should be known to define the state of
the system completely. Therefore, the total number of variables = p(C – 1) + 2 + p, where the last
term is the number of terms representing the mass of various phases. Since the system is closed, and
is formed from specified amounts of the chemical species present, a material balance equation can be
written for each of the C components present in the system. The total number of equations connecting
the variables will thus be more than the corresponding number in the phase rule by C, the number of
material balance equations. This is equal to C(p – 1) + C. The difference between the number of
variables and the number of equations is therefore two indicating that only two independent variables
need be fixed to define the state of the system completely. These may be either intensive or extensive.
If F < 2, at least one extensive variable must be fixed for complete determination of the system. For



example, for water and water vapour in equilibrium, since the number of degrees of freedom is one,
the intensive state of the system is specified by fixing either the pressure or the temperature. But the
total properties can be evaluated only if the amount of liquid or vapour is also specified. However,
for a binary mixture, say, water and alcohol, in vapour–liquid equilibrium, since the number of
degrees of freedom is two, no additional specifications are needed to predict the amount of liquid and
vapour present in equilibrium, provided, we know the amounts of the components from which the
system is formed. Duhem’s theorem is applicable to reacting systems as well (see Chapter 9).

8.7 VAPOUR–LIQUID EQUILIBRIA
The vapour-liquid equilibrium (VLE) data are essential for many engineering calculations, 
especially in the design and analysis of separation operations such as distillation, absorption, etc.
Thermodynamics provides a system of equations relating the necessary experimental data and the
unknown vapour-liquid equilibrium compositions, temperature and pressure.
The conditions of equilibrium [Eq. (8.36)] require that the fugacity of a component in the liquid phase
be equal to that in the vapour phase. That is,

where,  represents the fugacity of component i in the solution and the superscripts V and L represent
the vapour and liquid phases, respectively. Using this equation, the problem of determining the
composition of the liquid and vapour phases in equilibrium is quite simple: it is necessary only to
evaluate the compositions so that the fugacity of each component be the same in both phases. For
example, for a binary mixture of ethanol and water in vapour-liquid equilibrium, at a definite
temperature and pressure, the mole fractions in the liquid and vapour must be such that the fugacity of
ethanol is the same in both phases. That is, . Here,  is the fugacity of ethanol in the mixture.
To evaluate quantitatively the equilibrium compositions, the fugacity of a component should be
expressed in terms of its mole fraction in the mixture. Using the definition of activity coefficient, the
fugacity of a substance in the vapour phase can be written in terms of its mole fraction yi in the
mixture, the fugacity of pure i as a vapour at the system temperature and pressure.

If the stable state for i at T and P is not a vapour, evaluating  requires the introduction of a
hypothetical state. The use of the concept of fugacity coefficient helps to overcome this difficulty. The
fugacity of a component in a gas mixture can be written as

where  is the fugacity coefficient of i in the mixture. The fugacity coefficient  may be evaluated
from an equation of state for the mixture.
For the liquid phase, the fugacity of a component can be expressed as the product of its mole fraction
xi in the solution, the activity coefficient gLi and the fugacity of the component in the standard state.



Equations (8.45) and (8.46) are the fundamental relationships for estimating the vapour–liquid
equilibrium by two different approaches—the equations of state approach and the activity coefficient
model approach. Equation (8.45) forms the basis of estimating VLE by the equation of state
approach, which will be discussed under Section 8.12.1.
Equation (8.46) is the fundamental relationship in the study of vapour–liquid equilibrium based on
activity coefficient model for the liquid phase fugacity. The liquid-phase activity coefficients in Eq.
(8.46) can be estimated by any of the models described in the following sections. Estimation of the
vapour–liquid equilibria using activity coefficients is useful when polar components are present in

the system. For most substances at low pressures,  can be assumed to be unity. If the pressure is

very high,  must be evaluated using an equation of state. Using the activity coefficient approach, the
vapour–liquid equilibrium problems may be attacked, by dividing them into the following grouping
for convenience.

Case 1: Ideal gas-phase, ideal liquid solution. For mixtures of ideal gases,  = 1. For ideal

liquid solutions, at low pressures, gLi = 1, and the fugacity  is equal to the saturation pressure of

pure liquid  at the temperature of interest. Equation (8.46) becomes

Case 2: Low-pressure VLE problems. If the liquid phase is not an ideal solution so that g π 1,
but the pressure is low enough that the assumption of ideal gas behaviour for the gas phase would not
introduce any significant errors in practical calculations, Eq. (8.46) can be simplified as

Case 3: High-pressure VLE problems. In the general case where ideal behaviour cannot be

assumed for the gas and liquid phases, the fugacity coefficient  and the activity coefficient gLi



should first be determined for solving vapour–liquid equilibrium problems using Eq. (8.46). These
are normally complex functions of temperature, pressure and compositions and can be written as

The fugacity in the reference state  is the fugacity of pure i at the same T, P and state of aggre-
gation as the mixture. To calculate this, it is convenient to determine first the fugacity of pure i in the
liquid state at T under its equilibrium vapour pressure  and then apply a correction term for the fact

that . The fugacity of the liquid under its equilibrium vapour pressure is equal to the vapour

pressure times the fugacity coefficient . The fugacity coefficient  is the ratio of the fugacity of
the component i under its saturation conditions to the saturation pressure of the substance and tends to
unity if the vapour behaves as an ideal gas. Using Eq. (6.31), we can write

The exponential in the above equation is known as the Poynting correction and it is approximately

unity when pressure is low. Also at low pressures when the gas behaves ideally,  and
the above equation reduces to Eq. (8.48).

8.8 PHASE DIAGRAMS FOR BINARY SOLUTIONS
8.8.1 Constant-pressure Equilibria
Consider a binary system made up of components A and B. Component A is assumed to be more
volatile than B, i.e. the vapour pressure of A is greater than that of B at any given temperature. For a
binary liquid mixture in equilibrium with its vapour, according to the Gibbs Phase rule, the number of



degrees of freedom is two. When the pressure is fixed, only one variable, say liquid phase
composition, can be changed independently and other properties such as the temperature and the
vapour phase compositions get uniquely determined. Vapour–liquid equilibrium data at constant
pressure are usually represented by means of either the temperature-composition diagrams (the
T-x-y diagrams or the boiling point diagrams) or the distribution diagrams (x-y diagrams or
equilibrium curves).

Boiling-point diagram. The boiling point diagrams are plots of temperature as ordinate against
composition of liquid and vapour as abscissa. The composition of liquid is usually indicated by the
mole fraction of more volatile component in the liquid, x, and the composition of the vapour is
indicated by the mole fraction of the more volatile component in the vapour, y. Therefore, the boiling
point diagrams are also called T-x-y diagrams. The upper curve in Fig. 8.2 gives the temperature
versus vapour composition (y), and is known as the ‘dew-point curve’. The lower curve in the figure
is temperature versus liquid composition (x), also called the ‘bubble-point curve’. Below the bubble-
point curve the mixture is subcooled liquid and above the dew-point curve the mixture is superheated
vapour. Between the bubble-point and dew-point curves the mixture cannot exist as a single phase, it
spontaneously separates into saturated liquid and vapour phases that are in equilibrium.

To make these points clearer, consider a mixture whose temperature and composition (x1) are such
that it is represented by point A in Fig. 8.2. Since the point A lies below the bubble-point curve, the
solution is entirely liquid. The mixture is taken in a closed container and the pressure over the system



is maintained at a constant value by a piston. The mixture is heated slowly so that its temperature
increases along the vertical line passing through point A till point B on the bubble-point curve is
reached. The temperature T1 corresponding to point B, is the bubble point of the original mixture. The
first bubble of the vapour is produced at this temperature and it will have the composition (y1)
represented by point C on the upper curve. The vapour is richer in the more volatile component.
Therefore y1 > x1, and the dew-point curve lies above the bubble-point curve. The mixtures at points
B and C are the liquid and vapour at equilibrium at the system pressure and temperature T1. Since
both are at the same temperature, they can be joined by a horizontal line BC, known as a ‘tie line’.
Further heating will result in the vaporisation of more liquid, and at temperature T2 the system will
consist of saturated liquid represented by point D and saturated vapour represented by point E, which
are in equilibrium. Since the vapour formed is not removed from the system, the overall composition
of the combined mixture of liquid and vapour will be same as x1, the composition of the original
mixture. However, the relative amounts of the liquid and the vapour change as the temperature is
changed.
These relative amounts are given by the ratio in which the point representing the combined mixture (in
this case, point F) divides the tie line DE. By material balance consideration, it can be easily verified
that

If heating is continued, eventually a temperature T3 is reached when almost all liquid is vaporised.
The last drop of liquid getting vaporised at this temperature has a composition denoted by point G
and the equilibrium vapour has the composition at H same as the original mixture. Temperature T3 is
the dew point of the original mixture. The mixture temperature increases along the vertical line HJ on
further heating. On cooling the superheated mixture at point J, the first drop of condensate appears
when the temperature drops to T3, the dew point of the mixture and the composition of the liquid is
given by point G.
We have seen that the mixture at point A has vaporised over a temperature range from T1 (the bubble
point) to T3 (the dew point), unlike a pure substance, which vaporises at a single temperature known
as the boiling point of the substance. For a solution, the term ‘boiling point’ has no meaning, because,
at a given pressure the temperature during vaporisation of a solution varies from the bubble point to
the dew point.

Equilibrium diagram. The vapour–liquid equilibrium data at constant pressure can be represented
on a x versus y plot or an equilibrium distribution diagram. If the vapour composition is taken as the
ordinate and the liquid composition is taken as the abscissa, a tie line such as line BC on the boiling
point diagram gives rise to a point such as point P on the distribution diagram 
(Fig. 8.3). Since the vapour is richer in the more volatile component, the curve lies above the
diagonal on which x = y.



A liquid–vapour equilibrium curve very close to the diagonal means that the composition of the
vapour is not much different from the composition of the liquid with which it is in equilibrium; when
the curve coincides with the diagonal, x and y are equal.

Effect of pressure on VLE. On the boiling point diagram the temperatures corresponding to 
x = 0 and x = 1 are the boiling points of pure substances B and A respectively. The boiling points of
pure substances increase with pressure. This is true for the bubble and dew points of a mixture of
given composition. Consequently the boiling point diagrams at higher pressures will be above the
boiling point diagrams at lower pressures as shown in Fig. 8.4. Since the relative volatility decreases
as pressure is increased, the closed loop formed by the dew-point and bubble-point curves become
narrow at high pressures. Figure 8.5 indicates the effect of pressure on the distribution diagram. In
Fig. 8.4, P3 is the critical pressure  for component A and above this pressure, the looped curves are
shorter.





8.8.2 Constant-temperature Equilibria
Vapour–liquid equilibrium data at constant temperature are represented by means of P-x-y diagrams;
Fig. 8.6 shows a typical P-x-y diagram.
The pressure at x = 0 is the vapour pressure of pure B( ) and the pressure at x = 1 is the vapour
pressure of pure A( ). Since component A is assumed to be more volatile,  and therefore,
the P-x-y diagram slopes upwards as shown in the figure. The P-y curve lies below the P-x curve so
that for any given pressure, y > x. A solution lying above the P-x curve is in the liquid region and that
lying below the P-y curve is in the vapour region. In between P-x and P-y curves the solution is a
mixture of saturated liquid and vapour. A horizontal line such as AB connects the liquid and vapour
phases in equilibrium and is therefore, a tie line. Assume that a liquid mixture whose conditions may
be represented by the point C in Fig. 8.6, is taken in a closed container. When the pressure over this
system is reduced at constant temperature, the first bubble of vapour forms at point D, and
vaporisation goes to completion at point E. Further reduction in pressure leads to the production of
superheated vapour represented by point F. The effect of temperature on P-x-y diagram is shown in
Fig. 8.6(b). When the temperature is less than the critical temperature of both components, the looped
curve such as the one shown at the bottom of Fig. 8.6(b) results. The other two curves refer to
temperatures greater than the critical temperature of A.



8.9 VAPOUR–LIQUID EQUILIBRIA IN IDEAL SOLUTIONS
It is possible to determine the vapour–liquid equilibrium (VLE) data of certain systems from the
vapour pressures of pure components constituting the system. If the liquid phase is an ideal solution
and the vapour behaves as an ideal gas, the VLE data can be estimated easily without resorting to
direct experimentation. A solution conforming to the ideal behaviour has the following
characteristics, all interrelated.

1. The components are chemically similar. The average intermolecular forces of attraction and
repulsion in the pure state and in the solution are of approximately the same order of magnitude.

2. There is no volume change on mixing (DV = 0) or the volume of the solution varies linearly with
composition.

3. There is neither absorption nor evolution of heat on mixing the constituents that form an ideal
solution (DH = 0); that is, there is no temperature change on mixing.

4. The components in an ideal solution obey Raoult’s law, which states that the partial pressure in
the vapour in equilibrium with a liquid is directly proportional to the concentration in the liquid.
That is, , where  is the partial pressure of component i and xi is its mole fraction in

the liquid.  is the vapour pressure of pure i. This criterion also 
implies that the total vapour pressure over an ideal solution is a linear function of its
composition.

For an experimental test of an ideal solution, the last criterion is the safest one to use. For example,
the solution formed by two chemically dissimilar materials like benzene and ethyl alcohol should
definitely be non-ideal. It is found that for an equimolar mixture of benzene and ethyl alcohol, there is



no change in volume during mixing at room temperature. This peculiar behaviour is because of the
fact that when this solution is formed from its constituents, there is increase in volume up to certain
concentration and thereafter the volume decreases as shown in Fig. 8.7. When the solution volume is
plotted against the composition, the curve will intersect the broken line representing the volume of an
ideal solution at a particular concentration represented in the figure by point P.

If the volume were measured for the concentration of the solution corresponding to point P, no change
in volume would be observed. This may be the case for enthalpy change of mixing also at some
particular composition. The conclusion to be drawn is that negligible volume change or temperature
change for one particular composition of the mixture is not a safe criterion of an ideal solution. If
these are to be used as the tests for ideal behaviour, then these tests should be done for more than one
concentration of the solution. In contrast, the criterion that the total vapour pressure over an ideal
solution varies linearly with composition is safe and reliable.
It should be understood that there exists no ideal solution in the strict sense of the word; but actual
mixtures approach ideality as a limit. Ideality requires that the molecules of the constituents are
similar in size, structure and chemical nature; only optical isomers of organic compounds meet these
requirements. Thus a mixture of ortho- , meta- and para-xylene conforms very closely to the ideal
solution behaviour. Practically, adjacent or nearly adjacent members of the homologous series of
organic compounds can be expected to form ideal solutions. Thus mixtures of benzene and toluene,
n-octane and n-hexane, ethyl alcohol and propyl alcohol, acetone and acetonitrile, paraffin
hydrocarbons in paraffin oils, etc., can be treated as ideal solutions in engineering calculations.
Consider an ideal binary solution made up of component 1 and component 2. We have shown in
Chapter 7 that all ideal solutions obey Lewis–Randall rule.



Here  is the fugacity of the component i in the liquid and fi is the fugacity of pure i. Using the

criterion of equilibrium  and noting that if pressure is not too high, the vapour would not
depart too greatly from ideal gas behaviour, it is possible to write

Equation (8.51) shows that at a given temperature, the total pressure over an ideal solution is a linear
function of composition thus establishing the fourth criteria given above. When the partial pressures
and total pressure are plotted against mole fraction x1, we get according to Eq. (8.50) and Eq. (8.51)
the straight lines shown in Fig. 8.8. The broken lines give the partial pressures and the continuous line
gives the total pressure.
The P-x-y diagram can be easily constructed. At any fixed temperature, the total pressure can be
calculated using Eq. (8.51) for various x values ranging from 0 to 1. The corresponding equilibrium
vapour phase compositions are obtained by applying Dalton’s law according to which the partial
pressure in the vapour is equal to the mole fraction in the vapour (y) times the total pressure (P). That
is

Thus Eq. (8.51) is used to calculate the total pressure at given x and Eq. (8.54) is used to calculate
the corresponding equilibrium vapour phase composition y. The P-x-y diagram can now be plotted as
shown in the Fig. 8.8.



To prepare the T-x-y diagrams at a given total pressure P we can again use Eqs. (8.51) and 
(8.54). Assume temperatures lying between the boiling points of pure liquids at the given pressure.
For the temperature assumed, find the vapour pressures of the pure liquids and calculate x from 
Eq. (8.51). Use these in Eq. (8.54) and calculate the vapour composition y. Instead, if we attempt to
find the equilibrium temperature for the solution of known concentration x, the temperature may be
estimated by trial, such that the sum of the partial pressures is equal to the given total pressure. Once
the temperature is thus known, the vapour phase composition is determined as before. The T-x curve
is the lower curve in the figure and is called the bubble-point curve. The T-y curve is the upper curve
and is called the dew-point curve.
The y-x diagram is also prepared from the constant total pressure data. It can be constructed from the
boiling point diagram by drawing horizontal tie lines. The intersections of these lines with the
bubble-point curve give x and the intersections with the dew-point curve give y. Figure 8.10 shows a
typical equilibrium diagram.
There is an approximate method for the construction of the equilibrium diagram, and it is based on the
assumption that the ratio of vapour pressures of the components is independent of temperature. This
assumption may not introduce much error, as it is possible that the vapour pressures of both
components vary with temperature and these variations are to the same extent that their ratio remains
unaltered. Thus



which can be written in the following form.



Although Eq. (8.55) is not exact over a wide range of temperatures, the effect of variation in a is so
small that an average a value can be used in Eq. (8.55) and the whole y-x data required for the
preparation of the equilibrium curve can be evaluated.

EXAMPLE 8.5 Prove that if Raoult’s law is valid for one constituent of a binary solution over the
whole concentration range, it must also apply to the other constituent.
Solution Assume that Raoult’s law is obeyed by component 1 in a binary mixture. Then



As pointed out earlier, Raoult’s law is obeyed by ideal solutions when the vapour phase behaves as
an ideal gas whereas Lewis–Randall rule is obeyed by ideal solutions irrespective of whether the gas
phase is ideal or not. So for component 1, we can write

This equation is sometimes referred to as Duhem–Margules equation. Comparing Eq. (8.56) with
Eq. (8.57) we see that



This is Raoult’s law for component 2. The conclusion to be drawn from the above derivation is that if
Raoult’s law is applicable to one of the constituents of a liquid mixture at all concentrations, it must
be applicable to the other constituent as well.
EXAMPLE 8.6 n-Heptane and toluene form ideal solution. At 373 K, their vapour pressures are 106
and 74 kPa respectively. Determine the composition of the liquid and vapour in equilibrium at 373 K
and 101.3 kPa.
Solution Refer Eq. (8.51). Then,

where x is the mole fraction of heptane in the liquid. On solving this, we get x = 0.853
From Eq. (8.54),

y = 0.853 � 106/101.3 = 0.893
The liquid and the vapour at the given conditions contain respectively 85.3% (mol) and 89.3% (mol)
heptane.
EXAMPLE 8.7 An equimolar solution of benzene and toluene is totally evaporated at a constant
temperature of 363 K. At this temperature, the vapour pressures of benzene and toluene are 135.4 and
54 kPa respectively. What are the pressures at the beginning and at the end of the vaporisation
process?
Solution Put x = 0.5 in Eq. (8.51). Then P = 94.7 kPa. This is the pressure at the beginning of
vaporisation. Equation (8.51) can be written as



Put y = 0.5 in this. Thus, we get P = 77.2 kPa. (This is the pressure at the end of vaporisation).

EXAMPLE 8.8 A mixture of A and B conforms closely to Raoult’s law. The pure component vapour

pressures  in kPa at T K are given by

If the bubble point of a certain mixture of A and B is 349 K at a total pressure of 80 kPa, find the
composition of the first vapour that forms.
Solution At 349 K, the vapour pressures of the pure components are:

At a given temperature and pressure, the composition of the liquid and vapour phases in equilibrium
is calculated using Eqs. (8.51) and (8.54), respectively. The composition of the vapour so calculated
at the bubble-point temperature is the composition of the first vapour produced from a liquid on
boiling.
Using Eq. (8.51),



The vapour formed contains 92.5% A.
EXAMPLE 8.9 The vapour pressures of acetone (1) and acetonitrile (2) can be evaluated by the
Antoine equations

where T is in K and P is in kPa. Assuming that the solutions formed by these are ideal, calculate
(a) x1 and y1 at 327 K and 65 kPa
(b) T and y1 at 65 kPa and x1 = 0.4
(c) P and y1 at 327 K and x1 = 0.4
(d) T and x1 at 65 kPa and y1 = 0.4
(e) P and x1 at 327 K and y1 = 0.4
(f) The fraction of the system that is liquid and the composition of the liquid and vapour in

equilibrium at 327 K and 65 kPa when the overall composition of the system is 70 mole per cent
acetone.

Solution (a) From the Antoine equations, at 327 K,

(b) Equation (8.51) can be written as



(c) At 327 K, we have  = 85.12 kPa and  = 39.31 kPa. Here x1 = 0.4. Using these values in Eq.
(8.51), we get P = 57.63 kPa. Using Eq. (8.54)

y1 = 0.4 � 85.12/57.63 = 0.5908

(d) Equation (8.51) can be written as

Assume a temperature and calculate the vapour pressures using Antoine equations. Substitute the
vapour pressure values in the above equation. See whether the Left-hand side = 0.4. This is repeated
till the left-hand side of the above equation becomes equal to 0.4.
At T = 334 K,  = 107.91 kPa and  = 51.01 kPa.



(e) At 327 K, we have  = 85.12 kPa and  = 39.31 kPa. Here y1 = 0.4
Equation (8.54) relates y to x. When P in Eq. (8.54) is eliminated using Eq. (8.51) we get

(f) The composition of the vapour and liquid in equilibrium at P = 65 kPa and T = 327 K were
determined in part (a). They are x1 = 0.5608 and y1 = 0.7344. Let f be the fraction of the mixture that
is liquid. Then an acetone balance gives

1 � 0.7 = f � 0.5608 + (1 – f) � 0.7344
Solving this, we get f = 0.1982. That is, 19.82% (mol) of the given mixture is liquid.

EXAMPLE 8.10 Mixtures of n-Heptane (A) and n-Octane (B) are expected to behave ideally. The
total pressure over the system is 101.3 kPa. Using the vapour pressure data given below,

(a) Construct the boiling point diagram and
(b) The equilibrium diagram and
(c) Deduce an equation for the equilibrium diagram using an arithmetic average a value.

T, K 371.4 378 383 388 393 398.6

PS
A, kPa 101.3 125.3 140.0 160.0 179.9 205.3

PS
B, kPa 44.4 55.6 64.5 74.8 86.6 101.3

Solution Sample calculation: Consider the second set of data. T = 378 K; PSA = 125.3 kPa; PSB =



Solution Sample calculation: Consider the second set of data. T = 378 K; PSA = 125.3 kPa; PSB =
55.6 kPa.
Using Eq. (8.51),

101.3 = 55.6 + xA(125.3 – 55.6)

Therefore, xA = 0.656.
Using Eq. (8.54), we see

yA = 0.656 � 125.3/101.3 = 0.811

Relative volatility is

a = PSA/PSB = 125.3/55.6 = 2.25

These calculations are repeated for other temperatures. The results are tabulated below:

T, K 371.4 378 383 388 393 398.6

xA 1.000 0.656 0.487 0.312 0.157 0

yA 1.000 0.811 0.674 0.492 0.279 0

a 2.28 2.25 2.17 2.14 2.08 2.02

(a) Plot of T versus x and y gives the boiling point diagram
(b) Plot of y against x gives the equilibrium diagram
(c) The average of the last row gives a = 2.16. Use this value of a in Eq. (8.55) to get the equation

for the equilibrium curve.

8.10 NON-IDEAL SOLUTIONS
We have seen that the partial pressure of a component in an ideal solution varies linearly with
concentration in the solution. If the solution behaves ideally, the different molecules should be
chemically similar. In that case, the molecules of a particular substance, when brought into solution
with other components, would not experience any difference in the environment surrounding them
from that existed in their pure state. The intermolecular forces in the pure state of the substance and
that in the solution would then be approximately of the same order of magnitude. Therefore, the
fugacity (or the partial pressure) of a substance, which is a measure of the tendency of the substance
to escape from the solution, is not affected by the properties of the other components in the solution. It
depends only on the number of molecules of the substance present, or its concentration. In short, the
components in an ideal solution obey Raoult’s law. But for non-ideal solutions, the partial pressures
do not vary linearly with composition, as shown in Fig. 8.11 for the case of carbon disulphide–
acetone system.



The non-ideal behaviour of liquid mixtures arises due to the dissimilarity among molecules. The
dissimilarities arise from the difference in the molecular structure or from the difference in the
molecular weight. The non-ideal behaviour of light hydrocarbons such as methane, ethylene, etc., in
mixtures of heavier paraffin or crude oil is due to the difference in the molecular weights. In contrast,
it is a type of intermolecular attraction called hydrogen bonding, that is responsible for the non-ideal
behaviour resulting from the difference in the molecular structure. Molecules, which contain atoms
such as oxygen, chlorine, fluorine or nitrogen, tend to be polar. When the electrons in the bonds
between these atoms and hydrogen are not equally shared, a dipole is created. The electrons tend to
be closer to the larger atoms, which become negatively charged compared to hydrogen which
becomes the positive end of the dipole. In a solution of polar substances, the molecules tend to
arrange themselves so that the charge deficiency of the hydrogen atoms is compensated by an
intermolecular bond with a ‘donor’ or negatively charged atom. These hydrogen bonds have energies
of the order of several kJ/mol. Because of hydrogen bonding, bimolecular complexes between like or
unlike molecules are formed, and even chain-like or three-dimensional aggregates between a large
number of molecules are sometimes formed. The formation or destruction of hydrogen bonding during
mixing leads to very large heat effects and drastic changes in the thermodynamic properties.
Non-ideal behaviour falls into one of the following two types: positive deviation from ideality and
negative deviation from ideality. The positive deviation from ideality results when the actual partial
pressure of each constituent is greater than it should be if Raoult’s law were obeyed. Solutions in
which intermolecular forces between like molecules are stronger than those between unlike
molecules, show appreciable positive deviation from ideality. On mixing the constituents which form
a solution exhibiting positive deviation from ideality, there is an absorption of heat. This can be
proved easily if we recognise the experimental observation that most solutions tend to exhibit ideal



behaviour as temperature is increased. For a solution showing positive deviation,  for each
component is greater than its mole fraction xi, and as temperature is increased it becomes equal to xi ,
because the solution tends to ideality as temperature is increased. It means that for a system of given
composition for which deviation from Raoult’s law is positive, the ratio  decreases with
increasing temperature. That is

Comparing Eq. (8.58) with Eq. (8.59) we see that /RT2 < 0, which means . The total
enthalpy of the solution is , whereas the enthalpy of the system before mixing is 
S niHi. Since the former is greater than the latter, there is absorption of heat during mixing. Examples
of solutions showing positive deviation from ideality are oxygen–nitrogen, ethanol–ethyl ether,
water–ethanol, carbon disulphide–acetone, benzene–cyclohexane, acetonitrile–benzene, 
n-hexane–nitroethane, etc.
For solutions exhibiting negative deviation from ideal behaviour, the partial pressures are less than
those given by Raoult’s law. By a derivation similar to the one presented in the preceding paragraph,
it can be shown that when solutions showing negative deviation are formed from pure constituents
there is evolution of heat. At the molecular level, appreciable negative deviation reflects stronger
intermolecular forces between unlike than between like pairs of molecules. Examples are
chloroform–ethyl ether, chloroform–benzene, hydrochloric acid–water, phenol–cyclohexanol,
chloroform–acetone, etc.
The general nature of the vapour pressure curves showing positive and negative deviation are shown
in Fig. 8.12. Figures 8.12(a) and (b) refer to constant temperature conditions. The uppermost curves
give the total vapour pressure as function of liquid composition. The corresponding curves, as a
function of the vapour composition lie below it, so that the vapour is rich in the more volatile
component.



8.10.1 Azeotropes
Azeotropes are constant boiling mixtures. The word ‘azeotrope’ is derived from Greek word meaning
‘boiling without changing’. When an azeotrope is boiled, the resulting vapour will have the same
composition as the liquid from which it is produced. Whereas, the equilibrium temperature of an
ordinary solution varies from the bubble point to the dew point, the boiling point of an azeotrope
remains constant till the entire liquid is vaporised. The azeotropes are formed by solution showing
large positive or negative deviation from ideality. If the vapour pressures of the constituents of a
solution are very close, then any appreciable positive deviation from ideality will lead to a maximum
in the vapour pressure curve and negative deviations from ideality under the same conditions leads to
a minimum in the vapour pressure curve. Even if an appreciable difference exists in the vapour
pressures of the pure components, the chances for the occurrence of maximum or minimum in the
vapour pressures should not be overruled if the deviation from ideal behaviour is quite high. At the
composition at which there exists a maximum or minimum in the vapour pressure curve, a minimum or
maximum, as the case may be, exists in the boiling point diagrams. The mixture is said to form an
azeotrope at this composition under the given temperature and pressure and it will distil without
change in composition, because the vapour produced has the same composition as the liquid.

Minimum-boiling azeotropes. Solutions showing positive deviation from ideality in certain
cases may lead to the formation of azeotropes of the minimum-boiling type. The P-x-y, T-x-y and x-y
curves for the minimum-boiling azeotropes are shown in Fig. 8.13.



In the boiling point diagram, the liquid and vapour curves are tangent at point M, the point of
azeotropism at this pressure. The temperature at M is the minimum temperature of boiling for the
system. For all mixtures of composition less than M, the equilibrium vapour is richer than the 
liquid in the more volatile component. For all mixtures richer than M, the vapour is less rich than the
liquid in the more volatile component. A mixture of composition M boils producing a vapour of
identical compositions and consequently at a constant temperature and without change in composition.
If solutions either at P or Q are boiled in an open vessel with continuous escape of vapours, the
temperature and composition move along the lower curve away from M and towards the pure
substances. Solutions like these cannot be distilled by usual distillation methods. One 
of the most important azeotropes in this category is ethanol–water which forms azeotrope at 
89.4% (mol) ethanol at 351.4 K and 101.3 kPa. Other examples are benzene–ethanol (341.2 K, 55%



benzene), carbon disulphide–acetone (312.5 K, 61% carbon disulphide), isopropyl ether–isopropyl
alcohol (345.1 K, 39.3% alcohol), all at 101.3 kPa.

Maximum-boiling azeotropes. When the total pressure of the system at equilibrium is less than
the ideal value, the system is said to exhibit negative deviation from ideality. When the difference in
vapour pressures of the components is not too great, and in addition, the negative deviations are large,
the curve for total pressure against composition passes through a minimum. This condition results in a
maximum in the boiling temperature and a condition of azeotropism as at point M in Fig. 8.14.

The vapour is leaner in the more volatile component for liquids whose concentration is less than the
azeotropic concentration. Solution on either side of the azeotrope, if boiled in an open vessel with
escape of vapours will ultimately leave a residual liquid of the azeotropic composition in the vessel.
Maximum-boiling azeotropes are less common than the minimum-boiling type. Hydrochloric acid–



water system forms an azeotrope at 11.1% (mol) HCl at 383 K and 101.3 kPa. Other examples are
chloroform–acetone (337.7 K and 65.5% acetone), phenol–cyclohexanol 
(455.65 K, 90% phenol), all at 101.3 kPa.
The plot of activity coefficients versus mole fraction in the liquid phase for ideal solutions, minimum-
boiling azeotrope and maximum-boiling azeotrope are given in Fig. 8.15.

Effect of pressure on azeotropes. The azeotropic composition shifts continuously with change
in pressure or temperature. In some cases, changing the pressure may eliminate azeotropism from the
system. Azeotropism disappears in ethanol–water system at pressures below 9.33 kPa. The table
below illustrates the effect of pressure on this system. The last row gives the mole per cent of alcohol
in the azeotrope.

P, kPa 13.3 20.0 26.6 53.2 101.3 146.6 193.3

T, K 307.4 315.2 321 336 351.3 361 368.5



%(mol) 99.6 96.2 93.8 91.4 89.43 89.3 89.0
EXAMPLE 8.11 Prove that at the azeotropic composition, the vapour and liquid have the same
composition.
Solution Refer the Duhem–Margules equation, Eq. (8.57).

Assuming the vapour to behave ideally, it can be written as

For a maximum or minimum on the total pressure curve, (dP/dx1) is zero. Then Eq. (8.64)

necessitates that either the terms in the parenthesis should be zero or  is zero. If the latter
term is zero the partial pressure would be unaffected by concentration changes, which is not true.
Hence, at the point of azeotropism, we have, the following relation:

Since x2 = 1 – x1 and y2 = 1 – y1, the above result means that at azeotropic condition, x1 = y1 or the
vapour composition and liquid composition are the same.

8.11 VAPOUR–LIQUID EQUILIBRIA (VLE) AT LOW PRESSURES
It has been pointed out that if the pressure is not very high, the fundamental equation relating the
compositions of the vapour and liquid under equilibrium is given by Eq. (8.47) as



yiP = gixi
The activity coefficients gi vary with composition and temperature at a given pressure. In order to
calculate the relationship between pressure, temperature and composition of the equilibrium phases
for non-ideal solutions at low pressures where the vapour phase is assumed to behave as an ideal
gas, we can utilise Eq. (8.47), provided that the equations relating the activity coefficients to
compositions and temperature are available. Experimental vapour–liquid equilibrium data can be
correlated using such equations and the empirical parameters in them are evaluated. Once an activity
coefficient equation suitable for the given system is identified and the parameters evaluated, it can be
used for vapour–liquid equilibrium calculations through Eq. (8.47). We have seen that the activity
coefficients in a binary solution are not independent, and they are interrelated through the Gibbs–
Duhem equations as

The minimum requirement to be met by an equation for activity coefficient is that it should conform to
the restriction imposed by the above relationship. Among a number of equations between g and x that
are available, as far as phase equilibrium problems are concerned, some equations have got wide
acceptance. They are discussed in the following sections.

8.11.1 Activity Coefficient Equations
Wohl’s three-suffix equations. The relationship between excess free energy and activity
coefficient was discussed in Chapter 7. Most of the equations relating activity coefficient and
concentration of the solution were derived from these excess free energy relationships. Wohl
proposed, statistically, a general method for expressing excess free energy and provided some rough
physical significance to the various parameters appearing in the equations. Wohl’s equation for
excess free energy contained terms for compositions, effective molal volumes and effective
volumetric fraction of the separate constituents of the solution. From these equations, the following
empirical relations for activity coefficient could be written.

Equation (8.65) is known as Wohl’s three-suffix equation . It involves three parameters, A, B and
(q1/q2) which are characteristics of the binary system.
Margules equation. When the term (q1/q2) is unity in Eq. (8.65), we get the following expression,
which is known as the Margules three-suffix equation.



The constant A in the above equation is the terminal value of ln g1 at x1 = 0 and the constant B is the
terminal value of ln g2 at x2 = 0. The three-suffix Margules equation adequately represents the VLE
data of systems like acetone–methanol, acetone–chloroform, chloroform–methanol, etc.
When A = B in Eq. (8.66), the Margules equation takes the following simple form:

………(8.67)
Equation (8.67) is called the Margules two-suffix equation. It represents sufficiently and accurately
the activity coefficients of simple liquid mixtures, i.e. mixtures of molecules, which are similar in
size, shape and chemical nature. The constant A may be positive or negative. While in general, the
constant depends on temperature, for many systems it is a weak function of temperature. Vapour–
liquid equilibrium data of argon–oxygen, benzene–cyclohexane, etc., are well represented by the
Margules equation [Eq. (8.67)].

van Laar equation. Let (q1/q2) = (A/B) in Eq. (8.65). The resulting two-parameter equation is
known as the van Laar equation. The van Laar equations can be written as

The constant A is the terminal value of ln g1 at x1 = 0 and B is the terminal value of ln g2 
at x2 = 0. When A and B are equal, the van Laar equations simplify to the Margules equation, 
Eq. (8.67). The van Laar equation (8.68) may be rearranged to the following forms, which are 
very convenient for the evaluation of constants A and B.

Strictly speaking, van Laar equations are applicable only for solutions of relatively simple,
preferably non-polar liquids. But empirically, it has been found that these are applicable for more
complex mixtures. The van Laar equations are widely used for vapour–liquid equilibrium
calculations because of their flexibility and mathematical simplicity. Activity coefficients in benzene–
isooctane system, n-propanol–water system, etc., are accurately represented by the van Laar
equations.
The selection of a proper equation for VLE data correlation depends on the molecular complexity of
the system and the precision of the experimental data. When an equation is selected that fits the
experimental data well, the constants for the constant pressure conditions will be different from those
applicable for constant temperature conditions. The effect of pressure on the constants is usually
negligibly small, whereas the effect of temperature is appreciable and cannot be neglected. The van
Laar constants vary with temperatures unless the temperature range involved is small. However, in
vapour–liquid equilibrium calculations, the effect of temperature on the activity coefficient is usually



ignored (Prausnitz, 1985).
The Margules three-suffix equation is suited for symmetrical systems, i.e. where the constants A and B
are nearly the same. The van Laar equations can be used for unsymmetrical solutions, where the ratio
A/B does not exceed 2. Though many systems follow van Laar equations, they cannot represent
maxima or minima in the ln g curve. Margules three-suffix equation should be used in such cases. For
choice of an appropriate equation, a rule of thumb usually employed is this: When the ratio of molar
volumes is close to unity, the Margules equation is preferred. When the ratio is quite different from
unity, as is the case when water is one of the constituents, the van Laar equations are found to be
satisfactory. For example, the chloroform–ethyl alcohol system, which shows a maximum and a
minimum on the ln g curves and whose ratio between pure component molar volumes is 1.38, is
accurately represented by the Margules equation. For n-propanol–water system this ratio is 4.16 and
the van Laar equations are found to represent the behaviour accurately.
It is to be remembered that in equations having only two constants, determination of g1 and g2 at a
single known composition permits the evaluation of the constants and the complete g curve. Equation
(8.47) permits the evaluation of g1 and g2 when it is rearranged to the following form.

The data required are a single set of equilibrium vapour–liquid composition values and the vapour
pressures of the pure components. When an azeotrope is formed, only the azeotropic composition
need be known, because it represents the composition of both the liquid and the vapour phases. The
activity coefficients can be evaluated by putting x = y in Eq. (8.70).

Wilson equation. All the activity coefficient equations discussed so far can be deduced from the
original Wohl’s equation under proper simplifying assumptions. However, there are many equations
that cannot be derived from the Wohl’s general equation. Among such equations, the Wilson equation,
the NRTL equation and the UNIQUAC equation are important from practical point of view. All these
are based on the concept of local compositions, which are different from the overall mixture
compositions. Based on molecular considerations, Wilson (1964) proposed the following equations
for activity coefficients in a binary mixture.

Wilson equations have two adjustable positive parameters L12 and L21. These are related to the pure
component molar volumes and to the characteristic energy differences by



where V1 and V2 are the molar volumes of pure liquids and l’s are the energies of interaction
between the molecules designated in the subscripts. The differences in the characteristic energies
(aij) are assumed to be temperature independent and this introduces no serious error in practical
calculations. Wilson equation provides a good representation of VLE of a variety of miscible
mixtures. It is particularly suitable for solutions of polar or associating components like alcohols in
non-polar solvents for which the Margules and van Laar equations are generally inadequate.
Wilson equation suffers from two disadvantages, though not serious for many applications. Firstly, it
is not suitable for systems showing maxima or minima on the ln g versus x curves. Secondly, it is not
useful for systems exhibiting limited miscibility. The use of Wilson equation is therefore
recommended only for liquid systems that are completely miscible, or for partially miscible systems
in the region where only one liquid phase exists.

Non-random two-liquid (NRTL) equation. The NRTL model, proposed by Renon and Prausnitz
(1968), also is based on the local composition concept. The activity coefficients are

The constants b12 and b21 are similar to the constants representing characteristic energy 
differences appearing in the Wilson equation. These, as well as the constant a12 are independent of
composition and temperature. The parameter a12 is related to the non-randomness in the 
mixture. If a1 2 is zero, the mixture is completely random and the NRTL equation reduces to the
Margules equation. It is found from fitting of experimental data that a12 varies from about 0.20 
to 0.47. In the absence of the experimental data, the value of a12 is arbitrarily set, a typical 



choice being a12 = 0.3. When a12 is arbitrarily fixed, NRTL equation becomes a two-parameter
model.
NRTL equation is applicable to partially miscible as well as totally miscible systems. For
moderately non-ideal systems, it offers no advantage over the van Laar and Margules equations. But,
for strongly non-ideal solutions and especially partially miscible systems, the NRTL equations
provide a good representation.

Universal quasi-chemical (UNIQUAC) equation. Abrams and Prausnitz (1975) extended the
quasi-chemical theory of liquid mixtures to solutions containing molecules of different sizes. This
extension is called the UNIQUAC theory. The UNIQUAC model consists of two parts—the
combinatorial part, which describes the prominent entropic contribution and a residual part, which is
due primarily to the intermolecular forces that are responsible for the enthalpy of mixing. The
combinatorial part is determined by the sizes and shape of the molecules and requires only pure-
component data. The residual part depends on the intermolecular forces and involves two adjustable
binary parameters.
The UNIQUAC equations for activity coefficients are

z is the coordination number, r, q and q� are pure-component molecular structure constants. The
molecular size and surface area are given by r and q respectively. For fluids other than water or
lower alcohols, q = q�. For alcohols, the surface of interaction q� is smaller than the geometric
surface q. The adjustable binary parameters t12 and t21 are related to the characteristic energies Du
as follows.



The UNIQUAC equation satisfies a large number of non-electrolyte mixtures containing non-polar
fluids such as hydrocarbons, alcohols, nitriles, ketones, aldehydes, organic acids, etc., and water,
including partially miscible mixtures. The main advantages of this equation are its wide applicability
and simplicity arising primarily from the fact that there are only two adjustable parameters.

Universal functional activity coefficient (UNIFAC) method. In the UNIFAC method, the
activity coefficients are estimated through group contributions. The liquid is treated as a solution of
different structural groups from which the molecules are formed, rather than a solution of molecules
themselves. This method is based on the UNIQUAC model where the activity coefficient is divided
into two parts—the molecular size contribution (the combinatorial part) and the interaction
contributions (the residual part).

The combinatorial contribution can be estimated from pure-component properties and the size and
shape of the molecules, whereas for the estimation of the second part, group areas and group
contributions are needed. A large number of group interaction parameters are already reported.
UNIFAC has been successfully used for the design of distillation columns, involving even azeotropic
and extractive distillation (Prausnitz et al., 1986).
EXAMPLE 8.12 Liquids A and B form an azeotrope containing 46.1 mole per cent A at 101.3 kPa and
345 K. At 345 K, the vapour pressure of A is 84.8 kPa and that of B is 78.2 kPa. Calculate the van
Laar constants.
Solution Let the material A be component 1 and B be component 2. The activity coefficients at the
azeotropic concentration can be evaluated by Eq. (8.71)



EXAMPLE 8.13 The azeotrope of the ethanol–benzene system has a composition of 44.8% (mol)
ethanol with a boiling point of 341.4 K at 101.3 kPa. At this temperature the vapour pressure of
benzene is 68.9 kPa and the vapour pressure of ethanol is 67.4 kPa. What are the activity coefficients
in a solution containing 10% alcohol?
Solution Let benzene be component 1 and alcohol component 2. For the azeotrope



EXAMPLE 8.14 Water (1)–hydrazine (2) system forms an azeotrope containing 58.5% (mol)
hydrazine at 393 K and 101.3 kPa. Calculate the equilibrium vapour composition for a solution
containing 20% (mol) hydrazine. The relative volatility of water with reference to hydrazine is 1.6
and may be assumed to remain constant in the temperature range involved. The vapour pressure of
hydrazine at 393 K is 124.76 kPa.

Solution The vapour pressure of water at 393 K = 1.6 � vapour pressure of hydrazine at 
393 K = 1.6 � 124.76 = 199.62 kPa.



To evaluate the vapour compositions using these equations, we should know the vapour pressure
values at the new equilibrium temperature. Taking the ratio of the last two equations, we get

The composition of the vapour in equilibrium with the liquid containing 20% hydrazine is 5.28%
hydrazine and 94.72% water.

EXAMPLE 8.15 At 318 K and 24.4 kPa, the composition of the system ethanol (1) and toluene (2) at
equilibrium is x1 = 0.3 and y1 = 0.634. The saturation pressure at the given temperature for the pure

components are , respectively. Calculate:
(a) The liquid-phase activity coefficients
(b) The value of GE/RT for the liquid phase
Solution (a) At vapour–liquid equilibrium, the composition of the vapour and liquid phases are



related by Eq. (8.48)

Equation (8.48) may be used to evaluate the activity coefficients.

EXAMPLE 8.16 The activity coefficients in a mixture of components A and B at 313 K are given by

At 313 K, A and B form an azeotrope containing 49.4 mol percent A at a total pressure of 27 kPa. If
the vapour pressures of pure A and pure B are 25.0 and 24.3 kPa, respectively, calculate the total
pressure of the vapour at temperature 313 K in equilibrium with a liquid mixture containing 12.5 mol
percent A.
Solution At the azeotropic composition, Eq. (8.71) is applicable, so that the activity coefficients are:





EXAMPLE 8.17 Using van Laar constants and the vapour pressures of the pure substances how
would you prove whether a given binary system forms an azeotrope or not?
Solution If the mixture does not exhibit azeotropic behaviour, the ratio (y1/x1) will be greater than
(y2/x2) for the entire concentration range 0 to 1. Denoting the ratio of (y1/x1) to (y2/x2) by a, then a
> 1 for 0 < x < 1. However, if the mixture forms an azeotrope, then the value of a will be greater than
1 over some concentration range and will be less than 1 over the remaining portion. Since a varies
continuously with x, a should have a value equal to 1 at some x which is the azeotropic composition.
Writing Eq. (8.47) for both components and rearranging the result, we get

A and B are the van Laar constants. If the mixture forms an azeotrope, one of the above values will be
greater than 1 and the other less than 1.

EXAMPLE 8.18 For the binary system methanol (1) and benzene (2), the recommended values of the
Wilson parameters at 341 K are L12 = 0.1751 and L21 = 0.3456. The vapour pressures of pure

species are  = 68.75 kPa and  = 115.89 kPa. Show that the given system can form an azeotrope
at 341 K. Assume that the vapour behaves like an ideal gas.
Solution Wilson equations [Eq. (8.72)] provide the activity coefficients in a binary mixture as:



Equation (8.48) gives the relationship between activity coefficient and equilibrium phase
compositions as

If the mixture forms an azeotrope, then the value of a will be greater than 1 over some concentration
range and will be less than 1 over the remaining portion. Relative volatilities are calculated at x1 = 0
and x1 = 1. If the system forms an azeotrope, one of these values will be greater than unity and the
other less than unity.
At x1 = 0,

At x2 = 0,



Since the relative volatility at x1 = 0 is greater than unity, and that at x2 = 0 is less than unity, it is
clear that the system forms an azeotrope.

EXAMPLE 8.19 A stream of isopropanol–water mixture is flashed into a separation chamber at 353
K and 91.2 kPa. A particular analysis of the liquid product showed an isopropanol content of 4.7%
(mol), a value that deviated from the norm. It is suspected that an air leak into the separator might
have caused this. Do you agree? The vapour pressures of the pure propanol and water are 91.11 kPa
and 47.36 kPa respectively, and the van Laar constants are A = 2.470 and B = 1.094.
Solution For x1 = 0.047, x2 = 0.953, A = 2.47 and B = 1.094, Eq. (8.68) gives

g1 = 7.388 and g2 = 1.011

The total pressure corresponding to this equilibrium composition is

This is less than the total pressure. This error must have been caused by an air-leak.

EXAMPLE 8.20 Construct the P-x-y diagram for the cyclohexane (1)–benzene (2) system at 313 K

given that at 313 K the vapour pressures are  = 24.62 kPa and  = 24.41 kPa. The liquid-phase
activity coefficients are given by

Solution Assume x1 = 0.4, then x2 = 0.6. Therefore

ln g1 = 0.458 � 0.62 = 0.16488; g1 = 1.1793.

Similarly,

ln g2 = 0.458 � 0.42 = 0.0733; g2 = 1.0760

The total pressure is determined as:



The above calculation is repeated for various x1 values. The results are tabulated below:

x1 0 0.2 0.4 0.6 0.8 1.0

g1 1.5809 1.3406 1.1793 1.0760 1.0185 1.000

g2 1.000 1.0185 1.0760 1.1793 1.3406 1.5809

P 24.41 26.49 27.37 27.41 26.61 24.62

y1 0 0.2492 0.4243 0.5799 0.7540 1.0

The results are plotted taking P on the y-axis and x1 and y1 on the x-axis.
EXAMPLE 8.21 From vapour–liquid equilibrium measurements for ethanol–benzene system at 318
K and 40.25 kPa it is found that the vapour in equilibrium with a liquid containing 38.4% (mol)
benzene contained 56.6% (mol) benzene. The system forms an azeotrope at 318 K. At this
temperature, the vapour pressures of ethanol and benzene are 22.9 and 29.6 kPa respectively.
Determine the composition and total pressure of the azeotrope. Assume that van Laar equation is
applicable for the system.
Solution Let benzene be component 1 and ethanol component 2. Using Eq. (8.47) the activity
coefficients are determined.



For any liquid composition, the activity coefficients are calculated using these equations. If the
mixture forms an azeotrope at any composition, then as per Eq. (8.71), the following relations also
give the activity coefficients.

Thus, activity coefficients calculated using the van Laar equations should also satisfy the relation 

 at the azeotropic composition. The azeotropic composition is obtained by trial
assuming values of x. For x1 = 0.6, g1 = 1.3830 and g2 = 1.7806.

These values are so close that it can be assumed that the composition corresponds to an azeotrope.
Thus, the liquid mixture forms an azeotrope containing 60% benzene which boils at 318 K and
approximately 40.86 kPa, (mean of 40.937 and 40.775 kPa).

EXAMPLE 8.22 The activity coefficients in a binary system are given by ln .

Show that if the system forms an azeotrope, then  and the azeotropic composition
is given by



At the azeotropic composition, the P-x curve has a maximum or minimum. Therefore, the above result
is equated to zero and after rearrangement, we get

Since the value of x1 lies between 0 and 1 it is essential that . Noting that x1x2 for
a binary mixture is less than or equal to 0.25, the second root leads to A ≥ 2. This condition usually

results in partial miscibility. Thus, condition for homogeneous azeotropy is  and A
< 2.
EXAMPLE 8.23 The following values refer to the Wilson parameters for the system acetone(1)–
water(2):

a1 2 = 1225.31 J/mol, a21 = 6051.01 J/mol, V1 = 74.05 � 10–6 m3/mol, V2 = 18.07 � 10–6

m3/mol.
The vapour pressures are given by



where P is in kPa and T is in K. Calculate the equilibrium pressure and composition of
(a) Vapour in equilibrium with a liquid of composition x1 = 0.43 at 349 K.
(b) The liquid in equilibrium with a vapour of concentration y1 = 0.8 at 349 K.

Solution Using the Antoine equations, at 349 K, the vapour pressures are calculated as

(a) Now from Eq. (8.72), we obtain

The vapour composition is found out from the relation y1P = g1x1

(b) Since the liquid composition is not known, the activity coefficients cannot be calculated. Assume
g1 = g2 = 1. The relation Pyi = xi  can be written for component 1 and component 2, which on
rearrangement gives



Activity coefficients can now be determined for this composition using Wilson equations.

Now the pressure is recalculated incorporating the activity coefficient values. The equation



This is same as the previous value calculated for P. Therefore, P = 164.48 kPa and x1 = 0.4568.

EXAMPLE 8.24 The system methanol–methyl ethyl ketone forms an azeotrope containing 84.2%
(mol) methanol at 337.5 K and 101.3 kPa. The vapour pressures of the pure species are given by the
Antoine equation

Determine the parameters in the Wilson equation.



Solution The vapour pressures at 337.5 K are calculated using Antoine equations.

L12 is calculated by substituting the known values in the above equation.

8.12 VAPOUR-LIQUID EQUILIBRIA INVOLVING HIGH PRESSURES AND
MULTICOMPONENT SYSTEMS

8.12.1 Equations of State Approach
The equations of state approach is most useful for vapour–liquid equilibria at high pressures. In this
method, the vapour and liquid compositions are related by Eq. (8.45):

The equations of state provide thermodynamic models for evaluating  in Eq. (8.45) from
volumetric properties. The fugacity coefficients for the vapour and liquid phases are to be obtained
from appropriate equations of state. Equations of state widely used in engineering calculations were
discussed in Chapter 3. The most generally used equations of state for VLE calculations are given in
Table 8.1.



The fugacity coefficients in Eq. (8.45) can be calculated using a suitable equation of state. The
relationship between fugacity coefficient and the volumetric properties can be written as

where Z is the compressibility factor.

The equations of state approach has the advantage that the standard state fugacity  need not be
specified. Another advantage is that the continuity at the critical point is ensured as the properties in
the gas and liquid phases are evaluated using the same model. The equations of state approach is
more suitable to mixtures of nonpolar components. Also, the equations of state are widely used to
predict VLE of light hydrocarbon mixtures.

8.12.2 Vaporisation Equilibrium Constants
For high-pressure vapour–liquid equilibrium calculations, it is convenient to express the phase
equilibrium relations in terms of vaporisation equilibrium constants or K factors. It is defined as the



ratio of mole fraction in the vapour phase y to that in the liquid x or K = (y/x). The equation of state
form of the K-value is obtained from Eq. (8.45) as follows:

In Eq. (8.83a),  is the fugacity coefficient in the saturation state, Vi is the molar volume of pure i as

saturated liquid.  are evaluated using an equation of state. Assuming the Poynting factor to
be unity, Eq. (8.83a) can be rearranged as

which is nothing but Raoult’s law which is applicable for ideal solution where the vapour behaves as
ideal gas. We see that for ideal solution, the vaporisation equilibrium constant is the ratio of vapour
pressure to total pressure. The K-factors for ideal solutions depend only on the temperature and
pressure and are readily correlated as a function of these two variables.
For mixtures of light hydrocarbons, Eq. (8.83a) can be simplified using two assumptions:



1. Intermolecular forces are weak, so that vapour phase behaves as an ideal solution, so that ,
where fi is the fugacity coefficient of the pure components.

2. Liquid phase behaves as an ideal solution so that  =1.0.
The resulting equation is very convenient as it involves properties of pure component only.

Equation (8.83e) reveals that for mixtures of light hydrocarbons, the vaporisation equilibrium
constants are independent of the composition of the liquid and vapour phases in equilibrium 

and can be evaluated as pure component properties. Since  can be determined from
equations of state or generalised correlations, it is possible to provide correlations for K-values of
substances as functions of temperature and pressure. DePriester nomographs [C.L. DePriester, Chem.
Eng. Progr., Symposium Ser. 7, 49 (1953)] provide such correlations for many 
hydrocarbons. These nomographs are available in standard references such as Chemical Engineers
Handbook. Figure 8.16 gives the K-factor for light hydrocarbons in the high temperature 
range.



8.12.3 Bubble-point Equilibria
The bubble-point temperature is the one at which the first bubble of vapour is produced from the
liquid on heating at constant pressure. At the bubble point the liquid has the same composition as the
original mixture. Therefore, in problems where bubble-point temperature is to be determined, the xi



are known. Assume a temperature and get the Ki values at this temperature. Calculate yi using yi =
Kixi. If the assumed temperature is correct then

S yi = S Kixi = 1………(8.84)

Otherwise, repeat the calculations with another temperature. To find the bubble-point pressure , a
similar procedure as above is adopted by assuming various values of pressure until S Kixi = 1.

8.12.4 Dew-point Equilibria
The dew-point temperature is the one at which the first drop of condensate is formed on cooling a
vapour at constant pressure. The vapour in equilibrium with the liquid at the dew point has the same
composition as the original mixture. In order to find the dew-point temperature, a temperature is
assumed arbitrarily and Ki is determined. Then,

Otherwise, repeat the calculation by assuming another temperature till this equation is satisfied.
Determination of the dew-point pressure  involves a similar procedure assuming pressure instead of
temperature.

8.12.5 Flash Vaporisation
The general flash vaporisation problem can be stated as: Given a mixture of known overall
composition zi at temperature T and pressure P, what is the fraction that is vapour (V) and what are
the composition of the liquid and vapour phases in equilibrium? The overall material balance for the
system is

F = V + L………(8.86)
where F is the total number of moles of the initial mixture. The component-i balance for the 
system is

Fzi = Vyi + Lxi………(8.87)

Since yi = Kixi, it can be eliminated from Eq. (8.87) to get the following:



Equation (8.91) can also be utilised in an iterative procedure to estimate T, P or the fraction of the
initial mixture that is vaporised.

EXAMPLE 8.25 A mixture contains 45% (mol) methanol (A), 30% (mol) ethanol (B) and the rest
n-propanol (C). Liquid solution may be assumed to be ideal and perfect gas law is valid for the
vapour phase. Calculate at a total pressure of 101.3 kPa.
(a) The bubble point and the vapour composition
(b) The dew point and the liquid composition.
The vapour pressures of the pure liquids are given below:

Temperature, K333 343 353 363

PS
A, kPa 81.97133.29186.61266.58

PS
B, kPa 49.3273.31 106.63166.61

PS
C, kPa 39.3262.65 93.30 133.29

Solution The vapour pressures of the components are plotted against temperature so that interpolation
of vapour pressure can be done easily.
(a) If the vapour phase can be treated as an ideal gas and liquid phase, an ideal solution, the K-values
can be written as Ki = yi/xi = . Equation (8.84) can be written as

Now temperatures are assumed till the above equality is satisfied. It is seen that at 344 K,



The bubble-point lies between 344 and 345 K. By interpolation, the bubble-point is obtained 
as 344.6 K. At this temperature the vapour pressures are obtained from the P vs T plots.  = 
137.3 kPa,  = 76.20 kPa and  = 65.40 kPa.

Component xi Ki = /P yi = Kixi

Methanol 0.45 137.30 1.355 0.610

Ethanol 0.30 76.20 0.752 0.226

Propanol 0.25 65.40 0.646 0.162

S Kixi 0.998

The equilibrium vapour contains 61% methanol, 22.6% ethanol and 16.2% propanol.
(b) Equation (8.85) for the present case becomes

The dew-point temperature is to be determined by trial such that the above relation is satisfied. By
trial, it can be seen that at 347.5 K,  = 153.28 kPa,  = 85.25 kPa and  = 73.31 kPa.

Component yi Ki = /P xi = yi/Ki

Methanol 0.45 153.28 1.5131 0.2974

Ethanol 0.30 85.25 0.8416 0.3565

Propanol 0.25 73.31 0.7237 0.3454

Syi/Ki 0.9993

The values in the last column are the liquid composition at the dew point. Thus, liquid contains
29.7% methanol, 35.7% ethanol, and 34.5% propanol.
EXAMPLE 8.26 A hydrocarbon mixture contains 25% (mol) propane, 40% (mol) n-butane and 35%
(mol) n-pentane at 1447.14 kPa. Assume ideal solution behaviour and calculate

(a) The bubble-point temperature and composition of the vapour
(b) The dew-point temperature and the composition of the liquid
(c) The temperature and the composition of the liquid and vapour in equilibrium when 45% (mol)

of the initial mixture is vaporised. (The values of Ki can be obtained from Fig. 13.6 of Chemical

Engineer’s Handbook, 5th ed.)



Solution (a) Assume temperature, say 355.4 K, and the Ki values are found out from the nomograph
[Fig. 13.6(b) in Chemical Engineer’s Handbook]. The products of Ki and xi are calculated and their

sum S xiKi is found out. The results for two temperatures 355.4 K and 
366.5 K are shown below.

T = 355.4 K T = 366.5 K

Component xi Ki Kixi Ki Kixi

Propane 0.25 2.000 0.500 2.30 0.575

n-Butane 0.40 0.780 0.312 0.90 0.360

n-Pentane 0.35 0.330 0.116 0.40 0.140

S Kixi 0.928 1.075

The bubble-point temperature lies between 355.4 K and 366.5 K. By interpolation, the temperature is
found out to be 361 K. The calculations are carried out at this temperature and the results are as
follows:

Component xi Ki Kixi

Propane 0.25 2.12 0.530

n-Butane 0.40 0.85 0.340

n-Pentane 0.35 0.37 0.130

S Kixi 1.000

Since S xiKi is approximately 1.00, the bubble-point temperature is 361 K. The values in the last
column are the mole fraction of various components in the vapour. At the bubble-point, the vapour
contains 53% propane, 34% butane and 13% pentane.

(b) At the dew-point temperature, S yi/Ki = 1. At 377.6 K, this value is 1.1598 and at 388.8 K it is
0.9677.

T = 377.6 K T = 388.8 K

Component yi Ki yi/Ki Ki yi/Ki

Propane 0.25 2.6 0.0962 2.9 0.0862

n-Butane 0.40 1.1 0.3636 1.3 0.3077

n-Pentane 0.35 0.5 0.7000 0.61 0.5738

Syi/Ki 1.1598 0.9677

By interpolation, the dew-point temperature is found to be 387 K. The calculations for this
temperature is given below.



Component yi Ki yi/Ki
Propane 0.25 2.85 0.0877

n-Butane 0.40 1.25 0.3200

n-Pentane 0.35 0.59 0.5932

S yi/Ki 1.0009

The last column in the above table is the liquid compositions. The equilibrium liquid at the dew point
contains 8.77% propane, 32.0% butane and 59.32% pentane.
(c) In the following calculations, temperature is assumed so as to satisfy Eq. (8.91). For a basis of
100 mol of the initial mixture, F = 100 mol, V = 45 mol and L = 55 mol. Equation (8.91) becomes

T = 366.5 K T = 377.6 K

Component zi Ki zi/[1 + L/(VKi)] Ki zi/[1 + L/(VKi)]

Propane 0.25 2.30 0.1632 2.6 0.1701

n-Butane 0.40 0.90 0.1696 1.1 0.1895

n-Pentane 0.35 0.40 0.0863 0.5 0.1016

S zi/[1 + L/(VKi)] 0.4191 0.4612

From the calculations given above, we see that the equilibrium temperature is between 366.5 K and
377.6 K. By interpolation, T = 374.6 K.

T = 374.6 K

Component zi Ki zi/[1 + L/(VKi)]

Propane 0.25 2.50 0.1679

n-Butane 0.40 1.08 0.1876

n-Pentane 0.35 0.48 0.0987

S zi/[1 + L/(VKi)] 0.4542

Comparing Eqs. (8.90) and (8.91), we can see that

These are calculated using the values in the last column. Corresponding xi values are found out using
the material balance [Eq. (8.87)].

Fzi = Vyi + Lxi
The results of the calculation are given below:



Component yi xi

Propane 0.3697 0.1521

n-Butane 0.4130 0.3894

n-Pentane 0.2173 0.4586

8.13 CONSISTENCY TESTS FOR VLE DATA
Many practical cases like distillation calculations are dependent on vapour–liquid equilibrium data
and such data should be reasonably accurate if the results are to be reliable. As the VLE
measurements are prone to inaccuracies, it is essential that we have some means for checking the
consistency of the measured results. Thermodynamics provides tests for consistency of experimental
VLE data. Almost all these tests are based on the Gibbs–Duhem equations written in terms of activity
coefficients [Eq. (7.101)].

8.13.1 Using Slope of ln g Curves
The Gibbs–Duhem equation in terms of activity coefficient [Eq. (7.101)] provides a very simple test
for thermodynamic consistency.

Plot the logarithm of the activity coefficients against mole fraction x1 of component 1 in a binary
solution as shown in Fig 8.17(a) and measure the slopes of the tangents drawn to the resulting curves
at any selected composition x1.
Equation (8.92) tells us that if the Gibbs–Duhem equation is to be satisfied, both slopes must have
opposite sign. Otherwise, the data are inconsistent. If the slopes are of opposite sign, substitute the
values in Eq. (8.92) and if it is satisfied reasonably well, then the data is consistent at the selected
composition. For a complete test, the slopes determined at other compositions are substituted into Eq.
(8.92) to see whether the equality is satisfied or not.
In addition to the above observations, we can make the following generalisations with the help of Eq.
(7.101).

1. If one of the ln g curves has a maximum (or minimum) at certain concentration, the other curve
should have a minimum (or maximum) at the same composition.

2. If there is no maximum or minimum point, then both curves must be positive or both must be
negative over the entire range. Or in other words, if one component has g values always greater
than unity and has no maximum, the g values of the other component must likewise be greater
than unity. This is a consequence of the fact that Raoult’s law is to be obeyed by the component



as its mole fraction tends to unity.
From the above discussion, it is clear that Fig. 8.17(b) represents plots of consistent data whereas
Figs. 8.17(c) and (d) are plots of thermodynamically inconsistent data. In Fig. 8.17(c), though there is
maximum on one curve and minimum on the other, these are shown at different compositions. In Fig.
8.17(d), the slopes have the same sign and the data are thermodynamically inaccurate.

8.13.2 Using Data at the Mid-point
For testing the thermodynamic consistency of VLE data, the integrated forms of the Gibbs–Duhem
equation like the van Laar or the Margules equation are sometimes found very convenient. Consider
the van Laar equation Eq. (8.68). Put x1 = x2 = 0.5 and we see that



Case 1. Assume that A = B. Then ln g1 = B/4 and ln g2 = A/4
Case 2. Assume that A = 2B. Then ln g1 = (2/9)B and ln g2 = (2/9)A
Case 3. Assume that A = 3B. Then ln g1 = (3/16)B and ln g2 = (3/16)A

In all cases cited above, the ln g1 at the mid-point (i.e. at x1 = x2 = 0.5) is approximately one-fourth
the van Laar constant B and ln g2 approximately one-fourth the constant A. We have already seen that
the van Laar constant A is ln g1 as x1 tends to zero and B is ln g2 as x1 tends to one. Now we have a
rough check on the consistency of VLE data for the mid-point. The ln g value at this point will be
approximately one-fourth the terminal value of the other ln g curve. That is the curve, which is highest
at the end-point will be lowest at the mid-point and vice versa, as shown in Figs. 8.18(a) and (b).
The mid-point values are approximately one-fourth the terminal values of the other curves in both the
figures. However, Fig. 8.18(c) reveals an inconsistent data, as the curve which is highest at the end-
point is also the highest at the mid-point.



8.13.3 Redlich–Kister Method
This method, also known as the zero area method can be applied to test the consistency of
experimental data when the activity coefficient values over the entire concentration range is
available. It is based on the excess free energy of mixing which is the difference between the free
energy of mixing of a real solution and that of an ideal solution. Referring to Eqs. (7.134) and (7.145)
the excess free energy of mixing can be written as

DGE = RT S xi ln gi………(8.94)

For a binary solution, it can be written as

DGE = RT(x1 ln g1 + x2 ln g2)

Differentiating this with respect to x1, we get

From the experimental values of activity coefficients, ln (g1/g2) values are calculated and plotted
against x1 taken on the x-axis. The net area of the diagram should equal zero if the data are
thermodynamically consistent. That is, the area above the x-axis will be equal to the area below it as
shown in Fig. 8.19.



8.13.4 Using the Coexistence Equation
The coexistence equation can be used for testing the consistency of vapour–liquid equilibrium data. If
the vapour in equilibrium with a binary liquid mixture behaves as an ideal gas, Eq. (8.47) can be used
to describe the equilibrium. Rearranging Eq. (8.47), the activity coefficients can be written as

Substitute this in the Gibbs–Duhem Equations [Eq. (8.92)] written in the following form

Equation (8.99) is known as the coexistence equation. It can be used to calculate any one of the three
variables P, x or y if experimentally measured values of the other two variables are available. If all
the three variables are experimentally determined, then Eq. (8.99) can be used to test the consistency



of the measured data.

8.13.5 Using the Partial Pressure Data
At low pressures, the fugacity of a gas equals the pressure and therefore, the Gibbs–Duhem equation
in terms of fugacity [Eq. (7.99)] can be rewritten as,

or

The partial pressures of both components are plotted against mole fraction x1 as in Fig. 8.20. The

slopes,  are determined at any selected composition.  and 
 are calculated. Then, according to Eq. (8.100), the absolute values of these

quantities should be the same if the data are thermodynamically consistent.

EXAMPLE 8.27 The following results were obtained by experimental VLE measurements on 
the system, ethanol (1)–benzene (2) at 101.3 kPa. Test whether the data are thermodynamically



consistent or not.

x1 0.003 0.449 0.700 0.900

y1 0.432 0.449 0.520 0.719

, kPa 65.31 63.98 66.64 81.31

, kPa 68.64 68.64 69.31 72.24

Solution Assuming that the gas phase behaves ideally, the activity coefficients are calculated as

The values so calculated are listed below:

x1 0.003 0.449 0.700 0.900

g1 223.3 1.58 1.13 0.99

g2 0.841 1.475 2.34 2.92

ln(g1/g2 ) 5.58 0.068 – 0.734 – 1.082

ln (g1/g2) values are plotted against x1. The net area is found out. Since this is not equal to zero, the
given experimental measurements do not satisfy the Redlich–Kister criterion [Eq. (8.97)] for
consistency.

8.14 CALCULATION OF ACTIVITY COEFFICIENTS USING 
GIBBS–DUHEM EQUATION

The activity coefficients in a binary solution are related to each other according to the Gibbs–Duhem
equations as given below. See Eq. (7.101).



The integral can be evaluated analytically if g2 is expressed as a mathematical function of
composition. To find the integral graphically, plot a graph with (x2/x1) on the y-axis and ln g2 on the
x-axis. The area under the curve from ln g2 at x2 = 0 to ln g2 at any desired composition x2 gives the
value 
– ln g1 for the component 1.
EXAMPLE 8.28 The activity coefficients for component 1 in a binary solution can be represented by 

, where a, b and c are concentration independent parameters. Derive an
expression for ln g2.

Solution Equation (8.101) may be written as

For the present case,

EXAMPLE 8.29 The following data gives the composition versus total pressure for the system
chloroform (1)–ethyl alcohol (2) at 328 K are:

Vapour pressures of chloroform and acetone at 328 K are 82.35 and 37.30 kPa respectively. Estimate
the constants in the Margules equation [Eq. (8.66)].
Solution The Margules equations are:



(Note: Equations (8.103) and (8.104) are known as Carlson and Colburn relations for activity
coefficient.)

EXAMPLE 8.30 The following table gives the partial pressure of acetone versus liquid composition
for acetone (1)–water (2) system at 333 K.

x1 0 0.033 0.117 0.318 0.554 0.736 1.000

1, kPa 0 25.33 59.05 78.37 89.58 94.77 114.63

The vapour pressure of water at 333 K is 19.91 kPa. Calculate the partial pressure of water in the
vapour phase.
Solution Equation (8.100) is the Gibbs–Duhem equation in terms of partial pressures.



Using the given data calculate x1/[(1 – x1) ] and this is plotted against . The area under the curve
between the limits 0 and  gives the integral in Eq. (8.106) from which the partial pressure  can be
calculated. The results are given below:

x1 0 0.033 0.117 0.318 0.554 0.736 1.000

, kPa 19.91 19.31 18.27 16.99 15.42 13.90 0

8.15 VLE FOR SYSTEMS OF LIMITED MISCIBILITY
8.15.1 Partially Miscible Systems
Figure 8.21 shows the temperature-composition diagram for a partially miscible system at constant
total pressure. Points A and B indicate the boiling points of pure liquids A and B at this pressure. A
binary system consisting of two liquid phases and a vapour phase is univariant according to the phase
rule. By fixing the pressure, the system is completely defined. The states of the three phases in
equilibrium lie on the horizontal line at T*, the three-phase equilibrium temperature. Points C and D
represent the saturated liquid phases and point E the vapour in equilibrium with these liquids.



Below T* the system is entirely liquid. It may exist as a homogeneous system, or, as a heterogeneous
system consisting of two saturated liquid phases, depending upon its overall composition. If the
overall composition of the mixture lies within the region bounded by the curves FC and GD below
temperature T*, the mixture cannot exist as a single phase. It separates into two saturated liquid
phases, a A-rich phase (LA) represented by the curve GD and a B-rich phase (LB) represented by the
curve FC. The compositions of these phases are determined by the intersection of a horizontal line
corresponding to the temperature of the system and the curves GD and FC. Consider, for example, a
liquid whose combined concentration and temperature are such that it is represented by the point M in
Fig. 8.21(a). Since M lies in the two-liquid region (LB –LA), the mixture separates into a B-rich
phase represented by point P, and a A-rich phase represented by point Q.
The mutual solubility of A and B increases with increase in temperature as shown by the curves FC
and GD in Fig. 8.21(a). The change in the solubility of liquid A in liquid B with temperature is along
FC and that of B in A is along GD. To the right of the curve GD and to the left of the curve CF the
mixture exists as homogeneous liquid, if the temperature is below the three-phase temperature. The
higher the three-phase temperature the more the mutual solubility of liquids A and B. Suppose that the
mixture at M in Fig. 8.21(a) is heated at constant pressure. Its temperature increases till T* is
reached. At T*, the vapour of the composition corresponding to point E is formed. If additional
quantities of liquid A or B are introduced into the system at this point, the relative amounts of the three
phases in equilibrium will change, but the composition of these phases represented by points C, D
and E must remain the same. The temperature T* remains constant until one of the liquid phases
disappears. At temperatures above T*, the system can exist either as two phases (liquid and vapour)
or as a single phase depending on the overall composition. The liquid phase that disappears depends
on whether the combined mixture composition is to the left or right of point E. For the mixture at M,



the A-rich phase disappears. The system now consists of a saturated liquid (LB) in equilibrium with
saturated vapour (V). When the temperature is increased the overall composition must lie on the
vertical line MN, the relative amounts and composition of the liquid and the vapour phases change
accordingly. Above the temperature corresponding to point R, the mixture is entirely vapour. If the
initial mixture were to the right of point E, the liquid in equilibrium with the vapour would have been
LA instead of LB.
The three-phase equilibrium temperature increases with pressure as shown in Fig. 8.22 where
temperature-composition diagrams are plotted at various pressures. The curves FC and GD
eventually merge to a single point and the two liquid phases become identical. The temperature at
which this occurs is known as the upper critical solution temperature (UCST). For pressures above
this critical condition, the three-phase equilibrium conditions do not exist.

8.15.2 Immiscible Systems
The phase diagram for a completely immiscible system is shown in Fig. 8.23. This diagram is a
special case of Fig. 8.21 occurring when the two liquid phases LA and LB are the pure liquids A and
B respectively. Consider a binary mixture of two immiscible liquids having an overall composition
represented by point M. When this mixture is heated its temperature increases along the line MN. For
all temperatures up to point N, each component exerts its full vapour pressure as its partial pressure
in the vapour phase. When the temperature T* corresponding to point N is reached, the sum of the
vapour pressures becomes equal to the surrounding pressure and the system cannot exist entirely in
the liquid state and vapour is produced. T* is therefore known as the three-phase temperature.



The composition of the vapour in equilibrium with the pure liquids at the three-phase temperature is
given by point E. Since there are three phases and two components present, according to the phase
rule, the number of degrees of freedom is one as in the case of partially miscible systems. It means
that, when pressure is fixed the system is completely defined. The three-phase temperature and the
equilibrium vapour composition get automatically fixed by specifying the pressure in such a way that
the sum of the vapour pressures equals the surrounding pressure.

On further addition of heat, the temperature remains constant at T* and more vapour of the same
composition as given by point E is formed. This continues till one of the components disappears from
the liquid and the system becomes a two-phase mixture either LA – V or LB – V depending upon the
initial composition.
Now let us consider the cooling of a vapour of initial composition and temperature indicated by point
J. When the temperature is lowered to that corresponding to point K the vapour pressure of pure
liquid B will be equal to the partial pressure of B in the vapour. Pure liquid B gets condensed and the
vapour composition changes along the line KE. When the temperature T* is reached, the partial
pressure of A in the vapour will be equal to the vapour pressure of A and at this condition, pure
liquids A and B and the vapour are present in equilibrium. Further cooling results in the elimination of
the vapour phase and the system now consists of two immiscible liquids. If the initial vapour were at
point P, pure liquid A would have condensed out first, instead of B.

EXAMPLE 8.31 A high boiling organic liquid is purified from non-volatile impurities by allowing it
to mix with steam directly at a total pressure of 93.30 kPa. The vapour pressure data are given as
follows:



Temperature, K 353 373
Vapour pressure of water, kPa 47.98 101.3

Vapour pressure of liquid, kPa 2.67 5.33

Assume that water and the organic liquid are immiscible and the impurities do not affect the
vaporisation characteristics. The vapour pressures vary linearly with temperature. Calculate under
three-phase equilibrium

(a) The equilibrium temperature and
(b) The composition of the resulting vapour.

Solution (a) At 353 K, sum of the vapour pressures is 50.65 kPa and at 373 K it is 106.63 kPa. Since
the vapour pressures vary linearly, the temperature at which the sum of vapour pressures is 93.3 kPa
is obtained by interpolation.

(b) At 368.2 K, the vapour pressure of water is 88.50 kPa and that of the liquid is 4.80 kPa. Since at
three-phase equilibrium, the partial pressure is equal to the vapour pressure, the ratio of mole
fractions of the components will be same as the ratio of vapour pressures. Let y be the mole fraction
of water in the vapour. Then

The vapour contains 94.86% (mol) water vapour.

EXAMPLE 8.32 Assuming that benzene is immiscible with water, prepare a temperature-
composition diagram for benzene (1)–water (2) system at 101.3 kPa using the following vapour
pressure data:

T, K 323 333 343 348 353 363 373

, kPa 12.40 19.86 31.06 37.99 47.32 70.11 101.3

, kPa 35.85 51.85 72.91 85.31 100.50 135.42 179.14

The boiling point of pure benzene at 101.3 kPa is 353.1 K.

Solution The three-phase temperature is first found out. At T*,  is calculated
for each given temperature, and this is plotted against temperature. T* is the tempe-
rature at which P is equal to 101.3 kPa. This is found out to be 342 K. The horizontal line CD 
in Fig. 8.24 is drawn at this temperature. The vapour pressures at this temperature are  = 
71.18 kPa and  = 30.12 kPa. The mole fraction of benzene in the vapour represented by point E in
Fig. 8.24 is 71.18/101.3 = 0.70.



The dew-point curve BE is plotted by choosing a temperature lying between 373 K (boiling point of
water) and 342 K (the three-phase temperature). For example, take T = 353 K. The partial pressure of
water at the dew point is equal to the vapour pressure. For the dew-point temperature of 353 K, the
partial pressure of water is

47.32 = (1 – y) � P
where y is the mole fraction of benzene in the vapour. We get, y = 0.5329.
This calculation is repeated for various temperature and the entire curve BE is drawn. For getting the
curve AE the procedure is the same. Here temperatures are assumed between 342 K and 353.1 K, the
latter being the boiling point of pure benzene. On the curve AE, the partial pressure of benzene in the
vapour equals its vapour pressure. For example, for a dew-point temperature of 348 K,

85.31 = P � y, or y = 0.8422
The following table gives the results of a few such calculations:

T, K 342 348 353 353.1 363 373

y (curve AE) 0.70 0.84 0.99 1.00 – –

y (curve BE) 0.70 – 0.53 – 0.31 0

8.16 LIQUID–LIQUID EQUILIBRIUM DIAGRAMS
8.16.1 Binary Liquid–Liquid Equilibria
When two liquids are only partially miscible, the equilibrium can be represented on rectangular 
coordinates as shown in Fig. 8.25. A dome-shaped region is formed by the mutual solubility 
curves and within the dome the mixture exists as two phases. The compositions of the equilibrium



phases lie at the ends of the horizontal line at a given temperature. For example, the mixture M in Fig.
8.25 will separate into two equilibrium phases A and B. The relative amounts of the phases are given
by the inverse lever rule.

The point P gives the critical solution temperature. Outside the dome the mixture is homogeneous.

8.16.2 Ternary Equilibrium Diagrams
Liquid–liquid equilibria involving three components are important in the analysis of extraction
operations. The extraction process involves bringing a binary mixture of components A and C into
intimate contact with a solvent B. The solvent B is either partially soluble in liquid A or is immiscible
with it. The component C gets distributed in different proportions between the two insoluble phases
known as the ‘raffinate’ and the ‘extract’. The A-rich phase is known as the raffinate and the B-rich
phase is known as the extract. When the solvent added is only partially miscible with A, the extract
and raffinate phases contain three components. The ternary liquid–liquid equilibrium diagrams are
usually represented on equilateral triangular coordinates. On the equilateral triangle the length of the
altitude is allowed to represent 100% composition and the length of the perpendiculars from any
point to the bases represent the percentages of the three components. The apexes of the triangle
represent the pure componen ts A, B, and C and points on the sides represent binary mixtures.
Figure 8.26(a) shows the equilibrium diagram of type-I systems in which one pair is partially soluble.
The pairs A-C and B-C are miscible in all proportions and the pair A-B is miscible only partially.
Examples are water (A)–chloroform (B)–acetone (C), water (A)–benzene (B)–acetic acid (C), water
(A)–methyl isobutyl ketone (B)–acetone (C), etc. Liquid C dissolves completely in A and B whereas A



and B dissolve only to a limited extent in each other. In the region below the mutual solubility curves
the two liquid phases exist under equilibrium. The compositions of the equilibrium phases are
obtained at the ends of the tie line passing through the point representing the overall composition of
the mixture. For example, the mixture, whose combined composition is represented by point M
separates into a raffinate R and an extract E at equilibrium. Thus, RE is a tie line for the system. The
weight fraction of C in the raffinate is denoted by xR, and that in the extract is denoted by yE. Several
tie lines can be drawn and each gives rise to a set of equilibrium xR and yE values, which can be
used to plot the equilibrium diagram shown in Fig. 8.26(b).

The curve DRPF is the binodal solubility curve, which shows the change in the solubility of A-rich
and B-rich phases upon addition of C at a fixed temperature. Any mixture outside this curve will be a
homogeneous solution of a single liquid phase. There is one point on the binodal curve P, which will
represent the last of the tie lines where the A-rich and B-rich phases become identical. It is known as
the plait point. With increase in temperature the mutual solubilities of A and B increase and as a
result the heterogeneous area shrinks. Above the critical solution temperature of the binary A-B they
dissolve completely and the heterogeneous area vanishes completely. Extraction is not possible under
this condition.
The ternary equilibrium diagram for type II systems is shown in Fig. 8.27. In this type of systems, two
pairs are partially soluble. Examples of type II systems are chlorobenzene (A)–water (B)–Methylethyl
ketone (C) , n-heptane (A)–aniline (B)–methylcyclohexane(C), etc. Here A and C are completely
miscible while A-B and B-C pairs show only limited solubility. Points D and F represent the mutual
solubility of A and B and points H and G those of B and C at the prevailing temperature. Curves DRH
and FEG are the ternary solubility curves. Mixtures such as at M inside the heterogeneous area form
two liquid phases in equilibrium at E and R. As temperature is increased the mutual solubilities
increase and above the critical solution temperature of the binary pair B-C, the system becomes
identical to type I system.



SUMMARY
The phase equilibrium thermodynamics is of fundamental importance in chemical engineering,
because, majority of chemical process industries employ transfer of mass between phases either
during the preparation of the raw materials or during the purification of the finished products. The
major thrust of the present chapter was the development of the relationship between the various
properties of the system such as pressure, temperature and composition when a state of equilibrium
was attained between the different phases constituting the system. For a system to be in mechanical
equilibrium, the pressure and temperature should be uniform throughout the system. Since, the
uniformity of temperature and pressure do not eliminate the possibility of transfer of mass between
the phases, to describe the state of thermodynamic equilibrium, additional criteria are developed
(Section 8.1). They are:

dSU, V ≥ 0, dAT, V � 0, dGT, P � 0

Since, most chemical reactions and physical changes are carried out at constant T and P, the last
criterion formed the basis for phase equilibrium calculations. This criterion of equilibrium also led to
the criterion of stability as given by Eq. (8.12). The criterion of stability requires that at constant
temperature and pressure the free energy change on mixing DG, its first and second derivatives are all
continuous functions of the concentration x, and the second derivative should be positive.
For single-component systems in thermodynamic equilibrium under a given temperature and pressure,
the molar free energy should be the same in each phase (Section 8.3). Its logical extension to
multicomponent multi-phase systems reveals that if a system consisting of several components
distributed between various phases is in thermodynamic equilibrium at a definite temperature and
pressure, the chemical potential of each component will be the same in all the phases. Since absolute
values of fugacities are known, it was found convenient to use fugacities in phase equilibrium
calculations, rather than the chemical potentials. Accordingly, the general criterion of phase



equilibrium was expressed as the equality of fugacities [Eq. 8.36]. The Gibbs Phase rule follows
from the criterion of equilibrium (Section 8.5). The phase rule allows us to determine the number of
independent variables that must be arbitrarily fixed so as to establish uniquely the intensive state of
the system. The Duhem’s theorem helps in establishing the extensive state of the system (Section 8.6).
Vapour–liquid equilibrium problems essentially involve the calculation of the composition of the
liquid and vapour phases such that the fugacities of the components are the same in both phases. To
evaluate quantitatively the equilibrium compositions, the fugacity need be expressed in terms of the
mole fractions in the mixture. The fundamental relationship for a general VLE problem was derived
[Eq. (8.45)] and the various possible simplifications were described (Sections 8.7–8.12). For
evaluating the liquid phase fugacity, the activity coefficients should be known as a function of the
composition. Several equations were used for estimating the activity coefficients as function of
composition of the liquid. The Wohl’s equations, the Margules equations and the van Laar equations,
the local composition models for activity coefficients such as the Wilson equations, the NRTL
equations and the UNIQUAC equations, and the UNIFAC group contribution model are some of the
widely used activity coefficient equations.
Thermodynamics provides tests for consistency of experimental VLE data (Section 8.13). Almost all
these tests are based on the Gibbs–Duhem equations, the Redlich–Kister method 
[Eq. (8.97)] being the most reliable among them. The discussion on the vapour–liquid equilibrium for
systems of limited miscibility (Section 8.15) and the liquid–liquid equilibrium (Section 8.16) would
be helpful for the analysis of many important separation processes in chemical engineering.

REVIEW QUESTIONS
1. How would you state the criterion of equilibrium in terms of the entropy, the work function and

the Gibbs free energy?
2. What do you know about the free energy change of mixing and its partial derivatives, for stable

liquid phases?
3. Show that for equilibrium between phases of a pure substance, the fugacities in both phases

should be equal.
4. How do you obtain the Clapeyron equation from the criterion of phase equilibrium? What

simplifications are used in the derivation of the Clausius–Clapeyron equation?
5. For a heterogeneous multicomponent system, what is the general criterion of phase equilibrium?
6. What do you understand by the number of degrees of freedom? How is it determined using the

phase rule for a non-reacting system?
7. State the Duhem’s theorem. What is its significance in establishing the state of the system?
8. What are the available degrees of freedom in the following non-reactive equilibrium systems?

(a) Two partially miscible liquid phases, each containing the same three liquid phases.
(b) A vapour phase containing ammonia in air and a liquid phase containing ammonia in water

at a specified temperature.
(c) A mixture of benzene and toluene undergoing a simple distillation operation.

9. Write down the equation for solving a general VLE problem. How does this equation get
simplified for (a) ideal gas phase, ideal liquid phase and (b) low-pressure equilibrium?



10. What is Poynting correction?
11. Distinguish between the bubble-point and dew-point temperatures.
12. What is meant by a ‘tie line’? How does the tie line help in determining the amount of liquid

and vapour in equilibrium?
13. Why does the boiling point diagram at a higher pressure lie above that at a lower pressure?
14. What are the salient features of an ideal liquid solution? How does the total pressure over an

ideal solution vary with composition?
15. How would you calculate the constant pressure y-x data of a binary mixture using an average

value of the relative volatility?
16. Component 1 in a binary non-ideal solution is found to obey the Raoult’s law over a certain

concentration range. What do you know about the behaviour of component 2 over the same
range?

17. What do you mean by positive and negative deviation from ideality? “A solution exhibiting
positive deviation from ideality is formed accompanied by an absorption of heat and a solution
exhibiting negative deviation from ideal behaviour is formed accompanied by an evolution of
heat”. Explain.

18. What are azeotropes? With proper phase diagrams, distinguish between minimum and maximum
boiling azeotropes. What is the effect of pressure on the azeotropic composition?

19. Discuss the suitability of different activity coefficient equations for VLE data correlation.
20. What is vaporisation equilibrium constant? How do you estimate the bubble-point temperature

and the bubble-point pressure of a multicomponent system?
21. A multicomponent liquid mixture of known composition is flash vaporised at a given pressure

and temperature. How would you estimate the fraction of the liquid vaporised?
22. How are the Gibbs–Duhem equations helpful in testing the consistency of the VLE data?
23. What is the zero area method for testing the consistency of VLE data?
24. What is coexistence equation? What are its major applications?
25. The activity coefficients of one of the components in a binary solution are known as function of

concentration. How would you evaluate the activity coefficients of the other component as a
function of composition?

26. What are the critical solution temperature and the three-phase temperature with reference to
partially miscible liquid systems?

27. Why does immiscibility occur in liquid solutions?
28. How would you estimate the composition of the vapour phase in equilibrium with two

immiscible liquid phases?

EXERCISES
8.1 Show that the following equations provide the criteria of equilibrium under certain constraints.

(a) dUS,V = 0 (b) dSH,P = 0 (c) dHS,P = 0
8.2 For each of the following non-reactive equilibrium systems, determine the number of available



degrees of freedom.
(a) Two miscible materials in vapour–liquid equilibrium with vapour composition specified at

a given temperature and pressure.
(b) A mixture of methane and air in contact with a solid adsorbent at atmospheric pressure and

a specified temperature.
(c) Liquid water in equilibrium with a mixture of water vapour and nitrogen.
(d) Two partially miscible liquid phases and a vapour phase in equilibrium with them at a

constant pressure.
(e) A liquid mixture of benzene and toluene in equilibrium with its vapour at 1 bar.
(f) A vapour phase consisting of ammonia and air and a liquid phase consisting of ammonia and

water at a given temperature.
(g) A liquid mixture of components A and C in equilibrium with a liquid solvent B in which

only C is soluble at a given temperature and pressure.
8.3 Determine the mole fraction of methane, xi, dissolved in a light oil at 200 K and 20 bar.

Henry’s law is valid for the liquid phase, and the gas phase may be assumed to be an ideal
solution. At these conditions, Henry’s law constant for methane in oil = 200 bar, fugacity
coefficient of pure methane gas = 0.90 and mole fraction of methane in the gas phase, y1 = 0.95.

8.4 The vapour pressures of benzene and toluene are given below.

Calculate the equilibrium data for the system at 101.3 kPa and formulate an equation for the
equilibrium diagram in terms of average relative volatility.

8.5 At 303 K, the vapour pressures of benzene (A) and toluene (B) are 15.75 kPa and 4.89 kPa
respectively. Determine the partial pressures and weight composition of the vapour in
equilibrium with a liquid mixture consisting of equal weights of the two components.

8.6 An equimolar mixture of benzene and toluene is contained in a piston/cylinder arrangement at a
temperature T. What is the maximum pressure below which the mixture exists as a vapour phase
alone? At the given T, the vapour pressures of benzene and toluene are 203.9 kPa and 85.3 kPa,
respectively. Assume that Raoult’s law is valid.

8.7 Two substances A and B are known to form ideal liquid solutions. A vapour mixture containing
50% (mol) A and 50% (mol) B is at 311 K and 101.3 kPa. This mixture is compressed
isothermally until condensation occurs. At what pressure does condensation occur and what is
the composition of the liquid that forms? The vapour pressures of A and B are 142 kPa and 122
kPa respectively.

8.8 Air is cooled to 80 K at 101.3 kPa. Calculate the composition of the liquid and vapour phases
at this condition assuming that the mixture behaves ideally. The vapour pressure of nitrogen and
oxygen at 80 K are 135.74 kPa and 30.04 kPa respectively.

8.9 The binary system, acetone (1)–acetonitrile (2) conforms closely to Raoult’s law. Using the



vapour pressure data given below plot the following
(a) P-x1 and P-y1 curves at 323 K
(b) T-x1 and T-y1 curves at 53.32 kPa

8.10 Assuming Raoult’s law to be valid for the system benzene (1)–ethyl benzene (2) and the
vapour pressures are given by the Antoine equations

where P is in kPa and T is in K. Construct the following:
(a) The P-x-y diagram at 373 K
(b) The T-x-y diagram at 101.3 kPa.

8.11 A liquid mixture containing 65% (mol) benzene and 35% (mol) toluene is subjected to flash
vaporisation at 363 K and 101.3 kPa. The vapour pressure of benzene at this temperature is
136.09 kPa and the vapour pressure of toluene is 54.21 kPa. Flash vaporisation is essentially an
equilibrium stage operation. Calculate
(a) The exit vapour composition
(b) The exit liquid composition
(c) The mole per cent of the feed that is vaporised.

8.12 For the system n-pentane (1)–n-heptane (2), the vapour pressures are given by the Antoine
equation

Assuming that the solution formed is ideal, calculate:
(a) The composition of the liquid and vapour in equilibrium at 95 kPa and 336.2 K.
(b) The composition of the vapour in equilibrium with a liquid containing 34% (mol) pentane

and the equilibrium temperature at P = 95 kPa.



(c) The total pressure and the vapour composition in equilibrium with a liquid of composition
x1 = 0.44 at T = 333.2 K.

8.13 Using Gibbs–Duhem equations prove that if one constituent of a mixture exhibits positive
deviation from ideal behaviour the other constituent also shows positive deviation.

8.14 Prove that a solution exhibiting negative deviation from ideal behaviour is formed with an
evolution of heat.

8.15 Using van Laar method calculate the vapour–liquid equilibrium compositions for acetone (1)–
chloroform (2) system at a pressure of 101.3 kPa. At this pressure, the system forms an
azeotrope of composition 66.6% (mol) chloroform which boils at 337.7 K. The vapour
pressures of the pure components are given below.

The normal boiling points of acetone and chloroform are respectively 329.5 K and 334.1 K.
(Hint: The ratio of vapour pressures remains almost constant. Use the method employed in
Example 8.13 for calculating y for arbitrarily chosen x values.)

8.16 Show that the van Laar equation and Margules equation are consistent with the Gibbs–Duhem
equations.

8.17 The toluene–acetic acid mixture forms an azeotrope containing 62.7% (mol) toluene and
having a minimum boiling point of 378.6 K at 101.3 kPa. The vapour pressure data are:

The normal boiling point of toluene and acetic acid are respectively 383.9 K and 391.7 K.
(a) Calculate the van Laar constants A and B
(b) Plot ln g1 and ln g2 as ordinate against mole fraction of toluene.

8.18 Under atmospheric pressure, the acetone–chloroform azeotrope boils at 337.8 K and contains
33.5% (mol) acetone. The vapour pressures of acetone and chloroform at 337.8 K are
respectively 132.62 kPa and 113.96 kPa.

(a) Calculate the composition of the vapour in equilibrium with a liquid analysing 11.1%
(mol) acetone. How does it compare with the experimental value of 6.5% acetone in the
vapour?
(b) What is the total pressure at this condition?

8.19 Ethyl alcohol and hexane form an azeotrope at 33.2% (mol) ethanol. It boils at 331.9 K at
101.3 kPa. At 331.9 K, the vapour pressures are 44.25 kPa for ethanol and 72.24 kPa for
hexane. Determine:
(a) The van Laar constants
(b) The vapour composition for a solution containing 50% (mol) hexane boiling at 331.9 K



(c) The total pressure for the conditions in part (b).
8.20 At atmospheric pressure, ethyl acetate and ethyl alcohol form an azeotrope containing 53.9%

(mol) acetate boiling at 345 K. Determine:
(a) The van Laar constants
(b) The azeotropic composition and the total pressure if the mixture forms an azeotrope boiling

at 329.5 K
(c) The composition of the vapour in equilibrium with a liquid of composition 60% (mol)

alcohol and boiling at 329.5 K

8.21 An organic liquid solution containing A (molecular weight 46) and B (molecular weight 78)
form an azeotrope containing 52% by weight A at 333 K and 101.3 kPa. Vapour pressures of A
and B are 69.31 kPa and 68 kPa respectively. Determine the van Laar constants.

8.22 For the acetone (1)–diethylamine (2) system the activity coefficients values as function of
concentration are given below:

Using the above data estimate the van Laar constants for the system.
(Hint: A = ln g1 as x1 � 0 and B = ln g2 as x2 � 0)

8.23 Find the van Laar constants for the binary system benzene (1)–ethanol (2) using the following
data

8.24 The T-x-y data for the system metaxylene (1)–propionic acid (2) at 101.3 kPa is given below:

Does the system form an azeotrope? Give reasons.
8.25 For the conditions in Example 8.19, calculate (a) the equilibrium temperature and vapour

composition for x1 = 0.32 and P = 101.3 kPa and (b) the equilibrium temperature and liquid
composition for y1 = 0.57 and P = 101.3 kPa .



8.26 For isobutanol–water system, it is found from VLE measurements that the composition 
of the vapour and liquid in equilibrium at 101.3 kPa and 364.7 K are 28.6% (mol) and 1.4%
(mol) i-butanol respectively. Vapour pressure of i-butanol at this temperature is 
53.32 kPa. The activity coefficient of water may be taken as 1.0012. Compute the van Laar
constants.

8.27 Ethanol–water mixture forms an azeotrope boiling at 351.4 K under a pressure of 
101.3 kPa and its composition is 89.4% (mol) ethanol. The vapour pressures of ethanol and
water at 351.4 K are 100 kPa and 44 kPa respectively. Using van Laar method and assuming that
the ratio of vapour pressures remains constant calculate the composition of the vapour in
equilibrium with a liquid containing 80% ethanol.

8.28 Two liquids P and Q form an azeotrope containing 58% (mol) P at 101.3 kPa pressure. At the
azeotropic temperature the vapour pressures of P and Q are 200 kPa, 125.3 kPa respectively.
Construct the equilibrium (y–x) diagram. List all the assumptions made.

8.29 For the binary system n-pentanol (1)–n-hexane (2), determine the activity coefficients at 313
K in an equimolal mixture. The Wilson parameters are given as follows:
a12 = 7194.18 J/mol,……a21 = 697.52 J/mol

V1 = 109.2 � 10–6 m3/mol,……V2 = 132.5 � 10–6 m3/mol
8.30 The Wilson parameters for acetone (1)–methanol (2) are obtained from the following values:
a12 = – 712.51 J/mol,……a21 = 2487.71 J/mol

V1 = 74.05 � 10–6 m3/mol,……V2 = 40.73 � 10–6 m3/mol
The vapour pressures are given by the Antoine equations:

Calculate the total pressure and vapour composition in equilibrium with a liquid containing 31%
(mol) acetone at 333 K.

8.31 For the 2-propanol (1)–water (2) system, the following Wilson parameters are reported.
a12 = 1833.74 J/mol,……a21 = 5183.26 J/mol

V1 = 76.92 � 10–6 m3/mol,……V2 = 18.07 � 10–6m3/mol
The vapour pressures can be calculated by the Antoine equations, which are given below:

where T is in K and the vapour pressures are in kPa. Calculate:
(a) Equilibrium pressure and vapour composition at T = 353.15 K and x1 = 0.25



(b) Equilibrium pressure and liquid composition for T = 353.15 K and y1 = 0.60
(c) Equilibrium temperature and vapour composition for P = 101.3 kPa and x1 = 0.85
(d) Equilibrium temperature and liquid composition for P = 101.3 kPa and y1 = 0.40.

8.32 A solution of hydrocarbons contains n-propane 5.0%, n-butane 30.0%, n-pentane 40.0% and
n-hexane 25.0%. Compute the bubble point and the dew point at 350 kPa. The K-values can be
taken from the DePriester nomographs.

8.33 A solution has the following composition in mol per cent: ethane 0.25%, propane 25.00%,
isobutane 18.5%, n-butane 56.0% and isopentane 0.25%. For a pressure of 10 bars, calculate
(a) The bubble point
(b) The dew point
(c) The composition of the liquid and vapour when 40% of the mixture is vaporised.

8.34 A stream of gas in a natural gasoline plant has the following composition by volume: ethane
10%, propane 14%, isobutane 19%, n-butane 54% and isopentane 3%.
(a) Calculate the pressure necessary to condense this gas completely at 311 K.
(b) For a condenser operating at the pressure in part (a), calculate the temperature at which

condensation starts and the temperature at which 50% (mol) of the vapour gets condensed.
Also, calculate the composition of the first liquid to condense and the composition of the
liquid and vapour phases at 50% condensation.

8.35 Determine the composition of the vapour in equilibrium with the liquid and the pressure of the
system at 313 K for a liquid mixture of 5% (mol) methane, 10% (mol) ethane, 30% (mol)
propane, 25% (mol) isobutane, and 30% (mol) n-butane. Determine the pressure and
composition of the liquid in equilibrium with a vapour mixture of the above composition.

8.36 Calculate the pressure at which condensation starts and the pressure at which condensation is
complete when a vapour mixture of the following composition is subjected to condensation at a
temperature of 300 K: 20% (mol) ethylene, 20% (mol) ethane, 40% (mol) propane and 20%
(mol) n-butane.

8.37 A vapour mixture containing 15% ethane, 20% propane, 60% isobutane and the rest 
n-butane is subjected to partial condensation so that 75% of the vapour is condensed. If the
condenser temperature is 300 K determine the pressure.

8.38 An equimolal mixture of propane (1) and n-butane (2) is partially condensed so that 50%
(mol) of the mixture is in the liquid state at 311 K. Using the DePriester nomograph determine
the following:
(a) The pressure
(b) The vapour and liquid compositions
(c) The pressure at which condensation begins at the constant temperature of 311K.

8.39 Verify whether the following data are consistent.

8.40 Calculate the constants A and B in the van Laar equation from the following data. Check



whether the data are consistent.

8.41 The following data were reported for vapour–liquid equilibrium for ethanol–water system at
298 K. Test whether the data are thermodynamically consistent.

8.42 The following vapour-liquid equilibrium data were obtained for water (1)–nitric acid (2)
system at 293 K.

Test the above data for thermodynamic consistency.
8.43 From the data activity coefficient versus mole fraction for the system acetone (1)–

dichloroethylene (2) given below check their thermodynamic consistency.

8.44 The partial pressure of ether at 303 K for the ether (1)–acetone (2) system is given as follows:

The vapour pressure of pure acetone at 303 K is 37.72 kPa.
(a) Calculate the activity coefficient of ether and plot the logarithm of the activity coefficient as



function of concentration.
(b) Predict the partial pressure of acetone in the corresponding solution for which the activity

coefficients of ether have been determined.
8.45 Vapour–liquid equilibrium data for the system methanol (1)–benzene (2) at 313 K are given

below:

Use the area test to determine the thermodynamic consistency of the data.
8.46 The activity coefficient of thallium in amalgams at 293 K are given below:

Determine the activity coefficient of mercury as function of composition.
8.47 The following data refers to the system water (1)–n-propyl alcohol (2) at 298 K.

What is the activity coefficient of water in a 10% (mol) n-propyl alcohol solution?
8.48 At 323 K, the vapour pressures of pure ether and pure ethyl alcohol are 170.13 and 29.47 kPa

respectively. The total pressures versus liquid composition data are given below:

Using Gibbs–Duhem equation compute from these data the partial pressures of ether and alcohol
over liquid solutions of various compositions at 323 K.

8.49 The data given below refer to the boiling points of ethanol (1)–benzene (2) system at 
100 kPa and the vapour pressures of pure ethanol and benzene at these temperatures.



Calculate the van Laar constants from these data assuming g to be independent of temperature.
Also, find g1 and g2 from the van Laar equations.

8.50 The total pressure versus solution concentration data for the system dioxane (1)–water (2) at
353 K is given below:

The vapour pressures of pure water and dioxane at this temperature are 47.33 and 51.05 kPa.
Calculate:
(a) The van Laar constants
(b) The constants in the Margules equation
(c) The vapour composition in equilibrium with a liquid containing 60% water by weight and

the total pressure over this solution using van Laar method.
8.51 Benzene (1)–cyclohexane (2) form an azeotrope at 0.525 mole fraction benzene at a

temperature of 350.8 K and 101.3 kPa. At this temperature, the vapour pressure of benzene is
99.3 kPa and that of cyclohexane is 98 kPa. Using the van Laar model estimate the activity
coefficients at x1 = 0.2 and 0.9. Using this activity coefficient information calculate the
equilibrium pressure and the vapour compositions at 350.8 K for the two liquid compositions.

8.52 The azeotrope of the n-propanol–water system has a composition 56.83% (mol) water with a
boiling point of 360.9 K at a pressure of 101.3 kPa. At this temperature, the vapour pressures of
water and propanol are respectively 64.25 kPa and 69.71 kPa. Evaluate the activity coefficients
for a solution containing 20% water through the van Laar equations.

8.53 The pressure exerted over the binary system ethanol–methylcyclohexane containing 40.5%
(mol) ethanol at 308 K is 20.31 kPa. The vapour phase contained 54.7% (mol) ethanol. The
vapour pressures at 308 K are 13.74 kPa for ethanol and 9.81 kPa for methylcyclohexane. What
are the total pressure and composition of the vapour in equilibrium with a liquid containing 60%
(mol) ethanol at 308 K?

8.54 A binary liquid mixture of components A and B containing 80% (mol) A is in equilibrium with
a vapour containing 84.3% (mol) A at 101.3 kPa and 339 K. Estimate the pressure and
composition of the vapour in equilibrium with a liquid containing 50% A at 339 K. The vapour
pressures of A and B at this temperature are 106.6 kPa and 79.97 kPa respectively.

8.55 At 333 K, compounds A and B each has vapour pressures of 106.63 kPa. The mixture of A and
B forms an azeotrope at 333 K and 133.29 kPa and has a composition of 50% A.
(a) Calculate the equilibrium pressure and vapour composition over a liquid solution

containing 25% A.
(b) If A and B have equal latent heats of vaporisation, how do you expect the azeotropic



composition to respond to an increase in temperature?
8.56 At 353 K, compounds A and B each has vapour pressures of 93.30 kPa. At this temperature

mixtures of A and B form azeotrope containing 50% (mol) A and exerts a pressure of 127.96 kPa.
Calculate the equilibrium pressure and vapour composition at 353 K over a liquid solution
containing 25% (mol) A.

8.57 For the binary mixture of A and B the activity coefficients are given by

The vapour pressures of A and B at 353 K are 119.96 kPa and 79.97 kPa respectively. Does an
azeotrope exist at 353 K? If so, what is the azeotropic pressure and composition for A = 0.6?

8.58 It is proposed to purify benzene from small amounts of non-volatile impurities by subjecting it
to distillation with saturated steam at 99.3 kPa. Calculate the temperature at which distillation
will proceed and the weight of steam accompanying 1 kg benzene. The vapour pressure data is
given in Example 8.28.

8.59 At 383 K, saturated solution of aniline in water contains 7.95% aniline by weight and a
saturated solution of water in aniline contains 88.05% aniline by weight. The vapour pressures
of pure aniline and of water at 383 K are 9.22 kPa and 143.10 kPa respectively. Construct the P-
x-y diagram for the mixture at 383 K.

8.60 Construct T-x-y diagram for the ether (1)–water (2) system at 101.3 kPa from the following
data.

Assume that Raoult’s law is valid for ether in ether phase and for water in the water phase.
8.61 Dimethylaniline is distilled with steam at 90 kPa to free it from non-volatile impurities.

Assuming it to be completely immiscible with water determine
(a) The distillation temperature
(b) The composition of the vapour produced.
The vapour pressure data are following:



Plot of ln PS versus 1/T may be assumed linear.
8.62 A stream contains 30% (mol) toluene, 40% (mol) ethyl benzene and 30% (mol) water.

Assuming that mixtures of ethylbenzene and toluene obey Raoult’s law and they are completely
immiscible in water, calculate the following for a total pressure of 101.3 kPa:
(a) The bubble-point temperature and the composition of the vapour
(b) The dew-point temperature and the composition of the liquid.
The vapour pressure data are given below:

8.63 n-Heptane (1) and water (2) are essentially immiscible as liquids. A vapour mixture
containing 65% (mol) water at 373 K and 101.3 kPa is cooled slowly at constant pressure until
condensation is complete. Construct a plot for the process showing temperature versus
equilibrium mole fraction of heptane in the residual vapour. For n-heptane,

where P is in kPa and T in K.
8.64 Toluene (1) and water (2) are essentially immiscible in the liquid state. Determine the dew-

point temperature and the composition of the first drops of liquid formed when the vapour
mixtures of these species containing
(a) 23% (mol) toluene
(b) 77% (mol) toluene at 101.3 kPa.
What are the bubble-point temperature and the composition of the last drop of vapour in each
case? The vapour pressure of toluene is



8.65 Components 1 and 2 are insoluble in the liquid phase. Estimate the dew-point temperature and
the compositions of the first drop of liquid formed when vapour mixtures of components 1 and 2
containing (a) 75% (mol) component 1; (b) 25% (mol) component 1 are cooled at constant
pressure of 101.33 kPa. The vapour pressures of the pure components in kPa are given against
temperature in Kelvin in the following table.

8.66 An experimental determination of vapour–liquid equilibrium state of ether (1) and acetone (2)
gave the following results:

x1 = 0.3, y1 = 0.42, T = 313 K and P = 105 Pa

The saturation vapour pressures of the pure components at 313 K are: ether = 1.21 � 105 Pa
and acetone = 0.56 � 105 Pa. The vapour phase can be assumed ideal.
(a) Calculate the liquid-phase activity coefficients.
(b) What is the value of excess Gibbs free energy GE/RT for the liquid phase?
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Chemical Reaction Equilibria
The chemical process industries are concerned with the transformation of raw materials into useful
products. Such transformation in most cases is achieved by means of chemical reactions. The design
and operation of reaction equipment are therefore quite an important field in the chemical engineering
profession. To be successful in this profession, the chemical engineer should be versatile with the
thermodynamics and kinetics of chemical reactions. Thermodynamics predicts the equilibrium
conversion that would be achieved in a chemical reaction and also the effect of operating conditions
on it, whereas the kinetics deals with the rate or speed with which the desired conversion is attained
in practice. Thermodynamic analysis can also give information about the feasibility of chemical
reactions.
The progress and extent of a chemical reaction are affected by changes in the reaction conditions like
temperature, pressure, composition of the reactants, etc. For example, in the synthesis of methanol
from carbon monoxide and hydrogen, the equilibrium conversion as well as the rate of reaction are
affected by changing the pressure, temperature or the relative amounts of carbon monoxide and
hydrogen in the reactant stream. The influence of these controllable variables on the thermodynamics
of reaction, or to be specific, on the equilibrium conversion, in some situation may be in conflict with
the influence of these variables on the kinetics of the reaction. This can be illustrated by considering
the effect of temperature on the oxidation of sulphur dioxide to sulphur trioxide. The rate of this
reaction increases with temperature and from the point of view of rate alone it is better to operate the
reactor at as high a temperature as permissible. However, the equilibrium conversion to sulphur
trioxide falls off sharply with increase in temperature. The conversion is above 90% at temperatures
near 800 K, but it is only 50% at 950 K. It is clear that both the kinetics (the rate) and
thermodynamics (the equilibrium) of the reaction must be considered in the choice of reaction
conditions in the commercial process for any chemical reaction. The purpose of the present chapter is
to identify the role of thermodynamics in the design and operation of chemical reaction systems.
Equilibrium conversion of a reaction sets a limit and provides a goal by which we measure
improvement in the process. It is impossible at a given set of conditions to attain a conversion that is
better than the equilibrium value calculated from thermodynamic principles. Even if this conversion
is not attainable in practice within a reasonable time, its knowledge is valuable because it represents
the best that can be expected from the reaction. It tells us whether or not an experimental investigation
of a proposed new process is worthwhile. There is no point in trying improvement in the process by
improving the rate by introducing suitable catalysts, if thermodynamics predicts an equilibrium yield,
of say, only 20% whereas a 50% yield is necessary for the process to be economically viable. The
choice of an appropriate catalyst may give a better reaction rate, but it will not alter the equilibrium
yield of the product. The emphasis in this chapter is on determining the conversion at equilibrium and
on predicting the effect of controllable variables like temperature and pressure on the conversion.

9.1 REACTION STOICHIOMETRY



The generalised representation of a chemical reaction is given by

where A is the chemical symbol for the various species taking part in the reaction and n is the
stoichiometric number. Consider the reaction

2A + 3B � L + 2M
This is a special case of the general form of Eq. (9.1), with nL = 1, nM = 2, nA = – 2, and nB = – 3.
In the general form, this reaction may be represented as

0 = L + 2M – 2A – 3B
The stoichiometric numbers are positive for products, negative for reactants and zero for inert
species. The changes in the number of moles of various species taking part in the reaction are in
direct proportion to their stoichiometric numbers. Let Dni denote the change in the number 
of moles of component i due to the reaction. For one mole of A disappearing in the reaction 
DnA = –1, DnB = –1.5, DnL = 0.5 and DnM = 1. We see that

For the thermodynamic analysis of chemical reactions the concept of ‘extent of reaction,’ also called
‘reaction coordinate’ is useful. It is denoted by e. The reaction coordinate measures the progress of a
reaction and is defined as the degree to which a reaction has advanced. It has the advantage that the
change in the extent of reaction de is the same for each component, whereas the changes in the number
of moles are different for different species taking part in the reaction. The extent of reaction and the
number of moles taking part in the reaction are related as

For the initial state of the system, that is, before the reaction, the value of e is zero.

EXAMPLE 9.1 Derive the relationship between the mole fraction of the components taking part in the
reaction and the extent of the reaction.
Solution Let ni0 be the number of moles of the species initially present in the system and 
ni the number of moles present after the reaction. Then ni = ni0 + Dni where Dni is the change in the
number of moles of i due to the reaction. Integration of Eq. (9.2) yields



EXAMPLE 9.2 A gas mixture containing 2 moles nitrogen, 7 moles hydrogen and 1 mole ammonia
initially, is undergoing the following reaction:

N2 + 3H2 � 2NH3
(a) Derive expressions for the mole fractions of various components in the reaction mixture in

terms of the extent of reaction.
(b) Explain how the conversion of limiting reactant is related to the extent of reaction.

Solution (a) Equations (9.3) and (9.4) relate the mole fraction of various constituents in the system to
the extent of reaction.

(b) The limiting reactant here is nitrogen. Let the fractional conversion of nitrogen be z. Then

Moles of nitrogen in the reaction mixture is = 

Moles of nitrogen in the mixture in terms of the extent of reaction is = 
Comparing the two results, we see that



EXAMPLE 9.3 Derive the relationship between mole fraction of species in multiple reactions and
the extent of reactions.
Solution When two or more reactions occur simultaneously, the number of moles of each component
changes because of several reactions. Equation (9.2) can be modified as

Let , the sum of the stoichiometric numbers in the jth reaction. Then the above equation can
be written as



EXAMPLE 9.4 A gas mixture containing 3 mol CO2, 5 mol H2 and 1 mol water is undergoing the
following reactions:

CO2 + 3H2 � CH3OH + H2O

CO2 + H2 � CO + H2O

Develop expressions for the mole fraction of the species in terms of the extent of reaction.
Solution The total moles initially present,

n0 = 3 + 5 + 1 = 9

For the first reaction,
n1 = – 1 – 3 + 1 + 1 = – 2

For the second reaction,
n2 = – 1 – 1 + 1 + 1 = 0

The mole fractions are calculated using Eq. (9.9)

9.2 CRITERIA OF CHEMICAL REACTION EQUILIBRIUM
We have developed the criteria of phase equilibrium in Chapter 8. At constant temperature and
pressure, the transfer of materials from one phase to another under equilibrium is found to occur with
no change in the free energy. Stated mathematically,

………(9.10)

Here  is the total Gibbs free energy of the system at constant temperature and pressure. This
criterion is quite general and is not restricted to physical transformations. When a chemical reaction
occurs at equilibrium there is no change in the Gibbs free energy of the system, provided the change is
taking place at constant temperature and pressure.
Consider a closed system in which a chemical reaction represented by the following general equation
has been allowed to reach a state of equilibrium at a given temperature and pressure.

aA + bB � lL + mM………(9.11)
An infinitesimal change is allowed to occur in the system whereby the number of moles of various
species change. The increments in the number of moles are dnA, dnB, dnL and dnM for components



A, B, L and M respectively. The free energy change for the process occurring at constant temperature
and pressure is given by [see Eq. (7.36)]

where mi is the chemical potential of component i. For the reaction under consideration, Eq. (9.12)
takes the form

where – a, – b, l and m are the stoichiometric numbers which are positive for products and negative
for the reactants and e is the extent of reaction. In general, for an infinitesimal change in a reacting
system, we can write Eq. (9.13) as

The left-hand side of Eq. (9.16) is the free energy change DG accompanying the complete reaction
under equilibrium conditions. Hence, DG = 0 under equilibrium.
The physical significance of the criterion of chemical equilibrium can now be examined. Consider a
simple chemical reaction equilibrium: A D B. Let the extent of the reaction be e. The change in the
number of moles of A = – de and the change in the number of moles of B = de. The change in free
energy at constant temperature and pressure is found out by Eq. (9.14)

dGt = (mB – mA) de………(9.17)

This equation can be written in the following form.

Equation (9.18) gives the slope of the curve obtained when the Gibbs free energy is plotted against



extent of reaction as in Fig. 9.1.

The slopes given by Eq. (9.18) are not constant because the chemical potentials are functions of
composition, which varies as the extent of reaction changes. Since the reaction proceeds in the
direction of decreasing Gibbs free energy G, the forward reaction (A � B) takes place if mA > mB
and the backward reaction (A � B) proceeds if mA < mB. When mA = mB, the slope of the curve
is zero. This occurs at the minimum of the curve and corresponds to the position of chemical
equilibrium. The composition of the reaction mixture at the point where the Gibbs free energy is the
minimum is the equilibrium composition at the specified temperature and pressure. Thus the criterion
of equilibrium, Eq. (9.10), means that differential displacement of chemical reaction can occur at the
equilibrium state, but without changing the total Gibbs free energy. If the system is not in chemical
equilibrium, the reaction occurring must be irreversible and the total Gibbs free energy must decrease
at constant temperature and pressure.

9.3 EQUILIBRIUM CONSTANT
Consider the chemical reaction given by Eq. (9.11)

aA + bB � lL + mM
The equilibrium constant K or Ka for this reaction is defined in terms of the activities of the reactants
and the products as

where ai is the activity of component i in the reaction mixture and ni is the stoichiometric number of
i. Activities of the species appearing in Eq. (9.19) are raised to the respective stoichiometric
numbers. Since the activity is defined as the ratio of the fugacity of the component in the solution to



the fugacity in the standard state,

Equation (9.19) can also be written as

Denoting  by Kf, we can write Eq. (9.23) as
K = Kf = KfKp………(9.24)

This relationship is applicable for gaseous systems. If the gas mixture behaves as an ideal gas, then
Kf = 1 and Eq. (9.24) leads to

K = Kf = Kp………(9.25)

The numerical value of the equilibrium constant depends upon the form of the stoichiometric equation.
Consider the decomposition of water vapour into hydrogen and oxygen as represented by the
following equation:

2H2O � 2H2 + O2
The equilibrium constant K� for this reaction is calculated as



Thus, it is seen that K≤ = (K�)1/2. The form of the stoichiometric equation should be specified
along with the numerical values of the equilibrium constant.

9.4 EQUILIBRIUM CONSTANT AND STANDARD FREE ENERGY CHANGE
The criterion of equilibrium, Eq. (9.15), can be written for the general chemical reaction represented
by Eq. (9.11) as

(lmL + mmM) – (amA + bmB) = 0………(9.16)

The chemical potential of a component in the equilibrium state of the reaction mixture is related to its
fugacity in that state as given below

Equation (9.29) can be put into the following form:



The left-hand side gives the standard free energy change DG0, the free energy change accompanying
the reaction when each of the reactants and the products is in its standard state. Using the definition of
the equilibrium constant [Eq. (9.19)], the above equation is written as

Thus the equilibrium constant is determined by the standard free energy change and the temperature.
The standard free energy change depends on the temperature, the specification of standard state for
each component and the number of moles involved in the stoichiometric equation under consideration.
The numerical values of the equilibrium constant will be of no significance unless accompanied by
the specifications for these three factors. However, it is independent of pressure at equilibrium. The
effect of the reaction stoichiometry on the equilibrium constant has already been discussed. The
choice of standard state is being dealt with in the following section.

9.4.1 Choice of Standard State
Though the choice of standard state in Eq. (9.31) is arbitrary and is left to our convenience, certain
conventions are followed in this choice. The choice of pure component standard state will be
convenient in many situations, as this requires only the specification of temperature and pressure for
defining the state completely. The temperature in the standard state is the same as that of the reaction.
If the standard state chosen for a substance is a solution, the composition must also be specified.
For gases, as has been pointed out earlier, the standard state chosen is the pure component at the
temperature of the reaction and at unit fugacity. Fugacity will be unity at 1 bar (or 1 atm) if the gas
behaves as an ideal gas at this condition. For ideal gases, therefore, the standard state pressure
approaches 1 bar and DG0 can be easily evaluated at this pressure. By this choice, K = Kf and Eq.
(9.31) becomes

DG0 = – RT ln Kf………(9.32)

The standard state of unit fugacity may not be convenient for reactions involving solids, liquids or
solutions. By convention, the standard state chosen for solids and liquids is the pure solid or liquid as
the case may be, at a pressure of 1 bar (or 1 atm), the temperature being the same as the temperature
of the reaction.

9.4.2 Feasibility of a Reaction
From the values of standard free energy change, we can formulate an approximate criterion for the
feasibility of a chemical reaction, which will be useful in preliminary exploratory work. It would be



worthwhile to have some idea about whether or not the equilibrium is favourable, before we search
for catalysts and other conditions necessary to cause the reaction. If the reaction is not
thermodynamically feasible, there is no point in pursuing a long and expensive experimental
investigation on improving the rate of reaction.
Any reaction starting with pure reactants uncontaminated with any of the products will have a
tendency to proceed to some extent, though this may be infinitesimally small. It is the value of the
equilibrium constant, which, in turn, is related to the standard free energy of the reaction that gives the
necessary information on the thermodynamic possibility of the reaction. Even the decomposition of
water vapour to hydrogen and oxygen will proceed to some extent under atmospheric temperature and
pressure. From the value of the standard free energy change, DG0, the equilibrium constant for the
reaction

at 298 K is found to be about 1 � 10–40. This means that the extent of decomposition of water
vapour is infinitesimally small at equilibrium and the reaction is not thermodynamically feasible.
I f DG0 for a reaction is zero, then K = 1, the reaction proceeds to a considerable extent before
equilibrium is reached. If DG0 is negative, then K > 1, the reaction is quite favourable. But the
situation becomes less favourable as DG0 increases in the positive direction. It should be borne in
mind that many reactions with positive values of DG0 are certainly feasible from the standpoint of
industrial operation. For example, the methanol synthesis reaction with DG0 = 46,200 kJ/kmol at 600
K is found to be feasible. This reaction is carried out at high pressure to overcome the unfavourable
free energy change. In short, there is no well-defined demarcation to separate favourable and
unfavourable reactions. The following guide may be useful as an approximate criterion for
ascertaining the feasibility of chemical reactions:

DG0 < 0, the reaction is promising.

0 < DG0 < 40,000 kJ/kmol, the reaction may or may not be possible and needs further study.

DG0 > 40,000 kJ/kmol, the reaction is very unfavourable.
EXAMPLE 9.5 Device a series of hypothetical steps for carrying out the gas-phase reaction

aA + bB � lL + mM
when the reactants and the products are at their standard state. Show that the free energy changes
calculated for these series of steps add up to give the same result as the one provided by Eq. (9.31).
Solution The free energy change accompanying the process in which the reactants at their standard
state are converted to products also at their standard state may be calculated via any convenient path.
Let us assume the following computational path for carrying out the reaction, which is represented in
Fig. 9.2.



Step 1: The reactants are initially in their pure form and are at their standard state of unit fugacity and
at the temperature of the reaction. Then they are compressed to a fugacity of the reaction mixture at
equilibrium. The free energy change for this process is DG1.

Step 2: The pure reactants are introduced to the reaction system through membranes permeable only
to single species. Since the fugacities of the components before and after this step are the same, the
free energy change DG2 for this process is zero. DG2 = 0.
Step 3: The introduction of the reactants disturbs the state of equilibrium prevailing in the reaction
system. To bring the system back to the equilibrium condition the forward reaction occurs at the given
temperature and pressure. According to the criterion of equilibrium, this reaction proceeds without
any change in the free energy of the system. Therefore, DG3 = 0.
Step 4: The product gases are separated by means of membranes into pure components at the reaction
temperature and pressure. As in step 2, the free energy change in this process is zero. That is, DG4 =
0.

Step 5: The pure components with fugacities equal to  are expanded to standard state fugacities 
. The free energy change for this step,



which is same as Eq. (9.31).

9.5 EFFECT OF TEMPERATURE ON EQUILIBRIUM CONSTANT
The effect of the operating variables on equilibrium can be qualitatively explained by means of the Le
Chatelier’s principle, which states that a system at equilibrium when subjected to a disturbance,
responds in a way that tends to minimise the effect of that disturbance. An increase in temperature
will shift the equilibrium state in the direction of absorption of heat. That is, the equilibrium will shift
in the endothermic direction if the temperature is raised, for then, energy is absorbed as heat. In a
similar way, the equilibrium can be expected to shift in the exothermic direction if the temperature is
lowered, for then the reduction in temperature is opposed. Thus, an endothermic reaction is favoured
by an increase in temperature and an exothermic reaction is favoured by a decrease in temperature.
Or stated in another way, increased temperature favours the reactants in exothermic reactions and the
products in endothermic reactions.
The effect of temperature on equilibrium constant is quantitatively expressed by van’t Hoff equation,
which is developed below. The relationship of equilibrium constant to the standard free energy of
reaction is given by Eq. (9.31). The standard state is identified by specifying a definite pressure (or
fugacity), but the temperature is always the same as that of the reaction mixture at equilibrium. DG0
and hence K will vary with this temperature.
For a single species the effect of temperature on its free energy is predicted by Gibbs–Helmholtz
equation [Eq. (6.73)].



Note that the partial derivative notation is dropped from the above equation, as the standard free
energy, by virtue of the definition of the standard state, depends on the equilibrium temperature, but
not on the equilibrium pressure. Multiplying the above equation by �i and summing over all species
present in the system, we get

Substitute Eq. (9.31) into Eq. (9.35), we get

Equation (9.36), known as van’t Hoff equation, predicts the effect of temperature on the equilibrium
constant and hence on the equilibrium yield. DH0 in Eq. (9.36) is the standard heat of reaction. It is
apparent that if DH0 is negative, i.e. if the reaction is exothermic, the equilibrium constant decreases
as the reaction temperature increases. Alternatively, for an endothermic reaction, the equilibrium
constant will increase with increase in temperature.
If DH0, the standard heat of reaction, is constant, Eq. (9.36) on integration yields

K and K1 are the equilibrium constant values at temperatures T and T1 respectively. Equation (9.37)
may be used to evaluate the equilibrium constant with good results over small temperature ranges.



The equation is exact if DH0 is independent of temperature. A reasonably accurate method of
interpolation or extrapolation of equilibrium constant is provided by plotting ln K versus reciprocal
of temperature, which leads to a straight line according to Eq. (9.37).
The variation of the standard heat of reaction with temperature may be taken into account if the molal
heat capacities of the various species taking part in the reaction are known as functions of
temperature. Suppose that the specific heats at constant pressure are expressed as a power function in
T.

CP = a + bT + gT2………(9.38)

Then the effect of temperature on the standard heat of reaction may be developed as follows: Since
heat of reaction is the enthalpy change between the given initial and final states, it may be evaluated
by devising any convenient path between these terminal states for which the enthalpy changes are

readily available. Assume that the standard heat at temperature T1, , is known and it is desired to
calculate the standard heat at temperature T.

The actual reaction occurring at temperature T for which the heat of reaction is  may be treated
as occurring along the three paths as depicted in Fig. 9.3.

1. The reactants are cooled from temperature T to T1. The enthalpy change for this step is

2. The reaction is allowed to occur at temperature T1. The enthalpy change is

3. The temperature of the products is raised from T1 to T in this step. The enthalpy change is



The standard heat of reaction at temperature T, is obtained by adding the preceding three equations.

Equation (9.43) may be expanded to yield the following result.

The constant DH� in the above equation can be evaluated if the heat of reaction at a single
temperature is known. Equation (9.46) can then be used for the evaluation of the heat of reaction at
any temperature T.
Substitute Eq. (9.46) into Eq. (9.36) and integrate the resulting expression. The result is

A in Eq. (9.47) is a constant of integration, which may be evaluated from the knowledge of the
equilibrium constant at one temperature. Equation (9.31) relates the equilibrium constant to the
standard free energy change. Using this relationship, we get



9.5.1 Evaluation of Equilibrium Constants
Equation (9.47) can be used for the evaluation of the equilibrium constant, provided, we know the
dependence of heat capacities on temperature and we also have enough information for the evaluation
of the constants DH� and A. Assuming that the heat capacity data are available, the general methods
used for the evaluation of the constants DH� and A are listed below.

Method 1. K may be calculated from the experimentally measured composition of the equilibrium
mixture using Eq. (9.19). If K values are thus known at two different temperatures, they may be
substituted into Eq. (9.47). The resulting two equations are solved for the constants DH� and A.

Method 2. Standard heat of reaction at one temperature and one value for the equilibrium constant
that is determined by direct experimental measurements are available. The former is used in Eq.
(9.46) for the evaluation of the constant DH� and the latter in Eq. (9.47) for evaluating the constant
A.

Method 3. This method involves no direct experimental measurements for the equilibrium constant
and therefore this is the most convenient and most widely used method. The method makes use of
thermal data only, usually in the form of standard heat of reaction DH0, and a standard free energy
change of reaction DG0. Then the constants DH� and A are evaluated using Eq. (9.46) and 
Eq. (9.48) respectively.

DH0 for a reaction may be evaluated from the standard heat of formation, , that are tabulated for
most of the compounds. The standard free energy of a reaction can be estimated from the values of

standard free energy of formation,  of the various species participating in the reaction and their
respective stoichiometric numbers as

That is, the standard free energy of a reaction is the algebraic sum of the free energies of formation of
the products minus the algebraic sum of the free energies of formation of the reactants. When an
element enters into a reaction, its standard free energy of formation may be taken to be zero.

9.5.2 Giauque Functions
Data for calculation of standard free energy of reactions are sometimes tabulated as Giauque
functions. These are Gibbs free energy functions that vary very slowly with temperature. Two such
functions are in general use—the first is referred to 0 K and the second referred to 298 K. These are
written as



where  are respectively the free energy in the standard state at temperature T, the enthalpy
in the standard state at T and the enthalpy in the standard state at 298 K. Because only standard state
properties are involved, these functions depend only on temperature. This temperature dependence is
found to be very weak which makes these functions suitable for tabular interpolation. Using the
definition of free energy, we can show that

The difference in enthalpy values, the terms in brackets in Eq. (9.53), needed for applying 
Eq. (9.53) also are listed in tables along with �0. The standard free energy change of a reaction may
be calculated from the Gibbs free energy functions. Equation (9.51) can be rearranged as

The Gibbs free energy at the standard state for each of the species taking part in the reaction as given
by Eq. (9.54) or Eq. (9.55) multiplied by the respective stoichiometric numbers add together to give
the standard free energy of the reaction.



Note that the enthalpy of a compound in the standard state, , is the same as its standard enthalpy of

formation, . The standard free energy of a reaction determined using Eqs. (9.56) or (9.57) may
be used in Eq. (9.31) to calculate the equilibrium constant.
EXAMPLE 9.6 Calculate the equilibrium constant at 298 K of the reaction

N2O4 (g) � 2NO2 (g)

given that the standard free energies of formation at 298 K are 97,540 J/mol for N2O4 and 
51,310 J/mol for NO2.
Solution Using Eq. (9.50) for the dissociation of N2O4,

DG0 = 2 � 51,310 – 97,540 = 5080 J/mol
From Eq. (9.31),

DG0 = – RT ln K
which gives

Therefore, K = 0.1287.
EXAMPLE 9.7 The standard heat of formation and standard free energy of formation of ammonia at
298 K are –46,100 J/mol and –16,500 J/mol respectively. Calculate the equilibrium constant 
for the reaction

N2 (g) + 3H2 (g) � 2NH3 (g)

at 500 K assuming that the standard heat of reaction is constant in the temperature range 298 to 500 K.
Solution The standard free energy of reaction is estimated from Eq. (9.50).



The standard heat of reaction at 298 K = 2 � – 46,100 = – 92,200 J/mol. This is assumed constant
within the temperature range involved. Now use Eq. (9.37) to evaluate the equilibrium constant.

Therefore, the equilibrium constant at 500 K, K = 0.18
EXAMPLE 9.8 n-Butane is isomerised to i-butane by the action of catalyst at moderate temperatures.
It is found that the equilibrium is attained at the following compositions.

Temperature, K Mol %, n-butane

317 31.00

391 43.00

Assuming that activities are equal to the mole fractions, calculate the standard free energy of the
reaction at 317 K and 391 K and average value of heat of reaction over this temperature range.
Solution Since activities are equal to mole fractions, K = yib/ynb, where yib is the mole fraction of i-
butane and ynb the mole fraction of n-butane in the equilibrium mixture. Therefore,



Assuming that the heat of reaction is independent of temperature we can use Eq. (9.37) for calculating
it.

EXAMPLE 9.9 Estimate the standard free energy change and equilibrium constant at 700 K for the
reaction

N2 (g) + 3H2 (g) � 2NH3 (g)

given that the standard heat of formation and standard free energy of formation of ammonia at 
298 K to be – 46,100 J/mol and –16,500 J/mol respectively. The specific heat (J/mol K) data are
given below as function of temperature (K):

CP = 27.27 + 4.93 � 10–3T for N2

CP = 27.01 + 3.51 � 10–3T for H2

CP = 29.75 + 25.11 � 10–3T for NH3
Solution The standard heat of reaction and standard free energy of reaction at 298 K were estimated
in Example 9.7.

DH0 = – 92,200 J/mol; DG0 = – 33,000 J/mol
Also,

Da = 2 � 29.75 – 27.27 – 3 � 27.01 = – 48.8

Db = (2 � 25.11 – 4.93 – 3 � 3.51) � 10–3 = 34.76 � 10–3

Equation (9.46) gives



– 92,200 = DH� – 48.8T + 17.38 � 10–3T2

= DH� – 48.8 � 298 + 17.38 � 10–3 � (298)2

= DH� – 1.3 � 104

Therefore, DH� = – 7.9201 � 104. Equation (9.48) gives

– 33,000 = DH� – DaT ln T – T2 – ART

= – 7.9201 � 104 + 48.8 � 298 � ln 298 – 17.38 � 10–3 � 2982 – A � 8.314 � 298
= 2105 – 2477.57 A

Therefore, A = 14.169. Substitute DH� and A into Eq. (9.47) and Eq. (9.48), we get

EXAMPLE 9.10 Evaluate the equilibrium constant at 600 K for the reaction
CO (g) + 2H2 (g) � CH3OH (g)

given that the Gibbs free energy function

for CO, H2 and methanol at 600 K are respectively –203.81, –136.39 and –249.83 J/mol K. The
heats of formation at 298 K of CO (g) and CH3OH (g) at 298 K are –110,500 J/mol and –200,700
J/mol.
Solution The standard free energy of formation at 600 K is evaluated by means of Eq. (9.57).



EXAMPLE 9.11 Calculate the equilibrium constant for the reaction
N2 (g) + 3H2 (g) � 2NH3 (g)

at 500 K, given that the free energy function

at 500 K for nitrogen, hydrogen and ammonia are respectively –177.5, –116.9 and –176.9 J/mol K.

The function  for nitrogen, hydrogen and ammonia are respectively 8669, 8468 and 
9920 J/mol. The free energy of formation of ammonia at 298 K is –46,100 J/mol.
Solution Equation (9.53) gives

Equation (9.57) can be used to evaluate .



9.6 EFFECT OF PRESSURE ON EQUILIBRIUM
9.6.1 Effect of Pressure on Equilibrium Constant
We have shown that the equilibrium constant K is related to the standard free energy change by the
equation, DG0 = – RT ln K, where K is defined by Eq. (9.19) as

The equilibrium constant defined above is independent of the pressure. By Eq. (9.31), the equilibrium
constant is known if the standard free energy of the reaction and the reaction temperature are known.
The standard free energy of a reaction is determined by the free energies of the substances in their
standard states. The standard states are defined by specifying a pressure and are in no way affected
by the reaction pressure. That is, the standard free energy of a reaction, and hence, the equilibrium
constant are not affected by changes in the equilibrium pressure.

9.6.2 Effect of Pressure on Equilibrium Composition
Though the equilibrium constant is unaffected by pressure, it does affect the equilibrium composition
in gas-phase reactions. This effect is explained qualitatively by Le Chatelier’s principle. Consider for
example, the equilibrium in the gas-phase reaction A � 2B. When pressure is applied to this system,
it responds in such a way as to minimise the effect of the increase in pressure. This is achieved by
decreasing the number of moles in the system, which in turn is achieved by the reaction A � 2B.
Thus, increase in pressure decreases the number of B molecules and increases the number of A
molecules. By the same reasoning we can deduce that in the case of the reaction equilibrium for N2 +
3H2 � 2NH3 formation of ammonia will be favoured by an increase in pressure as there is a
reduction in the number of moles due to this reaction. It should be remembered that when the
composition of the system changes in this manner in response to increase or decrease in pressure, it
does so without changing the equilibrium constant.
Except at very high pressures, properties of solids, liquids or solutions are not affected appreciably
by pressure. Therefore, the equilibrium concentrations in reactions involving solids, liquids or
solutions are not affected significantly by changes in pressure.
To predict the effect of pressure quantitatively, the relationship between equilibrium constant and



equilibrium composition must be established. Equation (9.19) defines the equilibrium constant as a
function of activities of the species in the reacting system. The activities of the components are
affected by changes in pressure, temperature and composition. As K is independent of pressure, and
activities are not, it requires that the activities of the components change with pressure in such a way
that the complex function of activities, which we have defined as equilibrium constant, remains
unaltered. The equilibrium constant written in terms of activities, K, and the equilibrium constant Kf,
which is written in terms of the fugacities of the components were shown to be equal for gaseous
systems employing ideal-gas standard state through Eq. (9.21).

Since, K is independent of pressure, the variation in the Pn term in the above equations must be
balanced by a corresponding change in the value for Ky. The change in Ky means the change in the
equilibrium compositions. If there is a decrease in the number of moles during the reaction as in the
case of ammonia synthesis reaction, n will be negative. An increase in pressure in this case will
decrease Pn and as a result, Ky and the equilibrium yield would increase. On the other hand, if the
reaction results in an increase in the number of moles, n will be positive and the equilibrium yield
would decrease with increase in pressure.
The above observations are in agreement with the Le Chatelier’s principle. In addition, 
Eq. (9.62) can be used to explain the effect of pressure on reactions where n is zero, which cannot be
explained by Le Chatelier’s principle. One would expect pressure to have no effect on reaction such



as the water-gas shift reaction
CO (g) + H2O (g) � CO2 (g) + H2 (g)

because there is no change in the number of moles during the reaction. The effect of pressure on the
equilibrium composition in this case can be explained by the effect of pressure on Kf. Kf measures the
deviation from ideal-gas behaviour, and its value may change with change in pressure. If Kf
decreases in any reaction, then Ky and the equilibrium yield would increase even when n is zero. The
effect of pressure on Kf can be calculated from fugacity coefficients. It is seen that when the
compressibility of the products is greater than the compressibility of the reactants, Kf decreases with
pressure, thereby increasing the conversion.

EXAMPLE 9.12 Industrial grade methanol can be produced according to the reaction

For this reaction,  kJ. If an equimolar mixture of CO and H2 is fed to a reactor
maintained at 400 K and 10 bar, determine the fraction of CO that is converted into CH3OH at
equilibrium. Assume that the reaction mixture behaves like an ideal gas.
Solution Basis: 1 mol CO and 1 mol hydrogen in the reaction mixture.
Let e be the extent of reaction. The mole fractions of the components under equilibrium are:

EXAMPLE 9.13 A compound M polymerises in the gas phase at low pressure to Mn, where n > 1.
(a) Show that the mole fraction of the polymer at equilibrium increases with increase in pressure at

constant temperature



(b) The mole fraction of the polymer in the equilibrium mixture at 300 K is 0.15 at 1 bar and 0.367
at 2 bar. Find the value of n.

Solution (a) The reaction is nM � Mn. There is a decrease in the number of moles during the
forward reaction. The increase in pressure therefore favours the polymerisation reaction and as a
result, the mole fraction of the polymer at equilibrium increases with pressure.
(b) From Eq. (9.62), Ky = (K/Kf)P–n. Assuming ideal gas behaviour, Ky = KP–n. Here, n = 1 – n
and at 1 bar,

Ky = mole fraction of Mn/(mole fraction of M)n = 0.15/0.85n

Ky at 2 bar = 0.367/0.633n

Therefore,

0.15/0.85n = KPn–1 = K

0.367/0.633n = KPn–1 = K � 2n–1

Dividing the second equation by the first,

On solving, we get n = 4.
EXAMPLE 9.14 In the synthesis of ammonia, stoichiometric amounts of nitrogen and hydrogen are
sent to a reactor where the following reaction occurs

N2 + 3H2 � 2NH3

The equilibrium constant for the reaction at 675 K may be taken equal to 2 � 10–4.
(a) Determine the per cent conversion of nitrogen to ammonia at 675 K and 20 bar.
(b) What would be the conversion at 675 K and 200 bar?

Solution Basis: 1 mol nitrogen and 3 mol hydrogen are in the reactant mixture. Let e be the extent of
reaction. Then the number of moles of various species at equilibrium are calculated using Eq. (9.3) as
ni = ni0 + nie. Thus the moles of nitrogen, hydrogen and ammonia at equilibrium are, respectively, 1
– e, 3 – 3e and 2e. Total moles at equilibrium is = 4 – 2e. The mole fractions of nitrogen, hydrogen
and ammonia are, respectively,



Therefore, e = 0.5375. So, conversion of nitrogen = 53.75%.
We see that the increase in pressure favours the formation of ammonia as this reaction is
accompanied by a decrease in the number of moles.

9.7 OTHER FACTORS AFFECTING EQUILIBRIUM CONVERSION
The reaction conditions that influence the extent of reaction under equilibrium are the temperature,
pressure, presence of inert materials, presence of excess of reactants and presence of the products of



the reaction in the initial mixture. The effects of temperature and pressure on the equilibrium
composition have already been discussed in the previous sections. Here, we discuss the effects of
other factors.
Rearrange Eq. (9.62) to the following form.

where i is any species taking part in the reaction and ni is the number of moles of i. N represents the
total number of moles in the reaction mixture, and if any inert material is present in the system, N
includes nI moles of inert material also.

N = S ni + nI
Combining Eqs. (9.65) and (9.66) we obtain

Any changes in the reaction conditions that results in an increase in the right-hand side of 
Eq. (9.67) leads to an improved conversion.

9.7.1 Presence of Inert Materials
Diluting the reaction mixture with an inert material will increase N in Eq. (9.67). This will result in
an increased conversion, if n is positive. That is, if the reaction proceeds with an increase in the
number of moles, presence of inerts in the system will increase the equilibrium yield. The effect, as
we see, is just the opposite to the effect of increased pressure in such reactions. The presence of
inerts will decrease conversion if the reaction is accompanied by a decrease in the number of moles;
and the inerts present in the system will have no influence on the degree of completion if n is zero,
that is, if there is no change in the number of moles during a reaction.
EXAMPLE 9.15 A mixture of 1 mol CO, and 1 mol water vapour is undergoing the water-gas shift
reaction at a temperature of 1100 K and a pressure of 1 bar.

CO (g) + H2O (g) � CO2 (g) + H2 (g)

The equilibrium constant for the reaction is K = 1. Assume that the gas mixture behaves as ideal gas.
Calculate



(a) The fractional dissociation of steam
(b) The fractional dissociation of steam if the reactant stream is diluted with 2 mol nitrogen.

Solution The mole fractions of the species at equilibrium are related to the equilibrium constant
which is given by

where n is the sum of stoichiometric numbers. Here, n = 1 + 1 – 1 – 1 = 0. As the gas mixture
behaves as an ideal gas, Kf = 1. Equation (9.65) gives Ky = K = 1. Ky is related to the mole fractions

of various components as . Equation (9.4) gives the relationship between mole fractions
and extent of reaction at equilibrium as

(a) The mole fractions of the constituents in the equilibrium mixture are expressed in terms of the
extent of reaction as given in the table below:

Solving the above, e = 0.5.
Conversion of steam z is obtained from Eq. (9.5)

This means that 50% of steam is converted in the reaction.
(b)



e = 0.5. The conversion of water vapour is 50%.
The conversion remains the same as that resulted when the reactant stream contained only the
stoichiometric quantities of CO and H2O vapour. This is because n = 0 or the reaction produces no
change in the number of moles.
EXAMPLE 9.16 Ammonia synthesis reaction is represented by

N2 + 3H2 � 2NH3
The reactant stream consists of 1 mol N2, 3 mol H2 and 2 mol argon. The temperature and pressure of

the reaction are 675 K and 20 bar. The equilibrium constant for the reaction is 2 � 10–4. Determine
how the conversion of nitrogen is affected by the presence of argon.
Solution The total number of moles of the initial mixture, n0 = 1 + 3 + 2 = 6.



Solving we get, e = 0.1022. Thus, it is seen that the conversion of nitrogen decreases to 10.22% in
the presence of argon, from a value of 14.48% (Example 9.14) achieved in the absence of argon.

EXAMPLE 9.17 The reaction  takes place in the gas phase at 2975 K and 2025
kPa. The reaction mixture initially comprises 15 mol percent oxygen, 77 mol percent nitrogen and the
rest inerts. The standard Gibbs free energy change for the reaction is 113.83 kJ/mol at this
temperature. Assuming ideal gas behaviour, calculate the partial pressures of all species at
equilibrium. How is the conversion of oxygen affected when the initial mixture were free of inerts?
Solution Basis: 15 mol oxygen, 77 mol nitrogen and 8 mol inert in the reaction mixture. Let e be the
extent of reaction. The mole fractions of the components under equilibrium are:
Oxygen: (15 – e)/100, Nitrogen: (77 – e)/100, NO: 2e/100



Partial pressures are obtained by multiplying the mole fractions by the total pressure. The values are
given below:

O2: 271.6 kPa, N2: 1527.1 kPa, NO: 64.4 kPa, Inerts: 162 kPa

If the initial mixture were free of inerts, the mole fractions of the components under equilibrium will
be Oxygen: (15 – e)/92, Nitrogen: (77 – e)/92, NO: 2e/92 and the equilibrium constant will be given
by the same expression as before:

9.7.2 Presence of Excess of Reactants
When the reactants are not present in stoichiometric proportions, increasing the number of moles of



the excess reactant will result in increase in the number of moles of the products and improved
conversion of the limiting reactant at equilibrium. This is evident from the left-hand side of 
Eq. (9.67), the value of which increases when the number of moles of the excess reactant is
increased. Therefore, it is desirable to supply all the reactants except the limiting reactant in excess
of the stoichiometric requirement, in order to increase the conversion with respect to the limiting
reactant.
EXAMPLE 9.18 One mole steam undergoes the water-gas shift reaction at a temperature of 
1100 K and a pressure of 1 bar.

CO (g) + H2O (g) � CO2 (g) + H2 (g)

The equilibrium constant for the reaction is K = 1. Assuming ideal gas behaviour, calculate the
fractional dissociation of steam in the following cases and discuss the effect of the presence of excess
reactant on the extent of reaction.

(a) CO supplied is 100% in excess of the stoichiometric requirement.
(b) CO supplied is only 50% of the theoretical requirement.

Solution Basis: 1 mol water vapour present in the reactant stream.
(a)

(b)



We see that the equilibrium conversion of water vapour was 50% when the reactants were in
stoichiometric proportions, it increases to 66.7% when CO was present 100% in excess and falls to
33.3% when CO becomes the limiting reactant.

EXAMPLE 9.19 Ethanol is produced by the vapour phase hydration of ethylene according to the
reaction:

The reactor operates at 400 K and 2 bar and the feed is a gas mixture of ethylene and steam in the
ratio 1:3. The equilibrium constant is 0.25. Estimate the composition (mol %) of the equilibrium
mixture. Assume ideal gas behaviour. How is the conversion of ethylene affected when the initial
reactant stream contains stoichiometric quantities of the reactants?
Solution Basis: 1 mole of ethylene and 3 moles of N2 in the reactant stream.

K = KyPv. Here, n = –1. Therefore, 0.25 = Ky2–1.

Hence, Ky = 2 K = 0.5

Let e be the extent of reaction. Then the mole fraction in the equilibrium mixture are:
Ethylene: (1 – e)/(4 – e), Steam: (3 – e)/(4 – e), Ethanol: e/(4 – e)
Using these values, we get



Equilibrium mixture contains 19.6% ethylene, 73.2% steam and 7.2% ethanol.
Let the initial mixture contain 1 mol ethylene and 1 mol steam and let e be the extent of reaction. Then
the mole fraction in the equilibrium mixture are:
Ethylene: (1 – e)/(2 – e), Steam: (1 – e)/(2 – e), Ethanol: e/(2 – e)
Using these values, we get

Solving this, we get e = 0.183. That is, conversion of ethylene is 18.3%. The conversion was 26.8%
in the first case when excess of water vapour was present in the reactant stream.

9.7.3 Presence of Products
If the initial reaction mixture contained any of the products of the reaction, then the number of moles
of that product formed by the reaction so as to establish equilibrium will decrease as indicated by Eq.
(9.67). Therefore, the addition of the products to the original reactant stream decreases the
equilibrium conversion.
EXAMPLE 9.20 A gas mixture which contained 1 mol CO, 1 mol water vapour and 1 mol CO2 is
undergoing the following reaction at a temperature of 1100 K and a pressure of 1 bar.

CO (g) + H2O (g) � CO2 (g) + H2 (g)

The equilibrium constant for the reaction is K = 1. Assume that the gas mixture behaves as ideal gas.
Calculate the fractional dissociation of steam and discuss the effect of the presence of the products on
the equilibrium conversion.
Solution The mole fractions of the different species in the equilibrium mixture is expressed in terms
of the extent of reaction as below:



Solving the above equation, we get e = 0.333, which means that the conversion of water vapour gets
reduced to 33.3% due to the presence of CO2, the product of the reaction in the reactant stream.
EXAMPLE 9.21 A gas mixture containing 25% CO, 55% H2 and 20% inert gas is to be used for
methanol synthesis. The gases issue from the catalyst chamber in chemical equilibrium with respect to
the reaction

CO (g) + 2H2 (g) � CH3OH (g)

at a pressure of 300 bar and temperature of 625 K. Assume that the equilibrium mixture forms an
ideal solution and Kf and Kf are 4.9 � 10–5 and 0.35 respectively. What is the per cent conversion
of CO?
Solution Basis: 100 moles of initial gas mixture.
Let e be the extent of reaction at equilibrium. n0 = 100.

n = – 1 – 2 + 1 = – 2
The mole fractions in the equilibrium mixture are calculated using Eq. (9.4)

For gases, K = Kf. Therefore,



Therefore, 61% of CO gets converted.
EXAMPLE 9.22 A gas mixture consisting of 60% H2, 20% N2 and the rest inert gas is passed over a
suitable catalyst for the production of ammonia.

The equilibrium constant Kp = 1.25 � 10–2. The pressure is maintained at 50 bar. Assume ideal 
gas behaviour for the gas mixture. Determine the composition of the gases leaving the reactor.
Solution Basis: 100 moles of the reactant gases.



Solving this, we get e = 8.71. Mole fraction of nitrogen is obtained as
[20 – (e/2)]/(100 – e) = 0.1714

and mole fraction of hydrogen is
[60 – (3e/2)]/(100 – e) = 0.5141

Mole fraction of ammonia:
e/(100 – e) = 0.0954

Mole fraction of inert gas:
1 – 0.1714 – 0.5141 – 0.0954 = 0.2191

Analysis of exit gases from the reactor:
N2 = 17.14%, H2 = 51.41%, NH3 = 9.54% and inert gas = 21.91%

9.8 LIQUID-PHASE REACTIONS
The equilibrium constant as defined by Eq. (9.19) is applicable for all chemical reactions.

For liquid-phase reactions, the evaluation of equilibrium constant using this equation requires a
relationship between activity and composition. Since, activity is the ratio of the fugacity to the
fugacity in the standard state, such a relationship can be established once the standard state is
specified. The standard state for liquid-phase reactions may be the pure liquid at 1 bar and the
reaction temperature. The fugacity in this state is not much different from the fugacity of pure liquid at
the pressure and temperature of the reaction fi. This is because, pressure has very negligible effect on
the properties of liquids. With this choice, the equilibrium constant becomes

The fugacity of a component in the solution is related to the fugacity in the pure state by  = gixifi,
where �i is the activity coefficient in the solution. Using this in Eq. (9.68), we get

K� is an equilibrium constant in terms of activity coefficients. Accurate values of activity coefficients
are rarely available and in practical calculations we set K� = 1. This is equivalent to assuming that
the solution is ideal and ai = xi. The components present in large proportions obey Lewis–Randall
rule and for them the activity and the mole fraction in the solution are the same. Even if 
Lewis–Randall rule is not applicable, the assumption that K� = 1 is not a very serious limitation as
the function denoted by K� may become nearly unity even if the individual activity coefficients are



not. Thus

For components present in low concentration, the standard state of the solute is usually the fictitious
or hypothetical state which would exist if the solute obeyed Henry’s law over a concentration range
extending up to a molality of unity. This hypothetical state is illustrated in Fig. 9.4.

The fugacity and molality (mol/kg solvent) are related as

where Ki is the Henry’s law constant and mi is the molality. Using the hypothetical standard state, it
can be shown that the standard state fugacity is equal to the Henry’s law constant and the activity and
the molality are equal. That is

ai = mi………(9.72)

With this choice for the standard state, a very simple relationship exists between the activity and the
concentration for cases where Henry’s law is applicable.

9.9 HETEROGENEOUS REACTION EQUILIBRIA
In the study of heterogeneous reaction equilibria presented in this section, we are concerned with a
gas phase that is in equilibrium with a liquid or a solid phase. When the heterogeneous system is in
equilibrium we would have to consider the equilibrium with respect to chemical reactions in the gas
phase as well as the phase equilibria between the components in the gas phase and the liquid or the
solid phase as the case may be.

9.9.1 Reactions in Solutions
Consider the reaction between a gas A and liquid B to produce a solution C.



A (g) + B (l) � C (aq)
The equilibrium in this reaction can be studied in different ways:

1. The reaction may be assumed to take place entirely within the gas phase and the equilibrium
constant for the reaction is evaluated using the standard state for gases, i.e. the ideal gas
standard state at a pressure of 1 bar and the reaction temperature. The resulting equations are
coupled with equations for material transfer between phases to maintain equilibrium.

2. The reaction is assumed to occur in the liquid phase with simultaneous transfer of material
between phases to maintain equilibrium. The calculations of reaction equilibria are based on the
liquid standard state.

3. The third method involves the use of mixed standard states. Thus, the standard state for A is the
pure ideal gas at 1 bar, that for B is pure liquid at 1 bar, and for C it is the solute in an ideal 1-
molal aqueous solution. The equilibrium constant in this case may be evaluated as

All the above methods give the same results for equilibrium compositions, but the values for
equilibrium constant depend on the choice of the standard state.

9.9.2 Equilibria involving Pure Solids and Liquids
When a pure liquid or a pure solid is involved in a heterogeneous reaction with gases, its activity
may be taken as unity provided the pressure of the system is not much different from the standard
state. Activity as we know, is defined as the ratio of the fugacity to the fugacity in the standard state.
The fugacity in the standard state is almost equal to that in the equilibrium state, as these two states
differ only in their pressures and not in their temperatures. Pressure, unless extremely high, has only a
negligible effect on the properties of liquids and solids. Where the standard state for solids and
liquids is taken at 1 bar or at low equilibrium vapour pressures, the activities of pure solids and pure
liquids may be taken as unity at moderate pressures. Therefore, the composition of the gaseous phase
at equilibrium is not affected by the presence of the solid or liquid.

9.9.3 Pressures of Decomposition
Many solid compounds decompose to give another solid and a gas, as in the calcination of calcium
carbonate to CO2 and lime.

CaCO3 (s) � CaO (s) + CO2 (g)

The equilibrium constant for this reaction is

The activities of the solid components present at equilibrium are close to unity provided the pressure
is moderate and both solids are present at equilibrium. Since the standard state for gases is the ideal-
gas state at 1 bar, the standard state fugacity is equal to unity and therefore, the activity of CO2 in the

equilibrium mixture is equal to its fugacity, . But fugacity of a component is equal to its partial



pressure at low pressures and, therefore, Eq. (9.74) reduces to

This is the equilibrium partial pressure exerted by CO2 and its value depends only on temperature. If
the partial pressure is lowered below this equilibrium value, CaCO3 will decompose and will
eventually disappear. On the other hand, if the pressure on the system is kept above the equilibrium
partial pressure, CaO will combine with CO2 resulting in the formation of CaCO3.
For a general solid decomposition reaction represented by

aA (s) � lL (s) + mM (g)
the above treatment can be generalised as

In the above equation, m is the stoichiometric coefficient; DH0 and DS0 are the standard heat of
reaction and standard entropy of reaction respectively.
EXAMPLE 9.23 Ethylene gas reacts with water forming aqueous solution of ethanol.

C2H4 (g) + H2O (l) � C2H5OH (aq)

Equilibrium measurements at 530 K and 85 bar showed that the aqueous phase contained 
1.5% (mole) ethanol and 95.0% (mole) water. The vapour phase analysed 48% ethylene. The fugacity
coefficient for ethylene is estimated to be 0.9. Evaluate the equilibrium constant.
Solution Equation (9.73) may be used for evaluating K.

The standard state for aqueous solution is 1 molal solution; for water, it is pure liquid water at 
1 bar; and for gaseous ethylene, it is the pure ethylene at 1 bar.

The molality of aqueous solution = moles ethanol/kg water

= 1.5/(95.0 � 18 � 10–3) = 0.8772 mol/kg water



EXAMPLE 9.24 Calculate the decomposition pressure of limestone at 1000 K.
CaCO3 (s) � CaO (s) + CO2 (g)

The standard free energy of this reaction as function of temperature is

DG0 = 1.8856 � 105 – 243.42T + 11.8478T ln T – 3.1045 � 10–3T2 + 1.7271 � 10–6 T3

– 4.1784 � 105/T
Also calculate the decomposition temperature at 1 bar.

Solution From Eq. (9.75), the decomposition pressure is  = K, where K can be calculated by

EXAMPLE 9.25 Solid calcium oxalate dissociates at high temperatures into solid calcium carbonate
and carbon monoxide:



Solution By Eq. (9.75), 
Therefore,

EXAMPLE 9.26 Iron oxide is reduced to iron by passing over it a mixture of 20% CO and 80% N2
at 1200 K and 1 bar.

FeO (s) + CO (g) � Fe (s) + CO2 (g)

The equilibrium constant for this reaction is 0.403. Assuming that equilibrium is attained, calculate
the weight of metallic iron produced per 100 m3 of gas admitted at 1200 K and 1 atm. Gas mixture
may be assumed to behave as ideal gas.
Solution Basis: 100 mol of gas entering.
The activities of solid components can be taken to be unity.



9.10 SIMULTANEOUS REACTIONS
With a given set of reactants many reactions may be possible. When we consider the equilibrium
yield of methanol in the reaction

CO + 2H2 � CH3OH………(9.78)

by the methods already discussed, we are in fact ignoring the presence of intermediate product,
formaldehyde in the reaction mixture. The above reaction proceeds in two steps in series as:

CO + H2 � HCHO………(9.79)

HCHO + H2 � CH3OH………(9.80)

For the thermodynamic analysis of a reaction that proceeds in two or more steps, the presence of
intermediate products can sometimes be ignored on the assumption that they are very unstable and
their concentrations at equilibrium are negligible in comparison with that of the main product. The
above assumption is implicit in treating the equilibrium mixture in the methanol synthesis as
consisting of only CO, H2 and CH3OH. In this case, this assumption is a valid one as formaldehyde is
very unstable, but in many other situations, the presence of intermediate products in the reaction
mixture at equilibrium also should be taken into account as explained below:
The free energy change for a reaction is equal to the sum of the free energy changes in the individual
step reactions. Thus,



where  are the free energy changes in the two step reactions that occur and DG0 is the
standard free energy change in the overall reaction. Since DG0 = – RT ln K, the above equation gives

K = K1K2
K1 and K2 are the equilibrium constants for the individual steps and K is the equilibrium constant for
the combined reaction. For a given value of K, an infinite number of combinations of K1 and K2 are

possible such that K = K1K2. For example, let us take K = 10–4 and consider the cases where (a) 10–

4 = 10–10 � 106, (b) 10– 4 = 10–2 � 10–2, and (c) 10–4 = 106 � 10–10. For case (a), the
concentration of intermediate products at equilibrium would be negligible and correct result would
be obtained by considering only the overall reaction. For case (b), there would be considerable
amounts of intermediates at equilibrium and their presence cannot be ignored. For case (c), the
equilibrium mixture would be mostly intermediates. The use of an overall equilibrium constant for the
calculation of equilibrium compositions is limited to cases where the intermediate products are not
present in significant quantities.
In addition to the formation of intermediate products, which subsequently reacts to form the final
desired products, many side reactions may also occur within the system. For example, starting with
the pairs CO and H2 some of the possible reactions are:

CO + H2 � HCHO

CO + 2H2 � CH3OH

CO + 3H2 � CH4 + H2O

2CO + 5H2 � C2H6 + 2H2O

3CO + 6H2 � C3H7OH + 2H2O

In dealing with methanol synthesis, it was assumed that the side reactions proceeded at a negligible
rate in comparison with the steps involved in the synthesis reaction. Theoretically, when the
equilibrium yield of a particular component is to be determined, we should consider simultaneous
equilibria in all possible reactions between the substances involved. However, for practical
calculations, it is possible to reduce the number of reactions that are to be considered.
In the general case when all intermediates and final products must be considered, it is necessary that
the equilibrium equations of all reactions must be satisfied by the compositions of the system at
equilibrium. Determination of the equilibrium compositions involves simultaneous solution of r
equilibrium equations where r is the number of independent reactions that can be written. After
determining the number of independent reactions as explained later, the equilibrium constant is
evaluated for each reaction by



Here the suffix j is used to represent the jth reaction under consideration. The above equation is
written for all r independent reactions. Assuming the equilibrium mixture to behave as ideal gases,
these lead to r equations relating the composition to the pressure and the equilibrium constant.

Let the equilibrium constants be K1 and K2 for the reactions indicated by Eqs. (9.84) and (9.85)
respectively and let the corresponding extent of reaction be e1 for reaction (9.84) and e2 for reaction
(9.85). The initial reactant mixture is assumed to consist of 1 mol A and x mol B. The mole fractions
in simultaneous reactions can be calculated using Eq. (9.9).

The mole fractions of various components are
yA = (1 – ae1)/[1 + x + (l + m1 – a – b1)e1 + (m2 + n – l – b2)e2]

yB = (x – b1e1 – b2e2)/[1 + x + (l + m1 – a – b1)e1 + (m2 + n – l – b2)e2]

yL = l(e1 – e2)/[1 + x + (l + m1 – a – b1)e1 + (m2 + n – l – b2)e2]

yM = (m1e1 + m2e2)/[1 + x + (l + m1 – a – b1)e1 + (m2 + n – l – b2)e2]

yN = ne2/[1 + x + (l + m1 – a – b1)e1 + (m2 + n – l – b2)e2]

These are substituted into the following equilibrium relations.



These two equations are solved simultaneously to obtain the variables e1 and e2. Equation (9.9) can
now be utilised to evaluate the equilibrium compositions.
EXAMPLE 9.27 Five moles of steam reacts with one mole methane according to the following
reaction at 850 K and 1 bar.

CH4 + H2O � CO + 3H2; K1 = 0.574………(9.88)

CO + H2O � CO2 + H2; K2 = 2.21………(9.89)

Calculate the composition at equilibrium assuming ideal gas behaviour.

Solution Number of moles of a component at equilibrium = ni = ni0 + 
Le t e1 and e2 be the extent of reactions for reaction (9.88) and (9.89) respectively. Thus at
equilibrium the number of moles are,

CH4: 1 – e1,……H2O: 5 – e1 – e2,……CO: e1 – e2,……H2: 3e1 + e2,……CO2: e2
Total number of moles at equilibrium = 6 + 2e1. The mole fractions of various components in the
equilibrium mixture are:

Note that K1 = 0.574, K2 = 2.21 and P = 1 bar. The resulting equations are solved for e1 and e2.
Assume a value for e1 and calculate e2 by each equation. These two e2 values are plotted against
e1. This is repeated for various assumed e1 values. The intersection of the two curves gives the
solution. e1 = 0.9124; and e2 = 0.623. The mole fractions are evaluated by supplying the values of
e1 and e2. The results are:

CH4: 0.0112,……H2O: 0.4415,……CO: 0.0357,……H2: 0.4307……and……CO2: 0.0804

9.11 PHASE RULE FOR REACTING SYSTEMS
We have used the criteria of phase equilibrium to develop the phase rule for non-reacting systems in



Chapter 8.
F = C – p + 2

The criterion of phase equilibrium is valid even when chemical reactions occur within the system.
However, the phase rule needs modification for it to be applicable for reacting systems. This is
because for each independent reaction occurring, an additional constraint is imposed on the system
through Eq. (9.15) or (9.31). Thus, the number of degrees of freedom will be reduced by one for each
independent chemical reaction. If r independent reactions occur in the system, then the phase rule
becomes

F = C – p – r + 2………(9.90)
For example, consider a system containing five components distributed between two phases. If the
number of independent chemical reactions occurring is one, then the number of degrees of freedom
will be 5 – 2 – 1 + 2 = 4. Assuming that the reaction occurring is a gas-phase isomerisation reaction
involving two of the components (say, A and B), we can write the equilibrium relationship as

This in fact is a relationship between T, yA and yB. Only two of these three variables are therefore
independent. As the degree of freedom is 4 it means that in addition to these three variables, two
more variables are to be specified to define the intensive state of the system uniquely.
O.A. Hougen, et al., define the number of independent reactions that must be considered as the least
number that includes every reactant and product present to an appreciable extent in all phases of
the equilibrium system, and accounts for the formation of each product from the original
reactants. It can be determined as follows:

1. For each chemical compound present in the system, equation for its formation reaction from its
elements is written.

2. The elements that are not present in the system are eliminated by properly combining the
equations written in step 1.

The number of equations, r, that results from the above procedure is equal to the number of
independent chemical reactions occurring.
EXAMPLE 9.28 Determine the number of degrees of freedom in a gaseous system consisting of CO,
CO2, H2, H2O and CH4 in chemical equilibrium.

Solution The number of independent chemical reactions occurring in the system is first determined.
The formation reactions for each of the compounds are written:



The elements C and O2 are not present in the system. C is eliminated first, from Eqs. (9.91), (9.92)
and (9.94). Combining Eq. (9.91) with Eq. (9.92) we get

The equations that remain after this elimination process are Eqs. (9.97) and (9.98) which represent
the independent chemical reactions occurring in the system. Therefore, r = 2. Equation (9.90) gives
the degrees of freedom as F = C – p – r + 2. Here C = 5; p = 1 and therefore, F = 4.

SUMMARY
Thermodynamics of chemical reactions is mainly concerned with the prediction of the equilibrium
conversion attainable in a chemical reaction and the effect of operating conditions on the degree of
completion of the reaction. The criterion of chemical equilibrium requires that for a chemical reaction
occurring at equilibrium, there should be no change in the Gibbs free energy of the system at constant
temperature and pressure. If the system is not in chemical equilibrium, the reaction occurring must be
irreversible and the total Gibbs free energy must decrease at constant temperature and pressure
(Section 9.2).
The equilibrium constant K for a reaction was defined in terms of the activities of the reactants and
the products as

where ai is the activity of component i in the reaction mixture and �i is the stoichiometric number of i
(Section 9.3). The equilibrium constant was related to the standard free energy change by 
Eq. (9.31). Thus the numerical value of the equilibrium constant depends upon the temperature, 
the form of the stoichiometric equation and the definition of the standard state for each component.
However, it is independent of the pressure at equilibrium (Section 9.4). Equation (9.31) also
provided an approximate criterion for feasibility of reactions. If DG0 for a reaction is zero, then 
K = 1, the reaction proceeds to a considerable extent before equilibrium is reached. If DG0 is
negative, then K > 1, the reaction is quite favourable.
The effect of temperature on the equilibrium constant was quantitatively expressed by 



van’t Hoff equation [Eq. (9.36)]. For an exothermic reaction, the equilibrium constant decreases as
the reaction temperature increases and for an endothermic reaction, the equilibrium constant will
increase with increase in temperature (Section 9.5). Three methods for the evaluation of equilibrium
constant were discussed; the one which made use of thermal data in the form of standard heat of
reaction DH0, and a standard free energy change of reaction DG0 at a given temperature was found to
be the most convenient and widely used. The usefulness of the Giauque functions for tabulation of
standard free energy of reactions and calculation of the equilibrium constant was also established.
The equilibrium constant is independent of pressure whereas the composition at equilibrium varies
with pressure as evident from Eq. (9.62). If there is a decrease in the number of moles during the
reaction, the equilibrium yield would increase with increase in the pressure, whereas if the reaction
results in an increase in the number of moles, the equilibrium yield would decrease with increase in
pressure. It was also shown that the effect of the presence of inert gas in the reactant stream on the
equilibrium conversion was just the opposite of the effect of pressure (Section 9.7).
For liquid-phase reactions, the equilibrium constant may be written as K = KgKx. K� is an
equilibrium constant in terms of activity coefficients, which may be assumed, equal to unity. For
components present in low concentration, the activity and the molality are equal (Section 9.8). Under
heterogeneous equilibrium (Section 9.9), a brief discussion on the reaction between a gas and liquid
resulting in the formation of a solution and reaction equilibria in which a solid or liquid reacted with
a gas, were provided. Also, it was seen that for reactions in which solid compounds decomposed to
give another solid and a gas, the equilibrium constant was equal to the partial pressure of the gas. If
the partial pressure was lowered below this equilibrium value the solid would decompose and if the
pressure on the system was maintained above this value, the formation of solid was favoured. For
simultaneous reactions in which all intermediate and final products in the equilibrium mixture were to
be considered for determining the composition, equilibrium equations were written for all the
independent reactions and these were solved simultaneously (Section 9.10).

REVIEW QUESTIONS
1. What do you mean by the ‘extent of reaction’? How is it related to the mole fraction of the

species in the reaction mixture?
2. What is the criterion of chemical reaction equilibria?
3. Define equilibrium constant K of a chemical reaction. How is it related to Kf and KP?
4. Does the numerical value of the equilibrium constant depend on the form of the stoichiometric

equation?
5. How is the equilibrium constant K related to the standard free energy change? Does K vary with

pressure?
6. What is the effect of temperature on the equilibrium constant? Using van’t Hoff equation predict

the effect of increasing the temperature on endothermic and exothermic reactions.
7. How would you predict the feasibility of a reaction from the value of the standard free energy

change?
8. How would the equilibrium yield in a gaseous chemical reaction be affected by increasing the

pressure, if there is a decrease in the number of moles during the reaction? How would you



explain the effect of pressure on reactions such as the water–gas shift reaction, where there is no
change in the number of moles?

9. How would the equilibrium yield of ammonia be affected if argon is present in the synthesis gas
fed to the ammonia converter?

10. Explain how the equilibrium constant for liquid-phase reactions is evaluated.
11. Show that the equilibrium constant in the decomposition of calcium carbonate into CO2 and

lime is equal to the partial pressure of carbon dioxide. Explain how would you estimate the
decomposition pressure? What would happen if the CO2 pressure is reduced below this value?

12. A reaction proceeds in two steps. The equilibrium constants for the individual steps are K1 and
K2. What would be the equilibrium constant for the overall reaction?

13. What do you mean by the number of independent reactions in a chemically reacting system?
How would you determine it?

14. What is phase rule as applicable to a reacting system?

EXERCISES
9.1 Water vapour decomposes according to the following reaction:

Derive expressions for the mole fraction of each species in terms of the extent of reaction
assuming that the system contained n0 moles of water vapour initially.

9.2 The following reaction occurs in a mixture consisting of 2 mol methane, 1 mol water, 
1 mol carbon monoxide and 4 mol hydrogen initially.

CH4 + H2O � CO + 3H2
Deduce expression relating the mole fractions of various species to the extent of reaction.

9.3 A system consisting of 2 mol methane and 3 mol water is undergoing the following reaction
CH4 + H2O � CO + 3H2
CH4 + 2H2O � CO2 + 4H2

Derive expressions for mole fractions in terms of the extent of reactions.
9.4 The following gas-phase reactions occur in a mixture initially containing 3 mol ethylene and 2

mol oxygen.

Derive expressions for mole fractions in terms of extent of reactions.
9.5 Calculate the equilibrium constant at 298 K of the reaction N2 + 3H2 � 2NH3, given that the

free energy of formation of ammonia at 298 K is –16,500 J/mol.



9.6 Calculate the standard free energy change at 298 K in the gas-phase alkylation of isobutane
with ethylene to form neohexane.

C4H10 (g) + C2H4 (g) � C6H14 (g)

The free energies of formation at 298 K are –21,000 J/mol, 68,460 J/mol and –9,950 J/mol for
isobutane, ethylene and neohexane respectively.

9.7 Calculate the equilibrium constant at 673 K and 1 bar for the reaction
N2 (g) + 3H2 (g) � 2NH3 (g)

assuming that the heat of reaction remains constant in the temperature range involved. Take the
standard heat of formation and standard free energy of formation of ammonia at 298 K to be –
46,110 J/mol and –16,450 J/mol respectively.

9.8 Is the following reaction promising at 600 K?
NaOH (s) + CO (g) � HCOONa (s)

The free energy of formation, the heat of formation and the specific heat of the components are
given below:

9.9 Methanol is produced by the following reaction:
CO (g) + 2H2 (g) � CH3OH (g)

The standard heat of formation of CO (g) and CH3OH (g) at 298 K are –110,500 J/mol and
–200,700 J/mol respectively. The standard free energies of formation are –137,200 J/mol and –
162,000 J/mol respectively.
(a) Calculate the standard free energy change and determine whether the reaction is feasible at

298 K.
(b) Determine the equilibrium constant at 400 K assuming that the heat of reaction is constant.
(c) Derive an expression for the standard free energy of reaction as function of temperature if

the specific heats of the components are:

CP = 3.376R + 0.557 � 10–3RT – 0.031 � 105RT–2 for CO

CP = 3.249R + 0.422 � 10–3RT + 0.083 � 105RT–2 for H2

CP = 2.211R + 12.216 � 10–3RT – 3.450 � 10–6RT2 for CH3OH

(d) Use the equation obtained in part (c) to calculate the equilibrium constant at 400 K and
compare with the result in part (b).

9.10 Calculate the equilibrium constant at 298 K for the reaction



9.11 The standard free energy change for the reaction
C4H8 (g) � C4H6 (g) + H2 (g)

is given by the relation

(a) Over what range of temperature is the reaction promising from a thermodynamic viewpoint?
(b) For reaction of pure butene at 800 K, calculate the equilibrium conversion for operation at

1 bar and 5 bar.
(c) Repeat part (b) if the feed consists of 50% (mol) butene and the rest inerts.

9.12 Calculate the equilibrium constant for the vapour-phase hydration of ethylene to ethanol at 600
K

C2H4 + H2O � C2H5OH

The following data are available:

9.13 The equilibrium constant at 420 K for the vapour-phase hydration of ethylene to ethanol
according to the reaction

C2H4 + H2O � C2H5OH

is 6.8 � 10–2 and standard heat of reaction at 298 K is –45.95 � 103 J. The specific heat data
are as follows:



Formulate general relationships for estimating the equilibrium constant and standard free energy
change as functions of temperature.

9.14 For the vapour-phase hydration of ethylene to ethanol according to
C2H4 + H2O � C2H5OH

the equilibrium constants were measured at temperature 420 K and 600 K. They are 
6.8 � 10–2 and 1.9 � 10–3 respectively. The specific heat (J/mol K) data are:

Develop general expressions for the equilibrium constant and standard free energy change as
functions of temperature.

9.15 The water–gas shift reaction
CO (g) + H2O (g) � CO2 (g) + H2 (g)

takes place at 373 K. The equilibrium constant KP for this reaction at 537 K = 9.8 � 10–4. The
heats of formation at 298 K are: CO = –110,525 J/mol, CO2 = –393,509 J/mol, 
H2O = –241,818 J/mol. Calculate the equilibrium constant at 1000 K.

9.16 Calculate the fraction of pure ethane that would dehydrogenate at 750 K and 5 atm, if the
following reaction goes to equilibrium.

DG0 for the reaction at 750 K is 42.576 kJ. Assume ideal behaviour.
9.17 Ethanol can be prepared by the following vapour-phase reaction from ethylene:

The value of DG0 for the above reaction at 1 bar and 398 K is 5040 J. Calculate the conversion
obtained if an isothermal reactor operating at 398 K and 2 bar is fed with a mixture containing
50 mol percent ethylene and 50 mol percent steam. Assume that equilibrium is reached at the
exit of the reactor and the gases behave ideally.

9.18 A gaseous mixture containing 30% CO, 50% H2 and the rest inert gas is sent to a reaction



chamber for methanol synthesis. The following reaction occurs at 635 K and 310 bar.
CO (g) + 2H2 (g) � CH3OH (g)

Assuming that the gas mixture behaves as an ideal solution calculate the per cent conversion of
CO given that Kf = 5 � 10–5 and Kf = 0.35.

9.19 Estimate the maximum conversion of ethylene to alcohol by vapour phase hydration at 
523 K and 34 bar.

C2H4 (g) + H2O (g) � C2H5OH (g)

The equilibrium constant varies with temperature as

ln K = 4760/T – 1.558 ln T + 2.22 � 10–3T – 0.29 � 10–6T2 – 5.56
The steam–ethylene ratio in the initial mixture is 5.0. The fugacity coefficients for ethylene,
ethanol and water vapour are 0.98, 0.84 and 0.91.

9.20 Ethanol is manufactured by the vapour-phase hydration of ethylene to ethanol according to the
reaction,

C2H4 (g) + H2O (g) � C2H5OH (g)

Starting with a gas mixture containing 25% ethylene and 75% steam, determine the composition
of the products if the reaction were carried out at 400 K and 1 bar. The standard free energy of
reaction at 400 K is 4548.3 J.

9.21 What would be the equilibrium yield of ethanol at 1 bar and 373 K in the following reaction?
C2H4 (g) + H2O (g) � C2H5OH (g)

The reactant stream consists of an equimolar mixture of steam and ethylene. The standard free
energy change may be taken as  = 1264 J/mol.

9.22 Calculate the equilibrium percentage conversion of nitrogen to ammonia at 700 K and 
300 bar, if the gas enters the converter with a composition of 75% (mol) hydrogen and 25%
(mol) nitrogen. For the reaction

equilibrium constant may be taken as K = 9.1 � 10–3. Assume that Kf = 0.72.
9.23 The gases from the pyrites burner of a contact sulphuric acid plant have the following

composition: SO2 = 7.80%, O2 = 10.80% and N2 = 81.40%. This is then passed into a
converter where the SO2 is converted to SO3. The temperature and pressure in the converter are
775 K and 1 bar. The equilibrium constant for the reaction

may be taken as K = 85. Calculate the composition of gases leaving the converter.
9.24 One mol carbon at 298 K reacts with 2 mol oxygen at 298 K to form an equilibrium mixture of

CO2, CO and O2 at 3000 K and 1 bar. If the equilibrium constant K = 0.328, determine the



equilibrium composition.
9.25 One mol carbon at 298 K and 1 bar reacts with 1 mol oxygen at 298 K and 1 bar to form an

equilibrium mixture of CO2, CO and O2 at 3000 K and 1 bar in a steady flow process.
Determine the equilibrium composition and heat transfer for this process if the equilibrium
constant K = 0.328. Standard heat of formation are 393.509 kJ/mol for CO2, 110.525 kJ/mol for
CO. The mean heat capacity of products = 45 J/mol K.

9.26 Pure N2O4 at a low temperature is diluted with air and heated to 298 K and 1 bar. The
following reaction occurs

N2O4 (g) � 2NO2 (g)

If the mole fraction of N2O4 in the N2O4–air mixture before dissociation begins is 0.2,
calculate the extent of decomposition and mole fraction of NO2 and N2O4 present at
equilibrium. The standard free energy change for the reaction at 298 K = 4644.7 J/mol.

9.27 Methanol is manufactured according to the reaction
CO (g) + 2H2 (g) � CH3OH (g)

The reaction is carried out at 400 K and 1 bar. The standard heat of reaction at this condition is
– 9.4538 � 104 J and the equilibrium constant is 1.52. Analysis of the equilibrium vapour
product from the reactor shows 40% hydrogen. Equilibrium gas mixture can be treated as an
ideal gas.
(a) Determine the concentrations of CO and CH3OH in the product.
(b) If the reaction occurred at 500 K and 1 bar starting with the same feed as in part (a) would

you expect the concentration of hydrogen in the equilibrium mixture to be greater or less than
40% mole? Why?

9.28 Determine the maximum percentage of ethane that may get dehydrogenated to ethylene at 750
K and 5 bar according to the reaction

C2H6 (g) � C2H4 (g) + H2 (g)

The standard free energy of reaction at 750 K is 4.2593 � 104 J.
9.29 Hydrogen cyanide can be produced by the gas-phase nitrogenation of acetylene according to

the reaction
N2 (g) + C2H2 (g) � 2HCN (g)

The feed to the reactor consists of an equimolar mixture of acetylene and nitrogen. The
temperature of the reaction is 575 K. At this temperature, the standard free energy 
of reaction is 3.0181 � 104 J. Determine the percentage of cyanide in the reaction 
mixture if
(a) The pressure is 1 bar
(b) The pressure is 200 bar. The fugacity coefficients for HCN, C2H2 and N2 may be taken as

0.607, 0.942 and 1.07 respectively.
9.30 For the synthesis of ammonia according to the reaction



a mixture consisting of 0.5 mol N2, and 1.5 mol H2 is send to the reactor. The equilibrium
mixture behaves as ideal gas. Show that the extent of reaction e is given by

e = 1 – (1 + 1.299 KP)–1/2

9.31 For the reaction

in equilibrium at 775 K what pressure is required for a 90 per cent conversion of SO2 if the
initial mixture is equimolar in the reactants. Assume ideal gases. Take the free energy of the
reaction at 775 K to be –2.8626 � 104 J.

9.32 1-butene is dehydrogenated to 1,3-butadiene according to the reaction
C4H8 (g) � C4H6 (g) + H2 (g)

Determine the extent of reaction at equilibrium at 900 K and 1 bar with
(a) 1 mol butene as the reactant
(b) a reactant mixture consisting of 1 mol butene and 10 mol steam.

The following free energy functions and heat of formation data are available:

9.33 An experimental investigation on the effect of temperature on the reaction
A (g) + B (g) � C (g)

gave the following equilibrium compositions at 373 K and 473 K. The pressure was maintained
at 1 bar. At 373 K, yA = 0.414, yB = 0.414 and yC = 0.172; At 473 K, 
yA = 0.179, yB = 0.179 and yC = 0.642. What will be the equilibrium composition at 423 K and
10 bar if equimolar quantities of the reactants are used?

9.34 Determine the ranges of temperature and pressure for which the equilibrium conversion is at
least 10% in the following reaction:

CO (g) + 2H2 (g) � CH3OH (g)

Assume that stoichiometric quantities of reactants are used. The standard free energy of
formation of methanol and CO are respectively –1.626 � 105 J/mol and –1.374 � 105 J/mol at
298 K. The standard heat of formation at 298 K are –2.013 � 105 J/mol and –1.106 
� 105 J/mol. Heat of reaction may be assumed to remain constant.



9.35 The equilibrium constant for the oxidation of SO2 to SO3 according to the reaction

where T is in K and K is in (bar)–1/2. A feed mixture containing 12% SO2, 9% O2 and 79% N2
is reacted at 749 K and 1 bar. Calculate the fractional conversion of SO2.

9.36 Ethanol is produced by vapour-phase hydration of ethylene:
C2H4 (g) + H2O (g) � C2H5OH (g)

9.37 Acetic acid is esterified in the liquid phase with ethanol at 373 K and 1 bar to produce ethyl
acetate and water according to the reaction

CH3COOH (l) + C2H5OH (l) � CH3COOC2H5 (l) + H2O (l)

The feed consists of 1 mol each of acetic acid and ethanol, estimate the mole fraction of ethyl
acetate in the reacting mixture at equilibrium. The standard heat of formation and standard free
energy of formation at 298 K are given below:



Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as
ideal solution.

9.38 The esterification of ethanol with acetic acid occurs in an aqueous solution as follows:
C2H5OH (aq) + CH3COOH (aq) � CH3COOC2H5 (aq) + H2O (l)

The free energies of formation of acetic acid, ethanol and ethyl acetate in a hypothetical 1 molal
solution at 298 K are –3.9645 � 105 J, –1.8053 � 105 J and –3.3296 � 105 J respectively.
The free energy of formation of water at 298 K is –2.3735 � 105 J. What is the equilibrium
constant? Starting with a dilute equimolar mixture of ethanol and acetic acid, calculate the extent
of reaction and the molalities of ethyl acetate and acetic acid in the equilibrium solution.
Assume dilute solution behaviour.

9.39 Carbon dioxide is reduced by graphite according to the equation
C (s) + CO2 (g) � 2CO (g)

Assuming that equilibrium is attained at 1000 K and 1 bar, calculate the degree of completion of
reduction of CO2. The following data are available:

9.40 Carbon dioxide is reduced by graphite according to the equation
C (s) + CO2 (g) � 2CO (g)

Calculate the effect of pressure on the degree of completion of pure CO2 at 1000 K assuming
total pressures of 1, 2 and 3 bar. Gas mixture may be treated as ideal gas and an equilibrium
constant value of K = 1.778 may be assumed.

9.41 Calculate the decomposition pressure of limestone at 1000 K given that

9.42 Ammonium chloride decomposes upon heating to yield a gas mixture of ammonia and
hydrochloric acid. At what temperature does ammonium chloride exert a decomposition
pressure of 1 bar? The standard heat of formation and the standard free energy of formation are
as follows:



9.43 The following decomposition reaction occurs at 373 K in the liquid phase.
A � B + C

The equilibrium constant based on pure liquid standard state is 2. The vapour pressures are PA
= 5 bar, PB = 20 bar and PC = 2 bar. Assume that all vapours are ideal, liquid B is immiscible
with A–C liquid mixture and the A–C mixture is ideal. Calculate the equilibrium pressure and
the composition of the liquid and vapour phases.

9.44 The equilibrium constant for the following reaction is found to be 2.
A (l) � B (l) + C (l)

The vapour pressures are PA = 5 bar, PB = 20 bar and PC = 2 bar. A and C form ideal solution
and B is immiscible with either A and C or their mixtures. The system consisted of pure A
initially. Find the pressure below which only a gas phase exists.

9.45 Mixtures of CO and CO2 are to be processed at temperatures between 900 K and 1000 K.
Determine the conditions under which solid carbon might deposit according to the reaction

CO2 (g) + C (s) � 2CO (g)

The equilibrium constants for this reaction are 0.178 at 900 K and 1.58 at 1000 K. (Hint: The
activity of solid carbon is less than unity if carbon is not present in the system.)

9.46 Acetylene is catalytically hydrogenated to ethylene at 1500 K and 1 bar. Starting with an
equimolar mixture of acetylene and hydrogen what will be the mole fractions at equilibrium?
Assume ideal gases.

C2H2 � 2C + H2; K = 5.2

2C + 2H2 � C2H4; K = 0.1923

9.47 What would be the equilibrium conversion of ethyl alcohol to butadiene at 700 K and 
1 bar given the following reactions?

C2H5OH � C2H4 + H2O; DG0 = – 45,427 J/mol

C2H5OH � CH3CHO + H2; DG0 = – 15,114 J/mol

C2H4 + CH3CHO � C4H6 + H2O; DG0 = – 5,778 J/mol

9.48 The feed to a reactor consists of an equimolar mixture of A and B. Determine the equilibrium
composition of the mixture if the following gas-phase reaction occurs at 1000 K and 1 bar.

A + B � C + D; K = 0.4
A + 2B � C + E; K = 0.5067



9.49 The following reactions occur at 1500 K and 10 bar.
A + B � C + D; K = 2.67
A + C � 2E; K = 3.20

The initial mixture consists of 2 mol A and 1 mol B, determine the composition at equilibrium
assuming ideal gas behaviour.

9.50 Determine the number of degrees of freedom in a gaseous system consisting of NH3, NO2,
NO, H2O, O2 and N2.

9.51 Determine the number of degrees of freedom in a gaseous system consisting of H2O, HCl, O2
and Cl2.
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APPENDIX C

Aptitude Test in Chemical Engineering
Thermodynamics
Given below are some questions which will help the students to check their knowledge in the subject
of Chemical Engineering Thermodynamics. These questions are prepared for the benefit of students
appearing for various competitive examinations. In fact, some of these are taken from the GATE
(Graduate Aptitude Test in Engineering) question papers.
C.1 Write the most appropriate answer to the following multiple-choice questions:

1. The major limitation of the first law of thermodynamics is that it does not consider
A. Heat as a form of energy
B. Rate of change of a process
C. Direction of change
D. Spontaneous processes

2. All spontaneous processes are
A. Reversible
B. Irreversible
C. Reversible adiabatic
D. Adiabatic

3. Which one of the following may be treated as a statement of the second law of thermodynamics
A. Heat and work are energy in transit
B. It is impossible to convert mechanical work to heat with 100% efficiency
C. Absolute zero of temperature cannot be attained in practice
D. Energy of an isolated system is conserved

4. CP = CV for a fluid
A. Which is compressible
B. Whose volume coefficient of expansion is negligible
C. Which is homogeneous
D. Under normal temperature and pressure

5. Compared to an ordinary vapour compression refrigerator, the COP of an expansion engine
vapour compression cycle is
A. Greater
B. Lesser
C. Equal
D. No generalisation possible

6. Entropy change of a system is zero in
A. Reversible process



B. Adiabatic process
C. Reversible adiabatic process
D. Isothermal process

7. The heat capacity at constant pressure of a single component system consisting of liquid and
vapour phases in equilibrium is
A. Infinite
B. Zero
C. Positive
D. Negative

8. The ratio of the fugacity to the pressure is known as
A. Activity
B. Activity coefficient
C. Fugacity coefficient
D. Acentric factor

9. Which one of the following is not a property of an ideal gas?
A. Internal energy U is a function of temperature alone
B. Enthalpy H is a function of temperature alone
C. Entropy S is a function of temperature alone
D. Heat capacities CP and CV are functions of temperature alone

10. For ideal gases, DH =  dT is valid
A. For constant volume process
B. For constant pressure process
C. Irrespective of the nature of the process
D. The statement is never true

11. The equation of state for a certain gas is given by P(V – b) = RT, where b is a positive constant.
The Joule–Thomson coefficient of this gas would be
A. Positive
B. Negative
C. Zero
D. Positive within the inversion points

12. A three-stage compressor is used to compress a gas at 1 bar to a final pressure of 
125 bar. For minimum work, the pressure ratios in each stage should be
A. 25
B. 5
C. 41.67
D. None of the above

13. The ordinary vapour compression cycle for refrigeration is less efficient than the Carnot cycle,
because in the former,
A. Evaporation process is non-isothermal
B. A two-phase mixture is to be compressed



C. Vapour leaving the compressor is superheated
D. Expansion process results in liquefaction

14. The main feature of an absorption refrigeration unit is
A. The absence of compression step
B. The absence of expansion step
C. The absence of condensation step
D. None of the above

15. The shaft work done by the fluid in a reversible flow process in which there are no changes in
the kinetic, potential and surface energies, is given by

A. 

B. 

C. 

D. 
16. The reversible work of expansion in a flow process under isothermal condition is equal to

A. –(DA)T
B. –(DG)T
C. –(DU)T
D. –(DH)T

17. The decrease in enthalpy accompanying a reversible expansion measures the shaft work in the
case of
A. A non-flow isothermal process
B. An isothermal flow process
C. An isentropic non-flow process
D. An isentropic flow process

18. For a reversible process occurring at constant temperature and pressure, the decrease in Gibbs
free energy measures
A. The maximum reversible work
B. The maximum reversible work, other than the electrical work
C. The maximum reversible work, other than the wok of expansion
D. The heat supplied

19. CP = CV when

A. 

B. 



C. 

D. 
20. At the triple point of water, the number of degrees of freedom is

A. zero
B. one
C. two
D. three

21. The canonical variables for H are:
A. P and T
B. V and T
C. P and S
D. V and S

22. Which one of the following is incorrect?
A. dU = T dS – P dV
B. dH = T dS – V dP
C. dA = – S dT – P dV
D. dG = – S dT + V dP

23. The volume coefficient of expansion b of an ideal gas equals
A. 1/T
B. 1/P
C. T
D. P

24. Fugacity has the same dimensions as that of
A. Gibbs free energy
B. Pressure
C. Temperature
D. Fugacity is dimensionless

25. The change in free energy when a real gas undergoes an isothermal change in state is
A. DG = RT ln (V2/V1)
B. DG = RT ln (P2/P1)
C. DG = RT ln (f2/f1)
D. DG = RT ln (g2/g1)

26. The difference between the heat supplied and the work extracted in a steady flow process in
which the kinetic and potential energy changes are negligible, is equal to
A. The change in internal energy
B. The change in enthalpy
C. The change in the work function



D. The change in the Gibbs free energy
27. Compressibility factor Z of a gas is

A. The ratio of fugacity in the given state to fugacity in the standard state
B. The ratio of actual volume to the volume of the gas if it were ideal
C. The change in volume with temperature at constant pressure
D. The difference between actual volume and ideal gas volume

28. The temperature at which a transition occurs from a compressibility factor less than 1.00 to that
greater than 1.00 is known as
A. The critical temperature
B. The critical solution temperature
C. The inversion point
D. The Boyle point

29. The coefficient of compressibility k is defined as

A. 

B. 

C. 

D. 
30. For any equation of state to be valid, at the critical point the critical isotherm should 

have
A. A maximum
B. A minimum
C. A point of inflection
D. Negative slope

31. At constant temperature and pressure, the decrease in Gibbs free energy is a measure of
A. The maximum work
B. The maximum net work
C. The unavailable energy
D. The loss in capacity to do work

32. In thermodynamics, a phase means
A. A closed system
B. An open system
C. A homogeneous system
D. A heterogeneous system

33. The net change in a state function is zero for
A. A reversible process
B. An Irreversible process



C. A cyclic process
D. A non-cyclic process

34. The third law of thermodynamics deals with
A. Chemical reactions
B. Quantitative equivalence between heat and work
C. Rate of change of a process
D. Absolute entropy of perfect crystalline substances

35. DG = DA for a process occurring at
A. Constant pressure
B. Constant volume
C. Constant pressure and constant temperature
D. Constant pressure and constant volume

36. As pressure approaches zero, fugacity coefficient value tends to
A. Pressure
B. Zero
C. Unity
D. Infinity

37. For a gas obeying the van der Waals equation of state, at the critical temperature,
A. Both (∂P/∂V)T and (∂2P/∂V2)T are zero
B. The first derivative is zero, while the second derivative is non-zero
C. The second derivative is zero while the first derivative is non-zero
D. Both the derivatives are non-zero

(1991)
38. For an ideal gas, the slope of the pressure-volume curve at a given point will be

A. Steeper for an isothermal than for an adiabatic process
B. Steeper for an adiabatic than for an isothermal process
C. Identical for both the processes
D. Of opposite sign

(1991)
39. The shape of T-S diagram for Carnot cycle is

A. A rectangle
B. A rhombus
C. A trapezoid
D. A circle

(1991)
40. During Joule–Thomson expansion of gases,

A. Enthalpy remains constant
]B. Entropy remains constant
C. Temperature remains constant
D. None of the above

(1992)



41. For a single-component, two-phase mixture, the number of independent variable properties are
A. Two
B. One
C. Zero
D. Three

(1992)
42. Ideal gas law is applicable at

A. Low T, low P
B. High T, high P
C. Low T, high P
D. High T, low P

(1994)
43. The second law of thermodynamics states that

A. The energy change of a system undergoing any reversible process is zero
B. It is not possible to transfer heat from a lower temperature to a higher temperature
C. The total energy of the system and the surroundings remain constant
D. None of the above

(1994)
44. A solid is transformed into vapour without changing into the liquid phase

A. At the triple point
B. At the boiling point
C. Below the triple point
D. Always

(1995)
45. At the inversion point, the Joule–Thomson coefficient is

A. Positive
B. Negative
C. Zero
D. Cannot be generalised

(1995)
46. The kinetic energy of a gas molecule is zero at

A. 0∞C
B. 273∞C
C. 100∞C
D. –273∞C

(1995)
47. Assuming that CO2 obeys the perfect gas law, the density of CO2 in kg/m3 at 536 K and 202.6

kPa is
A. 1
B. 2



C. 3
D. 4

(1995)
48. A closed system is cooled reversibly from 373 K to 323 K. If no work is done on the system

A. Its internal energy (U) decreases and its entropy (S) increases
B. U and S both decrease
C. U decreases but S is constant
D. U is constant but S decreases

(1995)
49. The equation dU = T dS – P dV is applicable to infinitesimal changes occurring in

A. An open system of constant composition
B. A closed system of constant composition
C. An open system with changes in composition
D. A closed system with changes in composition

(1996)
50. A system undergoes a change from a given initial state to a given final state either by an

irreversible process or by a reversible process. Then
A. DSI is always > DSR
B. DSI is sometimes > DSR
C. DSI is always < DSR
D. DSI is always = DSR
where DSI and DSR are the entropy changes of the system for the irreversible and reversible
processes, respectively.

(1997)
51. The change in Gibbs free energy for vaporisation of a pure substance is

A. Positive
B. Negative
C. Zero
D. May be positive or negative

(1997)
52. A change in state involving a decrease in entropy can be spontaneous only if

A. It is exothermic
B. It is isenthalpic
C. It takes place isothermally
D. It takes place at constant volume

(1998)
53. A Carnot cycle consists of the following steps:

A. Two isothermals and two isentropics
B. Two isobarics and two isothermals
C. Two isochorics and two isobarics



D. Two isothermals and two isochorics
(1998)

54. It is desired to bring about certain change in the state of a system by performing work on the
system under adiabatic conditions
A. The amount of work needed is path-dependent
B. Work alone cannot bring about such a change of state
C. The amount of work needed is independent of path
D. More information is needed to conclude anything about the path-dependence or otherwise of

the work needed.
(1998)

55. Chemical potential is
A. An extensive property
B. An intensive property
C. A path property
D. A reference property

56. According to the phase rule, the triple point of a pure substance is
A. Invariant
B. Univariant
C. Bivariant
D. None of the above

57. Which one of the following is incorrect with reference to partial molar properties?
A. They are intensive properties
B. They are always positive
C. They represent the contribution of individual components to the total solution property
D. They vary with composition of the solution

58. All but one of the following represent the chemical potential of component i in solution. Find
the odd man out.

A. 

B. 

C. 

D. 
59. Which one of the following statements is not valid for an ideal solution?

A. There is no volume change on mixing
B. There is no enthalpy change on mixing



C. There is no entropy change on mixing
D. Fugacity is directly proportional to concentration.

60. For the standard state of pure component at the solution pressure, the activity of a component in
an ideal solution is equal to
A. its fugacity in the solution
B. its mole fraction in the solution
C. its partial pressure
D. its chemical potential

61. Which one of the following is the correct form of Gibbs–Duhem equation for a binary solution?

A. 

B. 

C. 

D. 
62. Which one of the following is true for the excess property ME?

A. ME = M – S xiMi
B. ME = M – S xi
C. ME = M – Mid

D. ME = DM
63. One of the following statements is incorrect for a multicomponent system consisting of two

phases in thermodynamic equilibrium. Identify it.
A. The temperatures of both phases are the same
B. The pressure is uniform throughout
C. The concentrations of a component in both phases are equal
D. The chemical potentials of a component in both phases are equal

64. When an ideal binary solution is boiled at constant pressure in a closed container,
A. The boiling temperature remains constant at some value between the bubble point and the

dew point, till the entire liquid is vaporised
B. The boiling temperature varies between the bubble point and the dew point of the solution
C. The boiling occurs at a constant temperature known as the bubble point
D. The boiling occurs either at the bubble point or at the dew point

65. The value of activity coefficient for an ideal solution is
A. One
B. Zero
C. Equal to Henry’s law constant



D. Equal to the vapour pressure
66. A solution exhibiting positive deviation from ideality

A. Always forms a minimum boiling azeotrope
B. Always forms a maximum boiling azeotrope
C. Has a total vapour pressure that is less than that predicted by Raoult’s law
D. When formed from its constituents there is an absorption of heat

67. Which one of the following statements is true with reference to the minimum boiling
azeotropes?
A. There is a minimum on the vapour-pressure curve
B. The solution exhibits positive deviation from ideality
C. The dew point is greater than the bubble point
D. The activity coefficients are less than unity

68. The vaporisation equilibrium constant (K-factor) depends upon
A. Temperature only
B. Pressure only
C. Temperature and pressure only
D. Temperature, pressure and concentration

69. The vapour–liquid equilibrium data are thermodynamically inconsistent if
A. The slopes of the ln g1 vs x1 and ln g2 vs x1 curves have opposite signs
B. When plotted against x1, ln g2 and ln g1 curves pass through a maximum at the same

composition
C. Both g1 and g2 are greater than unity
D. ln g1 vs x1 curve has a maximum and ln g2 vs x1 curve has a minimum at a particular x1.

70. A mixture of two immiscible liquids A and B is in equilibrium with its vapour at temperature T
and pressure P. The vapour pressures of pure A and pure B are  respectively. The
relation applicable to the system is
A. 
B. 
C. 
D. T > TA + TB, where TA and TB are boiling points of pure A and pure B respectively

71. The mutual solubility of two partially miscible liquids increases with temperature. At what
temperature do the two liquid phases become identical?
A. At the critical point
B. At the three-phase temperature
C. At the upper critical solution temperature
D. At the dew point

72. Benzene and water may be considered immiscible. A mixture of benzene (20 g) and water (80
g) is taken in a vessel and boiled. It boils at 101.3 kPa and 342 K. At this temperature vapour
pressure of benzene is 71.18 kPa and that of water is 30.12 kPa. What is the concentration of
benzene in the vapour in mass per cent?



A. 70%
B. 91%
C. 20%
D. 80%

73. The necessary and sufficient condition for equilibrium between two phases is
A. Concentration of each component should be same in the two phases
B. The temperature of each phase should be the same
C. The pressure should be same in the two phases
D. The chemical potential of each component should be same in the two phases

(1992)
74. For a system in equilibrium, at a given temperature and pressure,

A. The entropy must be a minimum
B. The enthalpy must be a minimum
C. The internal energy must be a minimum
D. The Gibbs free energy must be a minimum

(1991)
75. To obtain the integrated form of Clausius–Clapeyron equation

from the exact Clapeyron equation, it is assumed that:
A. The volume of the liquid phase is negligible compared to that of the vapour phase
B. The vapour phase behaves as an ideal gas
C. The heat of vaporisation is independent of temperature
D. All the above are applicable

(1991)
76. One mole of a binary mixture of a given composition is flash vaporised at a fixed P and T. If

Raoult’s law is obeyed, then changing the feed composition would affect
A. The product composition but not the fraction vaporised
B. The product composition as well as the fraction vaporised
C. The fraction vaporised but not the product composition
D. Neither the product composition nor the fraction vaporised

(1997)
77. The molar excess free energy, GE, for a binary liquid mixture at T and P is given by 

GE/RT = Ax1x2, where A is constant. The corresponding equation for ln g1, where g1 is the
activity coefficient of component 1, is
A. 
B. Ax1
C. Ax2
D. 



(1997)
78. A liquid mixture contains 30% o-xylene, 60% p-xylene and 10% m-xylene (all percentages in

w/w). Which of the following statements would be true for this mixture?
A. The mixture exhibits an azeotrope at 101.3 kPa
B. The composition of the mixture in per cent by volume is: o-xylene 30, p-xylene 60 and m-

xylene 10
C. The composition of the mixture in mole per cent is: o-xylene 30, p-xylene 60 and 

m-xylene 10
D. The mixture contains optical isomers

(1998)
79. The theoretical minimum work required to separate one mole of a liquid mixture at 1 bar,

containing 50 mole per cent each of n-heptane and n-octane into pure compounds each at 1 bar is
A. –2RT ln 0.5
B. –RT ln 0.5
C. 0.5RT
D. 2RT

(1996)
80. If the heat of solution of an ideal gas in a liquid is negative, then its solubility at a given partial

pressure varies with temperature as
A. Solubility increases as temperature increases
B. Solubility decreases as temperature increases
C. Solubility is independent of temperature
D. Solubility increases or decreases with temperature depending on the Gibbs free energy of the

solution
(1998)

81. For evaluation of heat effects, all thermochemical equations can be treated as algebraic
equations. This is a consequence of
A. Le Chatlier’s principle
B. Third law of thermodynamics
C. Hess’s law
D. Principle of corresponding states

82. For a chemical reaction occurring at equilibrium under constant temperature and pressure, the
change in Gibbs free energy is
A. Maximum
B. Minimum
C. Zero
D. None of the above

83. The equilibrium constant for the reaction N2 + 3H2 = 2NH3 is 0.1084. Under the same

conditions, the equilibrium constant for the reaction N2 + H2 = NH3 is
A. 0.1084



B. 0.3292
C. 0.0118
D. 0.0542

84. The equilibrium constant is independent of
A. The pressure at equilibrium
B. The temperature at equilibrium
C. The number of moles involved in the stoichiometric equation for the reaction
D. The temperature and pressure at the equilibrium

85. For a highly favourable chemical reaction, the standard free energy change is
A. Zero
B. Unity
C. Positive
D. Negative

86. For an exothermic reaction, the increase in temperature results in
A. Increase of K
B. Decrease of K
C. No change of K
D. None of the above

87. For the reaction N2 + 3H2 � 2NH3, the increase in pressure results in
A. Increase of K
B. Increase in the concentration of ammonia at equilibrium
C. Decrease of K
D. Decrease in the concentration of ammonia at equilibrium

88. For the equilibrium yield in a gas-phase reaction, diluting the reaction mixture with an inert gas
A. Has the same effect as that of an increase in pressure
B. Has the same effect as that of a decrease in pressure
C. Has no correlation with a change in pressure
D. Always produces unfavourable results

89. Which one of the following statements is true for ammonia synthesis reaction?
A. Increase in temperature increases K
B. Increase in pressure decreases the conversion
C. Presence of argon in the reactant stream decreases conversion
D. Increase in pressure increases K

90. The number of degrees of freedom for a system prepared by partially decomposing CaCO3 into
an evacuated space is
A. 0
B. 1
C. 2
D. 3

91. An exothermic gas-phase reaction proceeds according to the equation



3A + 2B � 2R
The equilibrium conversion for this reaction:
A. Increases with an increase in temperature
B. Decreases on dilution with an inert gas
C. Decreases with an increase in pressure
D. Is affected by the presence of a catalyst

(1990)
92. The reaction A (l) = R (g) + S (g) is allowed to reach equilibrium conditions in an autoclave.

At equilibrium there are two phases, one pure liquid phase of A and the other a vapour phase of
A, R and S. Initially, A alone is present. The number of degrees of freedom are
A. 1
B. 2
C. 3
D. 0

(1996)
93. Given

3H2 + CO � CH4 + H2O, Kp = 101.84

and

4H2 + CO2 � CH4 + 2H2O, Kp = 101.17

the Kp for the reaction CO + H2O � CO2 + H2 is

A. 103.01

B. 10–0.67

C. 10–3.01

D. 100.67
(1996)

94. Which of the following is true for virial equation of state?
A. Virial coefficients are universal constants
B. Virial coefficient B represents three-body interactions
C. Virial coefficients are functions of temperature only
D. For some gases, virial equations and ideal gas equation are the same

(1999)
95. A gas mixture of three components is brought in contact with a dispersion of an organic phase

in water. The degrees of freedom of the system are
A. 4
B. 3
C. 5
D. 6

(1999)



96. Maxwell’s equation corresponding to the identity, dH = T dS + V dP + S mi dni, is

A. 

B. 

C. 

D. 
(1999)

97. In a binary liquid solution of components A and B, if component A exhibits positive deviation
from Raoult’s law then component B
A. exhibits positive deviation from Raoult’s law
B. exhibits negative deviation from Raoult’s law
C. obeys Raoult’s law
D. may exhibit either positive or negative deviation from Raoult’s law

(2000)
98. Assume that benzene is insoluble in water. The normal boiling points of benzene and water are

353.3 K and 373.2 K, respectively. At a pressure of 1 atm, the boiling point of a mixture of
benzene and water is
A. 353.3 K
B. less than 353.3 K
C. 373.2 K
D. greater than 353.3 K but less than 373.2 K

(2000)
99. On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible

isothermal line at point A. Then at point A, the slope of the reversible adiabatic line 
(∂P/∂V)S and the slope of the reversible isothermal line (∂P/∂V)T are related as

A. 

B. 

C. 

D. 



where g = CP/CV.
(2000)

100. The thermal efficiency of a reversible heat engine operating between two given thermal
reservoirs is 0.4. The device is used either as a refrigerator or as a heat pump between the same
reservoirs. The coefficient of performance as a refrigerator (COP)R and the coefficient of
performance as a heat pump (COP)HP are
A. (COP)R = (COP)HP = 0.6
B. (COP)R = 2.5; (COP)HP = 1.5
C. (COP)R = 1.5; (COP)HP = 2.5
D. (COP)R = (COP)HP = 2.5

(2000)
101. At a given temperature, K1, K2 and K3 are the equilibrium constants for the following

reactions 1, 2, 3 respectively:

Then K1, K2 and K3 are related as
A. K3 = K1K2
B. K3 = (K1K2)0.5

C. K3 = (K1 + K2)/2

D. K3 = (K1K2)2

(2000)
102. A reasonably general expression for vapour–liquid equilibrium at low to moderate pressures

is

where fi is a vapour fugacity coefficient, gi is the liquid activity coefficient and  is the
fugacity of pure component i. The Ki value (yi = Kixi) is therefore, in general, a function of
A. temperature only
B. temperature and pressure only
C. temperature, pressure and liquid composition xi only
D. temperature, pressure, liquid composition xi, and vapour composition yi

(2001)
103. High pressure steam is expanded adiabatically and reversibly through a well insulated turbine

which produces some shaft work. If the enthalpy change and entropy change across the turbine
are represented by DH and DS respectively, for this process:



A. DH = 0 and DS = 0
B. DH � 0 and DS = 0
C. DH � 0 and DS � 0
D. DH = 0 and DS � 0

(2001)
104. For the case of a fuel gas undergoing combustion with air, if the air/fuel ratio is in-creased,

the adiabatic flame temperature will
A. increase
B. decrease
C. increase or decrease depending on the fuel type
D. not change (2001)

105. The Maxwell relation derived from the differential equation for the Helmholtz free energy
(DA) is

A. 

B. 

C. 

D. 
(2001)

106. At 373 K, water and methyl cyclohexane both have a vapour pressure of 1.0 atm. The latent
heats of vaporization are 40.63 kJ/kmol for water and 31.55 kJ/kmol for cyclohexane. The
vapour pressure of water at 423 K is 4.69 atm. The vapour pressure of methyl-cyclohexane at
423 K is expected to be
A. Significantly less than 4.69 atm
B. Nearly equal to 4.69 atm
C. Significantly more than 4.69 atm
D. Indeterminate due to lack of data

(2001)
107. Air enters an adiabatic compressor at 300 K. The exit temperature for a compression ratio of

3, assuming air to be an ideal gas (g = Cp/CV = 7/5) and the process to be reversible, is

A. 300(32/7)
B. 300(33/5)
C. 300(33/7)
D. 300(35/7)

(2001)



108. The extent of reaction is
A. different for reactants and products
B. dimensionless
C. dependent on the stoichiometric coefficients
D. all of the above

(2002)
109. An exothermic reaction takes place in an adiabatic reactor. The product temperature 

the reactor feed temperature.
A. is always equal to
B. is always greater than
C. is always less than
D. may be greater or less than

(2002)
110. The number of degrees of freedom for an azeotropic mixture of ethanol and water in vapour-

liquid equilibrium is
A. 3
B. 1
C. 2
D. 0

(2002)
111. The partial molar enthalpy of a component in an ideal binary gas mixture of composition z, at

a temperature T and pressure P, is a function only of
A. T
B. T and P
C. T, P and z
D. T and z

(2002)
112. Which of the following identities can most easily be used to verify steam table data for

superheated steam?

A. 

B. 

C. 

D. 
(2002)

113. Steam undergoes isentropic expansion in a turbine from 5000 kPa and 673 K (entropy = 6.65
kJ/kg K) to 150 kPa (entropy of saturated liquid = 1.4336 kJ/kg K, entropy of saturated vapour =



7.2234 kJ/kg K). The exit condition of steam is
A. superheated vapour
B. partially condensed vapour with quality of 0.9
C. saturated vapour
D. partially condensed vapour with quality of 0.1

(2002)
114. A rigid vessel, containing three moles of nitrogen gas at 303 K is heated to 523 K. Assume the

average heat capacities of nitrogen to be CP = 29.1 J/mol K and CV = 
20.8 J/mol K. The heat required, neglecting the heat capacity of the vessel, is
A. 13728 J
B. 19206 J
C. 4576 J
D. 12712 J

(2002)
115. One cubic metre of an ideal gas at 500 K and 1000 kPa expands reversibly to 5 times its

volume in an insulated container. If the specific heat capacity (at constant pressure) of the gas is
21 J/mol K, the final temperature will be
A. 35 K
B. 174 K
C. 274 K
D. 154 K

(2002)
116. Ammonia is produced by the following reaction:

N2 + 3H2 � 2NH3
In a commercial process for ammonia production, the feed to an adiabatic reactor con-tains 1
kmol/s of nitrogen and stoichiometric amounts of hydrogen at 700 K. Assume the feed and
product streams to be ideal gas mixtures. The heat of reaction at 700 K for the above reaction is
calculated to be – 94.2 kJ/mol. The mean molar heat capacity in the range of 700–800 K are
0.03, 0.0289 and 0.0492 kJ/mol K for nitrogen, hydrogen and ammonia respectively. What is the
maximum allowable conversion in the reactor, if the adiabatic temperature rise across the
reactor should not exceed 100 K?
A. 87.9%
B. 12.1%
C. 25.8%
D. 74.2%

(2002)
117. In Joule’s experiments, an insulated container contains 20 kg of water initially at 25°C. It is

stirred by an agitator, which is made to turn by a slowly falling body weighing 
40 kg through a height of 4 m. The process is repeated 500 times. The acceleration due to gravity
is 9.8 m/s2. Neglecting the heat capacity of the agitator, the temperature of water in (°C) is
A. 40.5



B. 34.4
C. 26.8
D. 25

(2003)
118. One mole of nitrogen at 8 bar and 600 K is contained in a piston-cylinder assembly. It is

brought to 1 bar isothermally against a resisting pressure of 1 bar. The work done (in joules) by
the gas is
A. 30554
B. 10373
C. 4988.4
D. 4364.9

(2003)
119. For water at 573 K, it has a vapour pressure of 8592.7 kPa and fugacity 6738.9 kPa. Under

these conditions, one mole of water in liquid phase has a volume of 25.28 cm3, and that in
vapour phase 391.1 cm3. The fugacity of water (in kPa) at 9000 kPa is
A. 6738.9
B. 6753.5
C. 7058.3
D. 9000

(2003)
120. The heat capacity of air can be approximately expressed as

CP = 26.693 + 7.365 � 10–3T

where CP is in J/mol K and T is in K. The heat given off by one mole of air when cooled at 1
atmospheric pressure from 500°C to –100°C is
A. 10.73 kJ
B. 16.15 kJ
C. 18.11 kJ
D. 18.33 kJ

(2003)
121. A solid metallic block weighing 5 kg has an initial temperature of 500°C; 40 kg of water

initially at 25°C is contained in a perfectly insulated tank. The metallic block is brought into
contact with water. Both of them come to equilibrium. The specific heat of the block material is
0.4 kJ/kg K. Ignoring the effect of expansion and contraction, and also the heat capacity of the
tank, the total entropy change in kJ/kg K is
A. –1.87
B. 0.0
C. 1.26
D. 3.91

(2003)
122. The following heat engine produces a power of 100,000 kW. The heat engine operates



between 800 K and 300 K. It has a thermal efficiency equal to 50% of that of the Carnot engine
for the same temperatures. The rate at which heat is absorbed from the hot reservoir is
A. 100,000 kW
B. 160,000 kW
C. 200,000 kW
D. 320,000 kW

(2003)
123. A steam turbine operates with a superheated steam flowing at 1 kg/s. The steam is supplied at

41 bar and 500°C, and discharges at 1.01325 bar and 100°C.

The maximum power output (in kW) will be
A. 644.0
B. 767.9
C. 871.3
D. 3024.8

(2003)
124. At 60°C, the vapour pressures of methanol and water are 84.562 kPa and 19.953 kPa

respectively. An aqueous solution of methanol at 60°C exerts a pressure of 39.223 kPa; the
liquid phase and the vapour phase mole fractions of methanol are 0.1686 and 0.5714
respectively. The activity coefficient of methanol is
A. 1.572
B. 1.9398
C. 3.389
D. 4.238

(2003)
125. One kilogram of saturated steam at 373 K and 1.01325 bar is contained in a rigid 

walled vessel. It has a volume of 1.673 m3. It is cooled to 371 K; the saturation pressure is
0.943 bar. One kilogram of water vapour under these conditions has a volume of 1.789 m3. The
amount of water vapour condensed in kilograms is
A. 0.0
B. 0.065
C. 0.1
D. 1.0

(2003)



126. One kilogram of saturated steam at 373 K and 1.01325 bar is contained in a rigid walled
vessel. It has a volume of 1.673 m3. It is cooled to 371 K; the saturation pressure is 0.943 bar.
One kilogram of water vapour under these conditions has a volume of 1.789 m3. The latent heat
of condensation in kJ/kg under these conditions is
A. 40732
B. 2676
C. 2263
D. 540

(2003)
127. For an ideal gas mixture undergoing a reversible gaseous phase chemical reaction, the

equilibrium constant
A. is independent of pressure
B. increases with pressure
C. decreases with pressure
D. increases/decreases with pressure depending on the stoichiometric coefficients of the

reaction
(2004)

128. As pressure approaches zero, the ratio of fugacity to pressure (f/P) for a gas approaches
A. zero
B. unity
C. infinity
D. an indeterminate value.

(2004)
129. A perfectly insulated container of volume V is divided into two equal halves by a partition.

One side is under vacuum and the other side contains one mole of an ideal gas (with constant
heat capacity) at 298 K. If the partition is broken, the final temperature of the gas in the container
A. will be greater than 298 K
B. will be 298 K
C. will be less than 298 K
D. cannot be determined

(2004)
130. One mole of methane at 298 K undergoes complete combustion in a stoichiometric amount of

air also at 298 K. Both the reactants and products are in the gas phase.

CH4 + 2CO2 � CO2 + 2H2O DH0298 = –730 kJ/mol

If the average specific heat of all the gases/vapours is 40 J/mol K, the maximum temperature rise
(in K) of the exhaust gases would be approximately
A. 1225
B. 1335
C. 1525
D. 1735



(2004)
131. A vessel of volume 1000 m3 contains air which is saturated with water vapour. The total

pressure and temperature are 100 kPa and 293 K respectively. Assuming that the vapour
pressure of water at 293 K is 2.34 kPa, the amount of water vapour in kilograms in the vessel is
approximately
A. 17
B. 20
C. 25
D. 34

(2004)
132. A car tyre of volume 0.057 m3 is inflated to 300 kPa and 300 K. After the car is driven for 10

hours, the pressure in the tyre increases to 330 kPa. Assume air is an ideal gas and CV for air is
21 J/mol K. The change in internal energy of air in tyre in J/mol is
A. 380
B. 630
C. 760
D. 880

(2004)
133. A gas obeys P(V – b) = RT. The work obtained from reversible isothermal expansion of one

mole of this gas from an initial volume Vi to a final volume Vf is

A. 

B. 

C. 

D. 
(2004)

134. A cyclic engine exchanges heat with two reservoirs maintained at 100°C and 300°C,
respectively. The maximum work (in J) that can be obtained from 1000 J of heat extracted from
the hot reservoir is
A. 349
B. 651
C. 667
D. 1000

(2004)

135. The vapour pressure of water is given by Psat = A – , where A is a constant, Psat is



vapour pressure in atm, and T is temperature in K. The vapour pressure of water 
(in atm) at 50°C is approximately
A. 0.07
B. 0.09
C. 0.11
D. 0.13

(2004)
136. At standard conditions,

The standard free energy of formation of NO in kJ/mol is
A. 15
B. 30
C. 85
D. 170

(2004)
137. The boiling points for pure water and toluene are 100°C and 110.6°C respectively. Toluene

and water are completely immiscible in each other. A well-agitated equimolar mixture of
toluene and water is prepared. The temperature at which the above mixture will exert a pressure
of one standard atm is
A. less than 100°C
B. 100°C
C. between 100 and 110.6°C
D. 110.6°C

(2004)
138. The boiling points for pure water and toluene are 100°C and 110.6°C respectively. Toluene

and water are completely immiscible in each other. A well-agitated equimolar mixture of
toluene and water is prepared. At a total pressure of one standard atm exerted by the vapours of
water and toluene, the mole fraction of water xw in the vapour phase satisfies
A. 0 < xw < 0.5
B. xw = 0.5
C. 0.5 < xw < 1.0
D. xw = 1.0

(2004)
139. In the van der Waal equation of state, what are the criteria applied at the critical point to

determine the parameters a and b?



A. 

B. 

C. 

D. 
(2005)

140. Which one of the following statements is true?
A. Heat can be fully converted into work.
B. Work cannot be fully converted to heat.
C. The efficiency of a heat engine increases as the temperature of the heat source is increased

while keeping the temperature of the heat sink fixed.
D. A cyclic process can be devised whose sole effect is to transfer heat from a lower

temperature to a higher temperature.
(2005)

141. A Carnot heat engine cycle is working with an ideal gas. The work performed by the gas
during the adiabatic expansion and compression steps, W1 and W2 respectively, are related as
A. |W1| > |W2|
B. |W1| < |W2|
C. W1 = W2
D. W1 = –W2

(2005)
142. The van Laar activity coefficient model for a binary mixture is given in the form

Given g1 = 1.40, g2 = 1.25, x1 = 0.25, x2 = 0.75, determine the constants A* and B*.
A. A* = 0.5, B* = 0.3
B. A* = 3, B* = 0.5



C. A* = 0.333, B* = 0.2
D. A* = 2, B* = 0.333

(2005)
143. A liquid mixture of benzene and toluene is in equilibrium with its vapour at 101.3 kPa and

373 K. The vapour pressures of benzene and toluene at 373 K are 156 and 63 kPa respectively.
Assuming that the system obeys Raoult’s law, the mole fraction of benzene in the liquid phase is
A. 0.65
B. 0.41
C. 0.065
D. 0.04

(2005)
144. A frictionless cylinder piston assembly contains an ideal gas. Initially at pressure (P1) = 100

kPa, temperature (T1) = 500 K and volume (V1) = 700 � 10–6 m3. This system is supplied
with 100 J of heat and pressure is maintained constant at 100 kPa. The enthalpy variation is
given by h (J/mol) = 30000 + 50T, where T is the temperature in K, and the universal gas
constant R = 8.314 J/mol K. The final volume of the gas (V2) in m3 is

A. 700 � 10–6

B. 866.32 � 10–6

C. 934.29 � 10–6

D. 1000.23 � 10–6
(2005)

145. A frictionless cylinder piston assembly contains an ideal gas. Initially pressure (P1) = 100

kPa, temperature (T1) = 500 K and volume (V1) = 700 � 10–6 m3. This system is supplied
with 100 J of heat and pressure is maintained constant at 100 kPa. The enthalpy variation is
given by h (J/mol) = 30000 + 50T, where T is the temperature in K, and the universal gas
constant R = 8.314 J/mol K. The change in internal energy of the gas is
A. 0
B. 100
C. 23.43
D. 83.37

(2005)
146. Heat and work are

A. intensive properties
B. extensive properties
C. point functions
D. path functions

147. A frictionless piston-cylinder device contains a gas initially at 0.8 MPa and 0.015 m3. It
expands quasi-statically at constant temperature to a final volume of 0.030 m3. The work output



(in kJ) during the process will be
A. 8.32
B. 12.0
C. 554.67
D. 8320.00

148. The contents of a well-insulated tank are heated by a resistor of 23 W in which 10 A current is
flowing. Consider the tank along with its contents as a thermodynamic system. The work done by
the system and the heat transfer to the system are positive. The rates of heat Q, work W and
change in internal energy DU during the process in kW are
A. Q = 0, W = –2.3, DU = +2.3
B. Q = +2.3, W = 0, DU = +2.3
C. Q = +2.3, W = 0, DU = –2.3
D. Q = 0, W = +2.3, DU = –2.3

149. A compressor undergoes a reversible steady-flow process. The gas at inlet and outlet of the
compressor is designated as state 1 and state 2, respectively. Potential and kinetic energy
changes are to be ignored. The following notations are used:
V specific volume and P pressure of the gas
The specific work required to be supplied to the compressor for this gas compression process is

A. 

B. 
C. V1(P2 – P1)
D. P2(V1 – V2)

150. A gas contained in a cylinder is compressed, the work required for compression being 5000
kJ. During the process heat interaction of 2000 kJ causes the surroundings to be heated. The
change in internal energy of gas during the process is
A. –7000 kJ
B. –3000 kJ
C. 3000 kJ
D. 7000 kJ

151. A mono-atomic ideal gas (g = 1.67, molecular weight = 40) is compressed adiabatically from
0.1 MPa, 300 K to 0.2 MPa. The universal gas constant is 8.314 kJ/kmol K. The work of
compression of the gas (in kJ/kg) is
A. 29.7
B. 19.9
C. 13.3
D. 0

152. A gas expands in a frictionless piston-cylinder arrangement. The expansion process is very



slow and is resisted by an ambient pressure of 100 kPa. During the expansion process, the
pressure of the system (gas) remains constant at 300 kPa. The change in volume of the gas is
0.01 m3. The maximum amount of work that could be utilized from the above process is
A. zero
B. 1 kJ
C. 2 kJ
D. 3 kJ

153. One kilogram water at room temperature is brought into contact with a high temperature
thermal reservoir. The entropy change of the universe is
A. equal to entropy change of the reservoir
B. equal to entropy change of water
C. equal to zero
D. always positive

154. If a closed system is undergoing an irreversible process, the entropy of the system
A. must increase
B. always remains constant
C. must decrease
D. can increase, decrease or remain constant

155. Two moles of oxygen are mixed adiabatically with another 2 mol of oxygen in a mixing
chamber, so that the final total pressure and temperature of the mixture become equal to that of
the individual constituents at their initial states. The universal gas constant is given as R. The
change in entropy due to mixing per mole of oxygen is given by
A. –R ln 2
B. zero
C. R ln 2
D. R ln 4

156. Availability of a system at any given state is
A. a property of the system
B. the maximum work obtainable as the system goes to dead state
C. the total energy of the system
D. the maximum useful work obtainable as the system goes to dead state

157. Consider the following two processes:
I. A heat source at 1200 K loses 2500 kJ of heat to sink at 800 K
II. A heat source at 800 K loses 2000 kJ of heat to sink at 500 K
which of the following statements is true?
A. Process I is more irreversible than Process II
B. Process II is more irreversible than Process I
C. Irreversibility associated in both the processes is equal
D. Both the processes are reversible

158. An irreversible heat engine extracts heat from a high temperature source at a rate of 
100 kW and rejects heat to a sink at a rate of 50 kW. The entire work output of the heat engine is



used to drive a reversible heat pump operating between a set of independent isothermal heat
reservoirs at 17°C and 75°C. The rate (in kW) at which the heat pump delivers heat to its high
temperature sink is
A. 50
B. 250
C. 300
D. 360

Common data for Questions 159 and 160.
In an experimental set-up, air flows between two stations P and Q adiabatically. The direction
of flow depends on the pressure and temperature conditions maintained at P and Q. The
conditions at station P are 150 kPa and 350 K. The temperature at station Q is 300 K. The
following are the properties and relations pertaining to air:
Specific heat at constant pressure CP = 1.005 kJ/kg K, Specific heat at constant volume CV =
0.718 kJ/kg K, Universal gas constant R = 0.287 kJ/kg K, Enthalpy H = CpT, Internal energy U =
CVT.
159. If the air has to flow from station P to station Q, the maximum possible value of pressure in
kPa at station Q is close to
A. 50
B. 87
C. 128
D. 150

160. If the pressure at station Q is 50 kPa, the change in entropy (SQ – SP) in kJ/kg K is
A. – 0.155
B. 0 C. 0.160
D. 0.355

161. A cyclic device operates between three thermal reservoirs, as shown in the figure. Heat is
transferred to/from the cyclic device. It is assumed that heat transfer between each thermal
reservoir and cyclic device takes place across negligible temperature difference. Interactions
between the cyclic device and the respective thermal reservoirs that are shown in the figure are
all in the form of heat transfer.

The cyclic device can be:



A. A reversible heat engine
B. A reversible heat pump or a reversible refrigerator
C. An irreversible heat engine
D. An irreversible heat pump or an irreversible refrigerator

162. A heat transformer is a device that transfers a part of the heat supplied to it at an intermediate
temperature, to a high temperature reservoir while rejecting the remaining part to a low
temperature heat sink. In such a heat transformer, 100 kJ of heat is supplied at 350 K. The
maximum amount of heat in kJ that can be transferred to 
400 K, when the rest is rejected to a heat sink at 300 K, is
A. 12.50
B. 14.29 C. 33.33
D. 57.14

163. An ideal gas of mass m and temperature T1 undergoes a reversible isothermal process from an
initial pressure P1 to final pressure P2. The heat loss during the process is Q. The entropy
change DS of the gas is

A. 

B. 

C. 
D. zero

Common data for Questions 164 and 165.
Nitrogen gas (molecular weight 28) is enclosed in a cylinder by a piston, at the initial condition
of 2 bar, 298 K and 1 m3. In a particular process, the gas slowly expands under isothermal
condition, until the volume becomes 2 m3. Heat exchange occurs with the atmosphere at 298 K
during this process.

164. The work interaction for the nitrogen gas is
A. 200 kJ
B. 138.6 kJ
C. 2 kJ
D. –200 kJ

165. The entropy change for the universe during the process in kJ/K is
A. 0.4652
B. 0.0067 C. 0
D. – 0.6711

166. A Carnot cycle is having an efficiency of 0.75. If the temperature of the high temperature
reservoir is 727°C, what is the temperature of the low temperature reservoir?
A. 23°C



B. –23°C
C. 0°C
D. 250°C

167. A cyclic heat engine does 50 kJ of work per cycle. If the efficiency of the heat engine is 75%,
the heat rejected per cycle is

A.  kJ

B.  kJ

C.  kJ

D.  kJ
168. A solar collector receiving solar radiation at the rate of 0.6 kW/m2 transforms it to the

internal energy of a fluid at an overall efficiency of 50%. The fluid heated to 350 K is used to
run a heat engine which rejects heat at 313 K. If the heat engine is to deliver 2.5 kW power, the
minimum area of the solar collector required would be
A. 8.33 m2

B. 16.66 m2

C. 39.68 m2

D. 79.36 m2
169. Considering the relationship TdS = d U + PdV between the entropy S, internal energy U,

pressure P, temperature T and volume V, which of the following statements is correct?
A. It is applicable only for a reversible process
B. For an irreversible process, TdS > dU + PdV
C. It is valid only for an ideal gas
D. It combines first and second laws for a reversible process

170. A balloon containing an ideal gas is initially kept in an evacuated and insulated room. The
balloon ruptures and the gas fills up the entire room. Which one of the following statements is
true at the end of the above process?
A. The internal energy of the gas decreases from its initial value but the enthalpy remains

constant.
B. The internal energy of the gas increases from its initial value but the enthalpy remains

constant.
C. Both internal energy and enthalpy of the gas remain constant.
D. The internal energy and enthalpy of the gas increase.

171. In a steady-state flow process taking place in a device with a single inlet and single outlet, the



work done per unit mass flow rate is given by , where V is the specific volume
and P is the pressure. The expression for W given above is
A. valid only if the process is both reversible and adiabatic
B. valid only if the process is both reversible and isothermal
C. valid for any reversible process

D. incorrect; it must be 
172. The following four figures have been drawn to represent a fictitious thermodynamic cycle on

the P–V and T–S planes:

According to the first law of thermodynamics, equal areas are enclosed by
A. Figs. 1 and 2
B. Figs. 1 and 3
C. Figs. 1 and 4
D. Figs. 2 and 3

173. A P–V diagram has been obtained from a test on a reciprocating compressor. Which of the
following represents that diagram?



Common data for Questions 174 and 175
A football was inflated to a gauge pressure of 1 bar when the ambient temperature was 15°C.
When the game started next day, the air temperature at the stadium was 5°C. Assume that the
volume of the football remains constant at 2.5 � 10–3 m3. Take ratio of specific heats to be 1.4.

174. The amount of heat lost by the air in the football and the gauge pressure of air in the football at
the stadium respectively equal
A. 30.6 J, 1.94 bar
B. 21.8 J, 0.93 bar
C. 61.1 J, 1.94 bar
D. 43.7 J, 0.93 bar

175. Gauge pressure of air to which the ball must have been originally inflated so that it would
equal 1-bar gauge at the stadium is
A. 2.23 bar
B. 1.94 bar
C. 1.07 bar
D. 1.00 bar

176. A positive value of Joule Thomson coefficient of a fluid means
A. Temperature drops during throttling
B. Temperature remains constant during throttling
C. Temperature rises during throttling
D. None of the above



Common data for Questions 177, 178 and 179
In the figure shown, the system is a pure substance kept in a piston-cylinder arrangement. The
system is initially a two-phase mixture containing 1 kg of liquid and 0.03 kg of vapour at a
pressure of 100 kPa. Initially the piston rests on a set of stops as shown in the figure. A pressure
of 200 kPa is required to exactly balance the weight of the piston and the outside atmospheric
pressure. Heat transfer takes place into the system until its volume increases by 50%. Heat
transfer to the system occurs in such a manner that the piston, when allowed to move, does so in
a very slow quasi-static/quasi-equilibrium process. The thermal reservoir from which heat is
transferred to the system has a temperature of 400°C. Average temperature of the system
boundary can be taken as 175°C. The heat transfer to the system is 1 kJ, during which its entropy
increases by 10 J/K. Specific volumes of liquid (Vl) and vapour (Vg) phases, as well as values
of saturation temperatures, are given in the table below.

177. At the end of the process, which one of the following situations will be true?
A. Superheated vapour will be left in the system
B. No vapour will be left in the system
C. A liquid + vapour mixture will be left in the system
D. The mixture will exist at a dry saturated vapour state

178. The work done by the system during the process is
A. 0.1 kJ
B. 0.2 kJ
C. 0.3 kJ
D. 0.4 kJ

179. The net entropy generation (considering the system and the thermal reservoir together) during
the process is closest to
A. 7.5 J/K
B. 7.7 J/K



C. 8.5 J/K
D. 10 J/K

180. A gas having a negative Joule Thomson coefficient (m < 0), when throttled will
A. become cooler
B. become warmer
C. remain at the same temperature
D. either be cooler or warmer depending on the type of gas

181. An ideal Brayton cycle operating between the pressure limits of 1 bar and 6 bar has minimum
and maximum temperatures of 300 K and 1500 K. The ratio of the specific heats of the working
fluid is 1.4. The approximate final temperatures in kelvin at the end of the compression and
expansion processes are, respectively
A. 500 and 900
B. 900 and 500
C. 500 and 500
D. 900 and 900

182. The values of enthalpy of steam at the inlet and outlet of a steam turbine in a Rankine cycle are
2800 kJ/kg and 1800 kJ/kg respectively. Neglecting pump work, the specific steam consumption
in kg/kWh is
A. 3.6
B. 0.36
C. 0.06
D. 0.01

Statements for linked answer Questions 183 and 184.
The temperature and pressure of air in a large reservoir are 400 K and 3 bar, respectively. A
converging-diverging nozzle of exit area 0.005 m2 is fitted to the reservoir as shown in the
figure. The static pressure of air at the exit section, for isentropic flow through the nozzle, is 50
kPa. The characteristic gas constant and the ratio of specific heats of air are 0.287 kJ/kg K and
1.4, respectively.

183. The density of air in kg/m3 at the nozzle exit is
A. 0.560
B. 0.600
C. 0.727
D. 0.800



184. The mass flow rate of air through the nozzle in kg/s is
A. 1.30
B. 1.77
C. 1.85
D. 2.06

185. A cyclic process is represented on P–V diagram as shown below:

186. Nitrogen at an initial state of 10 bar, 1 m3 and 300 K is expanded isothermally to a final



volume of 2 m3. The P-V-T relation is , where a > 0. The final pressure.
A. will be slightly less than 5 bar
B. will be slightly more than 5 bar
C. will be exactly 5 bar
D. cannot be ascertained in the absence of the value of a

Common data for Questions 187 and 188
The following table of properties was printed out for saturated liquid and saturated vapour of
ammonia. The titles for only the first two columns are available. All that we know is that the
other columns (columns 3 to 8) contain data on specific properties, namely, internal energy
(kJ/kg), enthalpy (kJ/kg) and entropy (kJ/kg K).

187. The specific enthalpy data are in columns
A. 3 and 7
B. 3 and 8
C. 5 and 7
D. 5 and 8

188. When the saturated liquid at 40°C is throttled to –20°C, the quality at exit will be
A. 0.189
B. 0.212
C. 0.231
D. 0.788

189. A single acting two-stage compressor with complete intercooling delivers air at 16 bar.
Assuming an intake state of 1 bar at 15°C, the pressure ratio per stage is
A. 16
B. 8
C. 4
D. 2

190. A small steam whistle (perfectly insulated and doing no shaft work) causes a drop of 0.8 kJ/kg
in the enthalpy of steam from entry to exit. If the kinetic energy of the steam at entry is negligible,
the velocity of the steam at exit is
A. 4 m/s
B. 40 m/s
C. 80 m/s



D. 120 m/s
191. When an ideal gas with constant specific heats is throttled adiabatically, with negligible

changes in kinetic and potential energies
A. DH = 0, DT = 0
B. DH > 0, DT = 0
C. DH > 0, DS > 0
D. DH = 0, DS > 0
where H, T and S represent respectively, enthalpy, temperature and entropy.

Common data for Questions 192 and 193.
Air enters an adiabatic nozzle at 300 kPa, 500 K with a velocity of 10 m/s. It leaves the nozzle
at 100 kPa with a velocity of 180 m/s. The inlet area is 80 cm2. The specific heat CP of air is
1008 J/kg K.

192. The exit temperature of air is
A. 516 K
B. 532 K
C. 484 K
D. 468 K

193. The exit area of the nozzle in cm2 is
A. 90.1
B. 56.3
C. 4.4
D. 12.9

194. A heat engine operates at 75% of the maximum possible efficiency. The ratio of the heat
source temperature (in K) to the heat sink temperature (in K) is 5/3. The fraction of the heat
supplied that is converted to work is
A. 0.2
B. 0.3
C. 0.4
D. 0.6

(2006)
195. For the isentropic expansion of an ideal gas from the initial conditions P1, T1 to the final

conditions P2, T2, which one of the following relations is valid? (g = CP/CV)

A. (P1/P2) = (T2/T1)g

B. (P1/P2) = (T1/T2)g/(g–1)

C. (P1/P2) = (T1/T2)

D. (P1/P2) = (T1/T2)(g–1)/g

(2006)



196. Match the following:

A. (a)-(ii), (b)-(i), (c)-(i), (d)-(i)
B. (a)-(ii), (b)-(i), (c)-(ii), (d)-(ii)
C. (a)-(ii), (b)-(ii), (c)-(i), (d)-(i)
D. (a)-(ii), (b)-(i), (c)-(ii), (d)-(i)

(2006)
197. For a reversible exothermic gas phase reaction, A + B � C, the equilibrium conversion will

increase with
A. increase in pressure and increase in temperature
B. decrease in pressure and increase in temperature
C. increase in pressure and decrease in temperature
D. decrease in pressure and decrease in temperature

(2006)
198. For a binary mixture of A and B at 400 K and 1 atm, which one of the following equilibrium

states deviates significantly from ideality?

, where  is vapour pressure of A in atm, T = temperature, K, 
 is partial pressure of A in atm, xA is mole fraction of A in liquid and yA is mole fraction of A

in vapour.
A. xA = 0.5; yA = 0.25

B. xA = 0.5;  = 0.25

C. xA = 0.5;  = 0.5
D. xA = 0.6; yA = 0.3

(2006)
199. Pure A at 473 K is fed to a steady-state adiabatic continuous reactor at the rate of 

100 kg/h, where it undergoes an exothermic reaction to give its isomer B. The product stream is
at temperature 773 K. The heat of reaction is 21 kJ/mol of A and the specific heat of the reaction
mixture is constant at 35 J/mol K. The conversion in the reactor is
A. 25%
B. 50%
C. 75%
D. 100%

(2006)
200. The molar density of water vapour at the normal boiling point of water is 33 mol/m3. The

compressibility factor under these conditions is close to which one of the following? R = 8.314



J/mol K.
A. 0.75
B. 1
C. 1.25
D. 1.5

(2006)
201. If TA and TB are the boiling points of pure A and pure B respectively, and TAB is that of a

non-homogeneous immiscible mixture of A and B, then
A. TAB < TA and TB
B. TAB > TA and TB
C. TA > TAB > TB
D. TB > TAB > TA

(2007)
202. The state of an ideal gas is changed from (T1, P1) to (T2, P2) in a constant volume process.

To calculate the change in enthalpy, DH, all of the following properties/variables are required.
A. CV, P1, P2
B. CP, T1, T2
C. CP, T1, T2, P1, P2
D. CV, P1, P2, T1, T2

(2007)
203. The change in entropy of the system DSsys, undergoing a cyclic irreversible process, is

A. greater than zero
B. equal to zero
C. less than zero
D. equal to the DSsurroundings

(2007)
204. Parameters a and b in the van der Waals and other cubic equations of state represent

A. a-molecular weight, b-molecular polarity
B. a-molecular size, b-molecular attraction
C. a-molecular size, b-molecular speed
D. a-molecular attraction, b-molecular size

(2007)
205. For the two paths as shown in the figure, one reversible and one irreversible, to change the

state of the system from a to b,



A. DU, Q, W are the same
B. DU are the same
C. Q, W are the same
D. DU, Q are different

(2007)
206. For a pure substance, the Maxwell’s relation obtained from the fundamental property relation

dU = TdS – PdV is
A. (∂T/∂V)S = – (∂P/∂S)V
B. (∂P/∂T)V = (∂S/∂V)T
C. (∂T/∂P)S = (∂V/∂S)P
D. (∂V/∂T)P = – (∂S/∂P)T

(2007)
207. Which of the following represents the Carnot cycle (ideal engine)?



(2007)
208. Two kilograms of steam in a piston-cylinder device at 400 kPa and 448 K undergoes a

mechanically reversible, isothermal compression to a final pressure such that the steam becomes
just saturated. What is the work W, required for the process?
Data:
T = 448 K, P = 400 kPa, V = 0.503 m3/kg, U = 2606 kJ/kg, S = 7.055 kJ/kg K
T = 448 K, saturated vapour, V = 0.216 m3/kg, U = 2579 kJ/kg, S = 6.622 kJ/kg K
A. 0 kJ
B. 230 kJ
C. 334 kJ
D. 388 kJ

(2007)
209. Vapour-phase hydration of C2H4 to ethanol by the following reaction

attains equilibrium at 400 K and 3 bar. The standard Gibbs free energy change of reaction at
these condition is DG0 = 4000 J/mol. For two moles of an equimolar feed of ethylene and
steam, the equation in terms of the extent of reaction e (in moles) at equilibrium is

A. 

B. 

C. 

D. 
(2007)

210. A methanol-water vapour liquid system is at equilibrium at 333 K and 60 kPa. The mole
fraction of methanol in liquid is 0.5 and in vapour is 0.8. Vapour pressures of methanol and
water at 333 K are 85 kPa and 20 kPa, respectively. Assuming vapour phase to be an ideal gas
mixture, what is the activity coefficient of water in the liquid phase?
A. 0.3
B. 1.2
C. 1.6
D. 7.5

(2007)
211. For conditions in Question 210, what is the excess Gibbs free energy (GE, J/mol) of the liquid

mixture?
A. 9.7



B. 388
C. 422
D. 3227

(2007)
212. A perfectly insulated cylinder of volume 0.6 m3 is initially divided into two parts by a thin,

frictionless piston, as shown in the figure. The smaller part of volume 0.2 m3 has ideal gas at 6
bar pressure and 373 K. The other part is evacuated.

At certain instant of time t, the stopper is removed and the piston moves out freely to the other
end. The final temperature is
A. 124 K
B. 240 K
C. 306 K
D. 373 K

(2007)
213. The cylinder insulation is removed and the piston is pushed back to restore the system to the

initial state. If this is to be achieved only by doing work on the system (no heat addition, only
heat removal allowed), what is the minimum work required?
A. 3.4 kJ
B. 107 kJ
C. 132 kJ
D. 240 kJ

(2007)
214. For a Carnot refrigerator operating between 40°C and 25°C, the coefficient of performance is

A. 1
B. 1.67
C. 19.88
D. 39.74

(2008)
215. The work done by one mole of a van der Waals fluid undergoing reversible isothermal

expansion from initial volume Vi to final volume Vf is

A. 



B. 

C. 

D. 
(2008)

216. The standard Gibbs free energy change and enthalpy change at 298 K for the liquid phase
reaction CH3COOH(l) + C2H5OH(l) � CH3COOC2H5(l) + H2O(l) are given as DG0 = –

4650 J/mol and DH0 = – 3640 J/mol. If the solution is ideal and enthalpy change is assumed to
be constant, the equilibrium constant at 368 K is
A. 0.65
B. 4.94
C. 6.54
D. 8.65

(2008)
217. A binary mixture containing species 1 and 2 forms an azeotrope at 378.6 K and 1.013 bar. The

liquid phase mole fraction of component 1 (xl) of this azeotrope is 0.62. At 378.6 K, the pure
component vapour pressures for species 1 and 2 are 0.878 bar and 0.665 bar, respectively.
Assume that the vapour phase is an ideal gas mixture. The van Laar constants, A and B, are given
by the expressions

The activity coefficients g1 and g2 under these conditions are
A. 0.88, 0.66
B. 1.15, 1.52
B. 1.52, 1.15
D. 1.52, 0.88

(2008)
218. The van Laar constants A and B for conditions in Question 217 are:

A. 0.92, 0.87
B. 1.00, 1.21
C. 1.12, 1.00
D. 1.52, 1.15

(2008)
219. An ideal gas at temperature T1 and pressure P1 is compressed isothermally to pressure P2 (>



P1) in a closed system. Which one of the following is true for internal energy (U) and Gibbs free
energy G of the gas at the two states?
A. U1 = U2, G1 > G2
B. U1 = U2, G1 < G2
C. U1 > U2, G1 = G2
D. U1 < U2, G1 = G2

(2009)
220. For a binary mixture at constant temperature and pressure, which one of the following

relations between activity coefficient gi and mole fraction xi is thermodynamically consistent?

A. 

B. 

C. 

D. 
(2009)

221. An ideal gas with molar heat capacity CP = 5/2 R (where R = 8.314 J/mol K) is compressed
adiabatically from 1 bar and 300 K to pressure P2 in a closed system. The final temperature
after compression is 600 K and the mechanical efficiency of compression is 50%. The work
required for compression in (kJ/mol) is
A. 3.74
B. 6.24
C. 7.48
D. 12.48

(2009)
222. In the above problem, the pressure P2 (in bar) is

A. 23/4

B. 25/4

C. 23/2

D. 25/2
(2009)

223. A new linear temperature scale, denoted by °S, has been developed, where the freezing point
of water is 200°S and the boiling point is 400°S. On this scale, 500°S corresponds, in degree
Celsius, to
A. 100°C
B. 125°C
C. 150°C



D. 300°C
(2010)

224. An equimolar mixture of species 1 and 2 is in equilibrium with its vapour at 400 K. At this

temperature, the vapour pressures of the species are  kPa and  kPa. Assuming
Raoult’s law is valid, the value of y1 is

A. 0.30
B. 0.41
C. 0.50
D. 0.60

(2010)
225. A saturated liquid at 1500 kPa and 500 K, with an enthalpy of 750 kJ/kg, is throttled to a

liquid-vapour mixture at 150 kPa and 300 K. At the exit conditions, the enthalpy of the saturated
liquid is 500 kJ/kg and the enthalpy of the saturated vapour is 2500 kJ/kg. The percentage of the
original liquid, which vaporises, is
A. 87.5%
B. 67%
C. 12.5%
D. 10%

(2010)
226. At constant temperature and pressure, the molar density of a binary mixture is given by r = 1 +

x2, where x2 is the mole fraction of component 2. The partial molar volume at infinite dilution

of component 1,  is
A. 0.75
B. 1.0
C. 2.0
D. 4.0

(2010)
227. Minimum work (W) required to separate a binary gas mixture at a temperature T0 and

pressure P0 is

where, y1 and y2 are mole fractions, fpure, 1, and fpure, 2 are fugacities of pure species at T0
and P0 and  are fugacities of species in the mixture at To, Po and y1. If the mixture is
ideal, then W is
A. 0
B. W = – RT0[y1 ln y1 + y2 ln y2]



C. W = RT0[y1 ln y1 + y2 ln y2]
D. W = RT0

(2011)
228. The partial molar enthalpies of mixing (in J/mol) for benzene (component 1) and cyclohexane

(component 2) at 300 K and 1 bar are given by , where x1 and
x2 are the mole fractions. When 1 mol of benzene is added to 2 mol of cyclohexane, the enthalpy
change (in J) is
A. 3600
B. 2400
C. 2000
D. 800

(2011)
229. One mol of methane is contained in a leak-proof piston-cylinder assembly at 8 bar and 1000

K. The gas undergoes isothermal expansion to 4 bar under reversible conditions. Methane can
be considered as an ideal gas under these conditions. The value of universal gas constant is
8.314 J/mol K. The heat transferred (in kJ) during the process is
A. 11.52
B. 5.76
C. 4.15
D. 2.38

(2011)
230. Consider a binary mixture of methyl ethyl ketone (component 1) and toluene 

(component 2). At 323 K, the activity coefficients g1 and g2 are given by

where x1 and x2 are the mole fractions in the liquid mixture, and Y1 and Y2 are parameters
independent of composition. At the same temperature, the infinite dilution activity coefficients, 

 are given by . The vapour pressures of methyl ethyl ketone
and toluene at 323 K are 36.9 and 12.3 kPa, respectively. Assuming that the vapour phase is
ideal, the equilibrium pressure (in kPa) of a liquid mixture containing 90 mol % toluene is
A. 19
B. 18
C. 16
D. 15

(2011)
231. In a throttling process, the pressure of an ideal gas reduces by 50%. If CP and CV are the heat

capacities at constant pressure and constant volume, respectively (g = CP/CV), the specific
volume will change by a factor of
A. 2



B. 21/g

C. 2g–1/g
D. 0.5

(2012)
232. If the temperature of saturated water is increased infinitesimally at constant entropy, the

resulting state of water will be
A. liquid
B. liquid-vapour coexistence
C. saturated vapour
D. solid

(2012)
233. In a parallel flow heat exchanger operating under steady state, hot liquid enters at a

temperature Th, in and leaves at a temperature Th, out. Cold liquid enters at a temperature Tc, in
and leaves at a temperature Tc, out. Neglect any heat loss from the heat exchanger to the
surrounding. If Th, in > > Tc, in, then for a given time interval, which one of the following
statements is true?
A. Entropy gained by the cold stream is greater than the entropy lost by the hot stream
B. Entropy gained by the cold stream is equal to the entropy lost by the hot stream
C. Entropy gained by the cold stream is less than the entropy lost by the hot stream
D. Entropy gained by the cold stream is zero.

(2012)
234. For an exothermic reversible reaction, which one of the following correctly describes the

dependence of the equilibrium constant (K) with temperature (T) and pressure (P)?
A. K is independent of T and P.
B. K increases with an increase in T and P.
C. K increases with T and decreases with P.
D. K decreases with an increase in T and is independent of P.

(2012)
235. An insulated, evacuated container is connected to a supply line of an ideal gas at pressure PS,

temperature TS and specific volume VS. The container is filled with the gas until the pressure in
the container reaches PS. There is no heat transfer between the supply line to the container, and
kinetic and potential energies are negligible. If CP 
and CV are the heat capacities at constant pressure and constant volume, respectively 
(g = CP/CV), then the final temperature of the gas in the container is
A. gTS
B. TS
C. (g – 1) TS
D. (g – 1)TS/g



(2012)
236. Consider a binary liquid mixture at constant temperature T and pressure P. If the enthalpy

change of mixing DH = 5x1x2, where xl and x2 are mole fraction of species 1 and 2,
respectively, and the entropy change of mixing DS = – R(x1 ln x1 + x2 ln x2) with 
R = 8.314 J/mol K, then the minimum value of the Gibbs free energy change of mixing at 300 K
occurs when
A. x1 = 0
B. x1 = 0.2
C. x1 = 0.4
D. x1 = 0.5

(2012)
C.2 Fill in the blanks:

1.  properties of a system do not depend on the quantity of matter contained in it.
2. An open system exchanges  with the surroundings.
3. The maximum efficiency of a heat engine depends only on the  between which it operates

and is independent of the nature of the cyclic process.
4. Gibbs free energy is defined as .
5. Mollier diagram is a plot of  versus .
6. The efficiency of a Carnot engine working between 1000 K and 300 K is .
7. In the statement (DS)total ≥ 0 , the inequality refers to  process.
8. P, V, T and S are  properties whereas U, H, G, A are  properties.
9. The principle of corresponding states may be stated thus: “At same TR and PR all gases have the

same .”
10. A gaseous phase may be termed a vapour, if it can be condensed by .
11. A refrigerator of capacity 2 tons is working on ammonia at 273 K. The heat of vaporisation of

ammonia is 1260 kJ/kg. The circulation rate of ammonia under this condition is approximately 
 kg/h.

12. Gibbs–Helmholtz equation relates the change in  with changes in .
13. A system from which finite quantities of heat can be removed without affecting its temperature

is called .
14. The maximum velocity attained by a fluid in a pipe of uniform cross-section is equal to the 

 in the fluid.
15. The maximum velocity attainable in a convergent nozzle is equal to  and it is attained

when the  equals the critical value.
16. The ratio of the intake volume to the displacement volume in a single-stage compressor is

called the .
17. The ratio of the velocity of flow to the sonic velocity is designated as .
18. The decrease in  is a measure of the maximum work obtainable in an isothermal

process.



19. As pressure tends to zero, fugacity of a pure gas becomes equal to its .
20. The ratio of the fugacity to the fugacity in the standard state is called .
21. Isothermal mixing of pure gases always produces a decrease in the . Hence work has to

be done  the system for separating a mixture of gases into its components.
(1990)

22. The maximum work obtainable from a closed system under isothermal expansion is given by 
; For one mole of an ideal gas expanding isothermally to twice its volume this is equal to
.

(1990)
23. The phase rule is given as .

(1994)
24. Raoult’s law states that the  of a component over an ideal solution is directly

proportional to its mole fraction in the solution.
25. In a dilute solution, the  obeys Henry’s law and the  obeys Raoult’s law.
26. When the Henry’s law constant is equal to , Henry’s law becomes identical to Raoult’s

law.
27. The activity coefficient (gi ) in a solution is related to the chemical potential as  = .
28. The phase rule indicates the number of variables needed to specify the intensive state of the

system whereas the  indicates those needed to specify the extensive state of the system.
29. A mixture exists as a superheated vapour above its  temperature.
30. If the intermolecular forces between unlike molecules are  than those between like

molecules, the solution will exhibit negative deviation from ideality.
31. The constant boiling mixtures are called .
32. The vaporisation equilibrium constant Ki is defined as Ki = .
33. Among three liquids A, B and C, the A-B binary is partially miscible whereas A-C and 

B-C binaries are totally soluble. On the binodal curve, the A-rich and B-rich phases 
in equilibrium become identical in properties at the  of the system.

34. The number of degrees of freedom for a system consisting of two miscible non-reacting species
which exists as an azeotrope in vapour–liquid equilibrium is .

35. The equilibrium state for a closed system is the state for which the total  is a minimum
at constant temperature and pressure.

36. A binary hydrocarbon liquid mixture of A and B (KA = 1.5) containing 60% (mol) A is flash
vaporised. If 40% of the feed is vaporised, the mole fraction of A in the liquid product is 

.
(1990)

37. A system of unit mass at equilibrium consists of two phases a and b of extent x and (1 – x)
respectively. Write down expressions for the pressure and the specific enthalpy of the system as
a whole in terms of the properties Pa, Pb, Ha and Hb of the individual phases: (a) P = ,
(b) H = .

(1990)



38. The heats of formation of CO (g), H2O (g), and CO2 (g) are respectively –110.525 kJ, 
–393.509 kJ and –241.818 kJ. The heat of reaction for

CO (g) + H2O (g) � CO2 (g) + H2 (g)

is  kJ.
39.  reactions are favoured by increase in temperature.
40. The following data on heats of combustion at 298 K are given:

Heats of formation of CO2 (g) and H2O (l) are –390 and –280 kJ/kmol respectively.
(a) The heat of formation of gaseous n-heptane at 298 K is .
(b) The heat of formation of gaseous ethyl alcohol at 298 K is .

(1990)
41. The heat absorbed for isothermal reaction

C4H10 (g) � C2H4 (g) + C2H6 (g)

at 298 K and 101.3 kPa is . Standard heat of combustion in kJ/kmol are:
C4H10 (g) = – 2873.5, C2H4 (g) = – 1411.9 and C2H6 (g) = – 1561.0

(1991)
42. The heat of formation of a compound is defined as the heat of reaction leading to the formation

of the compound from its .
(1994)

C.3 Say, whether the following statements are TRUE or FALSE. Give correct statements to the false
ones.

1. Internal energy is a state function whereas entropy is a path function.
2. Heat capacity and specific heat are extensive properties whereas volume and temperature are

intensive properties.
3. Heat and work are not properties of a system; they are properties of a process.

4. At constant pressure, the change in enthalpy DH = .
5. Entropy cannot have absolute values; they are always expressed as a difference.
6. Energy of the universe is conserved whereas entropy is increasing.

7. So long as the process is reversible, the value of  is the same for the change of the gas
from any given state to another.

8. Heat involved in any process can be expressed as dQ = T dS.
9. Enthalpy and entropy of an ideal gas are functions of temperature alone.
10. If DS refers to the entropy change between the same initial and final states of the system for two



different processes, one reversible (R) and the other irreversible (I), then DSI = DSR.
11. The heat capacities CP and CV of an ideal gas are independent of temperature.
12. The second law of thermodynamics states that heat cannot be completely converted to work.
13. For any process, the second law of thermodynamics requires that the entropy change of the

system is either zero or positive.
14. The entropy change of a chemical reaction is calculated as the ratio of the heat of reaction to the

temperature of the reaction.
15. When water freezes to form ice, the atoms arrange themselves in a highly ordered manner.

Since the increasing order is associated with the decreasing entropy, we must conclude that
entropy of the universe decreases as a result of this process.

16. Entropy of a rotating flywheel is the same as that of the flywheel at rest.
17. For given operating temperatures all heat engines have the same efficiency regardless of the

nature of the working substance.
18. Real gases behave ideally at high pressures and temperatures.
19. A reversible adiabatic process is essentially isenthalpic.
20. The heat capacity at constant pressure and constant volume of all gases are related as 

CP – CV = R.
21. For an ideal gas, the activity and fugacity are numerically equal.
22. For an ideal solution, all property changes of mixing are zero.
23. Raoult’s law is applicable to all ideal liquid solutions.
24. On the P-T diagram of a pure substance, the vaporisation curve and the fusion curve extend up

to infinity.

25. The change in internal energy of an ideal gas is DU =  irrespective of the nature of the
process.

26. For gases, the Joule–Thomson coefficient is always positive.
27. Work required for isothermal compression is less than that of adiabatic compression.
28. The clearance has no effect on the work of compression in a single-stage compressor.
29. The reversible work of expansion in a non-flow process under isentropic condition is equal to

–(DU)S.
30. For an ideal gas, the fugacity and pressure are equal.
31. The excess volume and the volume change on mixing are the same.
32. For a multicomponent system, equilibrium between two phases is established when the

concentrations in both the phases are uniform.
33. For a solution at a given pressure, the vapour phase can exist in equilibrium with the liquid

phase only at its bubble point.
34. In an ideal binary solution, component A obeys Raoult’s law and component B obeys Henry’s

law.
35. Maximum boiling azeotropes may be formed if the solution exhibits very large positive

deviation from ideality.



36. Azeotropic composition can be shifted by changing the pressure.
37. For a chemically reacting system at equilibrium at constant temperature and pressure, the Gibbs

free energy is maximum.
38. The numerical value of the equilibrium constant depends upon the stoichiometric equation.
39. If there is decrease in the total number of moles during a gas-phase chemical reaction, the

increase in pressure decreases the formation of products.
40. The equilibrium conversion in a gaseous reaction which produces no change in the number of

moles (e.g., the water-gas shift reaction) is not affected by the change in pressure.

Answers
C.1

1. C 2. B 3. C 4. B 5. A 6. C 7. A
8. C 9. C 10. C 11. B 12. B 13. C 14. A

15. D 16. B 17. D 18. C 19. B 20. A 21. C
22. B 23. A 24. B 25. C 26. B 27. B 28. D
29. A 30. C 31. B 32. C 33. C 34. D 35. D
36. C 37. A 38. B 39. A 40. A 41. B 42. D
43. B 44. C 45. C 46. D 47. B 48. B 49. B
50. D 51. C 52. A 53. A 54. C 55. B 56. A
57. B 58. C 59. C 60. B 61. A 62. C 63. C
64. B 65. A 66. D 67. B 68. D 69. B 70. A
71. C 72. B 73. D 74. D 75. D 76. C 77. A
78. C 79. B 80. B 81. C 82. C 83. B 84. A
85. D 86. B 87. B 88. B 89. C 90. B 91. B
92. A 93. D 94. D 95. A 96. D 97. A 98. B
99. C 100. C 101. A 102. C 103. B 104. B 105. D

106. A 107. A 108. B 109. B 110. B 111. D 112. B
113. B 114. A 115. B 116. B 117. B 118. B 119. B
120. C 121. C 122. D 123. C 124. A 125. B 126. C
127. A 128. B 129. B 130. D 131. A 132. B 133. D
134. A 135. D 136. C 137. A 138. C 139. A 140. C
141. D 142. B 143. B 144. B 145. D 146. D 147. A
148. A 149. B 150. C 151. A 152. C 153. D 154. D
155. B 156. D 157. B 158. C 159. B 160. C 161. A
162. D 163. B 164. B 165. A 166. B 167. A 168. D
169. D 170. C 171. C 172. A 173. D 174. D 175. C
176. A 177. A 178. D 179. C 180. B 181. A 182. A
183. C 184. D 185. C 186. B 187. B 188. B 189. C
190. B 191. A 192. C 193. D 194. B 195. B 196. D



197. C 198. C 199. B 200. B 201. A 202. B 203. B
204. D 205. B 206. A 207. C 208. C 209. D 210. B
211. C 212. D 213. C 214. C 215. D 216. B 217. B
218. C 219. B 220. D 221. C 222. D 223. C 224. D
225. C 226. A 227. B 228. D 229. B 230. C 231. A
232. A 233. A 234. D 235. A 236. D

C.2
1. Intensive
2. Mass and energy
3. Temperature
4. G = H – TS
5. Enthalpy, entropy
6. 70%
7. Irreversible
8. Reference, energy
9. Z (Compressibility factor)
10. Compression at constant temperature
11. 20 kg/h
12. G/T with T
13. Heat reservoir
14. Sonic velocity
15. Sonic velocity, Pressure ratio
16. Theoretical volumetric efficiency
17. Mach number
18. Helmholtz free energy
19. Pressure
20. Fugacity coefficient
21. Gibbs free energy, on

22. P dV, RT ln 2
23. F = C – p + 2
24. Partial pressure (fugacity)
25. Solute, solvent
26. Vapour pressure
27. RT ln gi
28. Duhem’s theorem
29. Dew point
30. Stronger (greater)
31. Azeotropes



32. yi/xi
33. Plait point
34. One
35. Gibbs free energy
36. 0.46

37. (a) Pa = Pb (b) xHa + (1 – x)Hb
38. 262.22
39. Endothermic
40. (a) – 120 kJ/kmol (b) – 210 kJ/kmol
41. 99.4 kJ
42. Constituent elements

C.3
1. False. Both are state functions.
2. False. Heat capacity and volume are extensive properties whereas specific heat and temperature

are intensive properties.
3. True.
4. True.
5. False. Entropy can have absolute values.
6. True.

7. False. The value of P dV is dependent on the path followed.
8. False. Heat involved in a reversible process can be expressed as dQ = T dS.
9. False. Enthalpy of an ideal gas is a function of temperature only. Entropy depends on pressure as

well.
10. True.
11. False. The heat capacities CP and CV of an ideal gas are dependent on temperature only.
12. False. The second law of thermodynamics states that heat cannot be completely converted into

work continuously (or in a cyclic process).
13. False. For any process, the second law of thermodynamics requires that the entropy change of

the system and the surroundings together is either zero or positive.
14. False. The entropy change of a chemical reaction is to be computed as the sum of the absolute

entropies of the products minus the sum of the absolute entropies of the reactants.
15. False. When water freezes to form ice, greater disorder may result in the surroundings due to

transfer of heat with a consequent increase in the total entropy.
16. True.
17. False. For given operating temperatures all reversible heat engines (Carnot engines) have the

same efficiency regardless of the nature of the working substance.
18. False. Real gases behave ideally at low pressures and or high temperatures.
19. False. A reversible adiabatic process is essentially isentropic.
20. False. The heat capacity at constant pressure and constant volume of ideal gases are related as



CP – CV = R.
21. True.
22. False. For an ideal solution, property changes of mixing are not zero for entropy and entropy-

related functions such as the free energy.
23. False. Raoult’s law is applicable to all ideal liquid solutions provided the vapour phase is an

ideal gas.
24. False. On the P-T diagram of a pure substance, the vaporisation curve lies between the triple

point and the critical point whereas the fusion curve extends up to infinity.
25. True.
26. False. For gases the Joule–Thomson coefficient may be positive, zero or negative.
27. True.
28. True.
29. True.
30. True.
31. True.
32. False. For a multicomponent system in equilibrium, the chemical potentials in both phases are

uniform.
33. False. For a solution at a given pressure, the vapour phase can exist in equilibrium for a range of

temperatures lying between the bubble point and the dew point.
34. False. In an ideal binary solution both components obey Raoult’s law.
35. False. Minimum boiling azeotropes may be formed if the solution exhibits very large positive

deviation from ideality.
36. True.
37. False. The Gibbs free energy is minimum.
38. True.
39. False. If there is decrease in the total number of moles during a gas-phase chemical reaction, the

increase in pressure favours the formation of products.
40. False. If the compressibility of the components are affected by the change in pressure, the

equilibrium conversion also will be affected.
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Answers to Exercises
CHAPTER 1

1.1 89.55 kg; 878.51 N
1.2 102.14 N
1.3 698 mm
1.4 1.6783 bar
1.5 3.02 bar
1.6 1.5453 � 105 N/m2
1.7 17.845 m, 25 kJ
1.8 1.667 � 102 kJ
1.9 7.355 kJ; 61.29 W
1.10 16.8 W
1.11 20.39 m
1.12 (a) 4.164 � 103 N

(b) 1.3254 � 105 N/m2

(c) 2.082 � 103 J
(d) 490.5 J

1.13 2.156 � 105 J
1.14 17.15 m/s
1.15 1.146 � 104 kJ
1.16 6.073 � 104 J

CHAPTER 2
2.1 40.75 kJ
2.2 400 K, 500 kPa
2.3 (a) 183.94 kJ

(b) 1839.4 kJ
(c) 1655.46 kJ
(d) 38.36 m/s
(e) 1839.4 kJ

2.4 (a) 981 J
(b) 981 J
(c) 0.234 K

2.5 (a) 14 m/s
(b) 0.78 K

2.6 18,467 kJ



2.7 4466 kJ
2.8 195,814 kJ
2.9 2423.9 kJ/kg; 2214 kJ/kg
2.10 (a) 3.572 kJ

(b) 10.97 min
2.11 Q = 914.86 kJ, W = 139.35 kJ
2.12 227 V
2.13 Q = 1.246 � 106 kJ
2.14 Q = 58.4 � 104 J
2.15 435.5 HP
2.16 35 kJ
2.17 70 kJ
2.18 2453 kJ/kg
2.19 389.9 K
2.20 (a) 78.9 m/s

(b) 72.7 kPa
2.21 870.9 kJ/kg, 5.74 kg/s
2.22 55.5 kW
2.23 3.68 MW
2.24 75%
2.25 141.3 MW
2.26 1.722 K
2.27 100 kJ
2.28 (a) 22,480 kJ

(b) 8730 kJ
2.29 166.67 kJ
2.30 (a) V = 4.65584 m3, P = 1 bar, T = 56 K

DU = 4656 kJ, DH = 6518 kJ,
W = 0, Q = 4656 kJ

(b) V = 23.2792 m3, P = 5 bar, T = 1400 K, DU = 22,380.3 kJ, DH = 32,592.0 kJ, W = 0, Q =
22,380.3 kJ

2.31 DU = 2168.6 kJ, DH = 3000 kJ, W = – 125.32 kJ, Q = 2043.28 kJ

CHAPTER 3
3.1 (a) 38.301 � 103 J

(b) 0
(c) 4.31 bar
(d) – 47.817 � 103 J

3.2 (a) 24.0685 kJ



(b) – 17.695 kJ
(c) 6.374 kJ

3.3 (a) 2282 kJ
(b) 2206 kJ
(c) 0

3.4 (a) 472.5 kJ
(b) – 4863 kJ
(c) 0
(d) 4863 kJ
(e) 5981 kJ

3.5 (a) DU = 997.68 kJ/kmol;
DH = 1662.8 kJ/kmol;
W = – 997.68 kJ/kmol; Q = 0

(b) DU = – 997.68 kJ/kmol;
DH = – 1662.8 kJ/kmol;
W = – 665.12 kJ/kmol;
Q = – 1662.8 kJ/kmol

(c) DU = 0; DH = 0;
W = 1490 kJ/kmol;
Q = 1490 kJ/kmol

(d) DU = 0; DH = 0;
W = – 172.8 kJ/kmol;
Q = – 172.8 kJ/kmol

3.6 DU = – 2329 kJ/kmol;
DH = – 3252 kJ/kmol;
W = 3395 kJ/kmol;
Q = 1066 kJ/kmol

3.7 (a) 0.373 kg
(b) 0.304 kg

3.8 418.5 K, 7.65 bar
3.9 (a) 4605 kJ

(b) 132.9 K, 2376 kJ
(c) 900 kJ

3.10 3.66 � 10–4 m3/mol
3.11 (a) 3 � 10–3 m3/mol

(b) 2.98 � 10–3 m3/mol
3.12 23.84 bar
3.13 (a) 65.54 bar

(b) 57.23 bar
(c) 57.87 bar



3.14 1.8 � 10–4 m3/mol
3.15 7.134 � 10–5 m3/mol (liquid),

1.712 � 10–3 m3/mol (vapour)
3.16 3.485 � 10–3 m3/mol, 0.8862
3.17 (a) 4.157 � 10–5 m3/mol

(b) 6.44 � 10–5 m3/mol
(c) 5.3 � 10–5 m3/mol

3.19 – 110.6 kJ/mol
3.20 – 1207.69 kJ/mol
3.21 – 1655.07 kJ/mol
3.22 48.70 kJ/mol
3.23 – 42.62 kJ
3.24 – 395.2 kJ/mol
3.25 – 799.3 kJ/mol
3.26  = – 3.8235 � 104 – 31.82 T + 1.776 � 10–2T2 – 3.108 � 10–6 T3
3.27 – 224.673 kJ
3.28 – 207.2 � 103 kJ
3.29 32,528.5 kJ
3.30 1360 K
3.31 1216 K
3.32 – 311.627 kJ/mol
3.33 – 3283.5 kJ
3.34 2.7989 � 104 kJ
3.35 2089.5 K
3.36 – 114.408 kJ/mol
3.38 (a) – 103.2 kJ/mol

(b)  = – 75,964 – 62.71T + 4.496 � 10–2T2 – 9.561 � 10–6T3 + 11.224 � 104(1/T)
3.39 2055.8 K
3.40 3.766 � 106 kJ
3.41 – 3535.50 kJ
3.42 2141.9 K

CHAPTER 4
4.1 329.84 kJ
4.2 1.448 � 109 J/s
4.3 (a) 2.1502 � 106 kJ/h

(b) 18.1%



4.4 (a) 2.9736 kJ
(b) 3.9736 kJ

4.5 Unacceptable
4.6 Unacceptable
4.7 Unrealistic
4.8 (a) –19.1437 J/mol K

(b) 30.63 J/K
(c) 11.49 J/K

4.9 79.91 J/K
4.10 (a) 6.66 kJ/K, – 4.6204 kJ/K, 2.04 kJ/K

(b) 6.66 kJ/K, – 4.925 kJ/K, 1.735 kJ/K
(c) 6.66 kJ/K, – 4.89 kJ/K, 1.77 kJ/K
(d) 6.66 kJ/K, – 6.66 kJ/K, 0

4.11 18.531 kJ/kmol K, Possible
4.12 4579.6 kJ/kmol
4.13 7.1 � 105 kJ
4.14 0.0508 kJ
4.16 31.28 kJ/kmol K, 111.9 kJ/kmol K
4.17 – 2.46 kJ/kmol K
4.18 (a) – 1.99 kJ/K

(b) 3.44 kJ/K
(c) 1.45 kJ/K

4.19 (a) 0.37
(b) 0.56

4.20 (a) 0
(b) 19.5 kJ

4.21 5966 kJ/kmol
4.22 Yes
4.23 10.65 J/K
4.24 1.07 kJ/K
4.25 (a) 5.46 kJ/kmol K, – 4.48 kJ/kmol K, 0.98 kJ/kmol K

(b) 8.6 kJ/kmol K, – 7.9 kJ/kmol K, 0.70 kJ/kmol K
4.26 348.5 K
4.27 64.6%
4.28 21.995 � 103 kJ/kmol
4.29 13.38 kJ/kmol K
4.30 76.1%
4.31 (a) – 1375.35 kJ/K

(b) 326.45 kJ/K
(c) 1.16887 � 105 kJ

4.32 (a) 397.7 kW



(b) 329.2 kW
4.33 8.62 J/g K

CHAPTER 5
5.1 13.54 m/s
5.2 0.9948 kg/s
5.3 350 K
5.4 722.51 kW
5.5 6.877 � 105 kJ
5.6 144.1 kJ/h
5.7 567 K
5.8 6558 kg
5.9 759 K
5.10 0.9159 kg
5.11 229 K, 3.82 bar
5.12 420 K
5.13 (a) 865.8 K

(b) 18.4 kg
5.14 (a) 45.61 kg

(b) –104594 kJ
5.15 0.0744, 9018 kJ
5.16 343.3 K
5.17 109.3 HP
5.18 1481.3 W, 2.95 � 105 N/m2

5.19 4.316 kW, 0.8662 � 105 N/m2,
9.66 � 105 N/m2
5.20 (a) 402.64 m/s

(b) 5.751 � 10–4 m2
5.21 1.14 kg/s
5.22 2.19
5.23 61.04 K
5.24 813.8 m/s
5.25 11.33
5.26 (a) 0.5457, 542.96 m/s

(b) 28.323 kPa
5.27 429.4 K, 3.65P2
5.29 541 kW, 3060.97 kJ/kg, 7.3544 kJ/kg K
5.30 (a) 114.91 kW

(b) 0.49 m3/s



5.31 31.84 kW, 0.2963 m3/s, 393 K
5.32 71.8 kJ/kg, 339 K
5.33 14
5.34 1.11 kJ/s, 2.5 kJ/s
5.35 2.525 kg/s, 280 kJ/s, 4
5.36 419.32 kg/h
5.37 (a) 0.5079 kg/min

(b) 0.311 kW
(c) 2.857

5.38 (a) 3.42 HP
(b) 63.3 kg/h
(c) 1731.1 kg/h
(d) 6.9

5.39 11.39 kg/h, 5.03
5.40 (a) 162.2 kg/h

(b) 3.5%
(c) 131.55 kg/h
(d) 4.11, 5.0, 3.76

5.41 4.78 kW, 8.9214 � 103 kg/h
5.42 (a) 3

(b) 4 kJ/s
(c) 231 K

5.43 6976.7 kg/h, 57.67 ton
5.44 9.73 kW
5.45 0.084 (winter), 0.048 (summer)
5.46 (a) 2% liquefied

(b) 23% liquefied
5.47 (a) 0.048, 4.92 kg/h

(b) 0.006, 0.65 kg/h
5.48 (a) 0.054

(b) 230 K
5.49 (a) 13.3 kg/h

(b) 58.87 kW
5.50 40%
5.51 (a) 2.9245 kJ/kg

(b) 578.17 kJ/kg
(c) 55.4 kJ/kg
(d) 2867.4 kJ/kg
(e) 2211.6 kJ/kg

5.52 (a) 38.83%
(b) 37.22%



5.53 38.42%
5.54 54.14%
5.55 (a) 34.95%

(b) 29.68%
(c) 4232 kg/h

5.56 34.25%
5.57 34.81%
5.58 (a) 29.72%

(b) 4000 kg/h
5.59 (a) 39.66%

(b) 29.61%
(c) 3.0505 � 105 kg/h
(d) 2.7016 � 105 kW, 1.9016 � 105 kW

5.60 39.12%
5.61 25.45%, 0.941 (at 700 kPa), 33.34%,

0.8627 (at 3500 kPa), 36.16%,
0.771 (at 7000 kPa), 38.22%,
0.6944 (at 14,000 kPa)

5.62 32.42%, 0.7835 (at 573 K), 32.99%,
0.8128 (at 623 K), 36.69%,
0.920 (at 873 K), 37.64%,
0.9361 (at 923 K)

5.63 (a) 510.34 kJ/kg
(b) 222.15 kJ/kg
(c) 56.47%

5.64 1129.4 kJ/kg
5.65 (a) 7.233

(b) 54.68%
(c) 909.24 kJ/kg

5.66 6.13
5.67 (a) 13.94

(b) 1.578
(c) 17.874 kJ
(d) 61.49%

5.68 (a) 80 kPa, 310 K (step 1),
2009.5 kPa, 778.69 K (step 2),
2368.9 kPa, 917.96 K (step 3),
94.3 kPa, 365.45 K (step 4)
(b) 300.93 kJ
(c) 60.2%

5.69 43.2%



5.70 (a) 9
(b) 2167.4 kPa
(c) 49.68%
(d) 78.618 kW

5.71 (a) 13.94
(b) 1.64
(c) 366.81 kJ/kg
(d) 61.13%

5.72 Compression ratio = 2.69
Expansion ratio = 2.408

5.73 (a) 3101.3 K
(b) 3.3
(c) 2172.5 kJ/kg
(d) 55.74%

5.74 19.16
5.75 (a) 40.62%

(b) 543.27 kJ/kg
(c) 1.22 kJ/kg K

5.76 (a) 1828 kJ/kg
(b) 1040.6 kJ/kg

(c) 56.93%
5.77 (a) 1203.26 kJ/kg

(b) 1976.9 kJ/kg
5.78 (a) 220 kJ/kg

(b) 372.2 kJ
(c) 22.2%

5.79 (a) 100 kPa
(b) 244.6 kJ
(c) 585.2 kJ
(d) 44.79%

5.80 (a) 40.06%
(b) 24.7%

5.81 (a) 1416 kW
(b) 3616 kW
(c) 32.72%
(d) 421 kPa

5.82 (a) 24,714.4 kJ/s
(b) 0.3973
(c) 66.54 kg/s

5.83 (a) 300 K, 100 kPa (point 1), 445.8 K, 400 kPa (point 2), 900 K, 390 kPa (point 3), 618.6 K,
105 kPa (point 4)



(b) 29.85%

CHAPTER 6
6.11 m = – b/CP, Temperature increases
6.12 z = (1 + 2aP)/(1 + aP)

6.13 RT ln f = PV – RT – RT ln 

6.16 DV = 1.378 � 10–5 m3/kg
6.17 377.24 K
6.18 33.51 � 103 kJ/kmol, PS = a exp (b/T)
6.19 393.43 K
6.20 (a) 1832.4 kJ/kg

(b) 2145.4 kJ/kg
6.21 (b) – 0.0982 (kJ/kmol) (bar)–1
6.22 0.1451 kJ/kmol K
6.23 DH = 51,666.14 kJ/kmol

DU = 47,731.74 kJ/kmol
DS = 131.72 kJ/kmol K

6.24 DH = 5796 kJ/kmol
DU = 4133.20 kJ/kmol
DS = – 23.50 kJ/kmol K
DG = – 8754 kJ/kmol

6.25 H = 421.48 kJ/kg, S = 1.22 kJ/kg K
6.26 8.434 J/mol K
6.27 59.65 J/mol K
6.28 97.34% vapour

6.29  = – 2.681 � 10–3 kJ/kmol bar

 = 8.997 kJ/kmol bar
m = – 0. 0652 K (bar)–1

6.31 73.1 bar
6.32 (a) 48.9 bar, 406.9 bar

(b) 48.78 bar, 408.8 bar
6.33 50.41 bar
6.34 1156 bar



6.35 0.2%
6.36 9.94 bar, 15.79 bar
6.37 0.9954 bar
6.38 50.71 bar
6.39 (a) ln f = A ln P + BP + CP2/2 + DP3/3

(b) 301.02 bar
6.40 (a) ln f = BP/RT + (C – B2) P2/(2R2T2)

(b) 0.9991 bar
6.41 f = (a – 1) ln P + BP + CP2/2 93.44 bar

CHAPTER 7

7.12  � 103 (m3/kmol) are given in brackets against x : 0.0667 (10.332), 0.16(13.86), 0.30
(19.78), 0.3634 (22.16), 0.84 (36.83)

7.14 0.8866 � 10–3 m3/kg
7.15  = – 1.3873 � 10–6 m3/mol (salt)

 = 18.023 � 10–6 m3/mol (solvent)
7.16  = 0.0389 � 10–6 m3/mol (methanol)

 = 0.0175 � 10–6 m3/mol (water)
7.17 – 22 kJ/kmol (HCl),

– 9.1 kJ/kmol (water)
7.18 0.02903 m3/mol
7.19 5.056 � 10–4 mol/kg (water)
7.20 533 bar



7.21 – 9.74 kJ, – 9.46 kJ
7.22 gA and  are shown in brackets against mole fraction x.

0 (–, 1.00), 0.2 (0.5361, 1.0652), 0.4 (0.7330, 1.4565), 0.6 (0.8862, 1.7609), 0.8 (0.9710,
1.9273), 1.0 (1.0, 1.987)

7.23 Yes

7.24 
7.25 (a) 1.27, 0.652

(b) 0.4174, 0.2145
7.26 1.331
7.27 (a) 0.0834

(b) 0.36 bar
7.28 0.953
7.29 0.8939
7.30 34.2589 J/K
7.31 – 4675.3 kJ/kmol K h

7.32 

7.33 9.661 � 106 kJ
7.34 340.62 K
7.35 – 10.217 kJ/mol
7.36 5100 kJ to be removed
7.37 1.2914 � 109 kJ/h
7.38 – 1.17 kJ/mol

7.39 
7.40 

7.41 

+ 

 and ME/x1x2 are respectively,
A – B + C, 0, A – B + C (for x1 � 0) and
0, A + B + C, A + B + C (for x1 � 1)

7.42 



7.43 GE/RT = x1x2 [A + B(x1 – x2)]

7.44  = 0.1275 m3/kmol
 = 0.1625 m3/kmol

CHAPTER 8
8.2 (a) 2, overdefined (b) 1 (c) 2 (d) 0 (e) 1 (f) 2 (g) 1
8.3 0.0855
8.4 x and y are given in brackets against T

353.1 (1, 1), 358 (0.78, 0.90),
363 (0.581, 0.777), 368 (0.411, 0.632), 373 (0.258, 0.456), 378 (0.130, 0.261), 383 (0.017,
0.039), 383.6 (0, 0)
y = 2.45 x/(1 + 1.45 x)

8.5 8.5239 kPa, 76.3% benzene
8.6 120.3 kPa
8.7 131.24 kPa, 46.2% A
8.8 N2: 67.4% (liquid), 90.34% (vapour)
8.9 (a) x1 and y1 are given in brackets against P in kPa:

33.79 (0, 0), 43.426 (0.2, 0.3775),
53.062 (0.4, 0.6179), 62.698 (0.6, 0.7844), 72.334 (0.8, 0.9066), 81.79 (1, 1)
(b) x1 and y1 are given in brackets against T in K:
311.45 (1, 1), 315 (0.787, 0.902),
319 (0.581, 0.773), 323 (0.405, 0.623), 327 (0.254, 0.449), 331 (0.123, 0.250),
335.33 (0, 0)

8.10 (a) x1 and y1 are given in brackets against P in kPa:
34.02(0, 0), 63.03(0.2, 0.568),
92.04(0.4, 0.778), 121.04(0.6, 0.888),
150.05(0.8, 0.995), 179.06(1, 1)
(b) x1 and y1 are given in brackets against T in K:
353.3(1, 1), 363.3(0.686, 0.925),
373.3(0.458, 0.816), 383.3(0.287, 0.666), 393.3(0.156, 0.464), 403.3(0.053, 0.198), 409.4(0,
0)

8.11 (a) 77.3% benzene (b) 57.5% benzene
37.9% benzene

8.12 (a) x1 = 0.3138, y1 = 0.7730
(b) 334.4 K, 79.6% pentane
(c) 110.25 kPa, 85.7% pentane

8.15 x1 and y1 are given in brackets against T in K:
334.4 (0, 0), 336.5 (0.2, 0.165), 337.7 (0.334, 0.334), 337 (0.4, 0.4277), 335 (0.6, 0.6858),
331.5 (0.8, 0.8750), 329.5 (1, 1)



8.17 (a) A = 1.0624, B = 1.0217
(b) ln g1 and ln g2 are shown in brackets against x1:
0 (1.0624, 0), 0.2 (0.6299, 0.0435), 0.4 (0.3706, 0.1713), 0.6 (0.1621, 0.3793), 0.8 (0.0399,
0.6640), 1.0 (0, 1.0217)

8.18 (a) 7.19% acetone
(b) 108.35 kPa

8.19 (a) A = 1.6625, B = 2.7475
(b) 67.81% hexane
(c) 101.56 kPa

8.20 (a) A = 0.8940, B = 0.8426
(b) 60.3% acetate, 54.72 kPa
(c) 48.64% acetate

8.21 A = 0.9376, B = 3.0119
8.22 A = 0.1365, B = 0.1122
8.23 A = 1.7492, B = 1.4446
8.24 Yes
8.25 (a) 335.53 K, 80.9% acetone

(b) 351.96 K, 4.07% acetone
8.26 A = 3.8297, B = 2.3540
8.27 83.16% alcohol
8.28 y1 is shown in brackets against x1:

0 (0), 0.2 (0.1355), 0.4 (0.3299),
0.6 (0.6123), 0.8 (0.9212), 1.0 (1.0)

8.29 g1 = 1.3551, g2 = 1.682
8.30 108.4 kPa, 43.46% acetone
8.31 (a) 91.50 kPa, 53.77% propanol

(b) 96.75 kPa, 43.91% propanol
(c) 353.84 K, 81.5% propanol
(d) 360.615 K, 6.38% propanol

8.32 329.7 K, 356.9 K
8.33 (a) 330 K

(b) 340.6 K
(c) Mole % in the liquid and vapour are given in brackets: Ethane (0.48, 0.09), Propane (36.3,
17.45), Isobutane (18.18, 18.74), n-Butane (44.98, 63.35), Isopentane (0.13, 0.38)

8.34 (a) 930.3 kPa
(b) 337.4 K, Composition of condensate: Ethane (1.8%), Propane (6.2%), Isobutane (17.3%), n-
Butane (67.1%), Isopentane (7.50%) 330.2 K, Composition of the liquid and vapour: Ethane
(3.22%, 16.81%), Propane (9.31%, 18.7%), Isobutane (19.55%, 18.46%), n-Butane (63.38%,
44.57%), Isopentane (4.54%, 1.46%)

8.35 2205 kPa, Methane: 41.91, Ethane: 20.25, Propane: 21.96, Isobutane: 8.57, n-Butane: 7.31
706 kPa, Methane: 0.2, Ethane: 1.91, Propane: 16.14, Isobutane: 30.88, n-Butane: 50.88



8.36 861.4 kPa, 2446 kPa
8.37 758 kPa
8.38 (a) 717 kPa

(b) Propane: 63.93%, n-Butane: 36.07%
(c) Propane: 36.07%, n-Butane: 63.93%

8.39 Consistent
8.40 A = 0.685, B = 0.785, consistent
8.41 Inconsistent
8.42 Consistent
8.43 Consistent
8.44 (a) g1 given in brackets against x1: 1.0 (1.00), 0.87 (1.016), 0.50 (1.2074), 0.30 (1.3778)

(b)  (kPa) in brackets against x1: 1.0 (0), 0.87 (7.45), 0.50 (20.05), 0.30 (31.63), 0 (37.72)
8.45 Inconsistent
8.46 g2 in brackets against x1: 0 (1.0), 0.0033 (0.9999), 0.0168 (0.9982), 0.0486 (0.9854), 0.0986

(0.9746), 0.168 (0.9313), 0.2701 (0.8535), 0.424 (0.7688)
8.47 1.0493
8.48  (kPa) in brackets against x1: 0.065 (24.20), 0.14 (47.90), 0.211 (66.67), 0.293 (84.56),

0.383 (100.31), 0.483 (114.08), 0.587 (125.48), 0.713 (137.19), 0.854 (150.67)
8.49 A = 1.7405, B = 1.4012. g1 and g2 are in brackets against x1: 0 (5.7, 0), 0.04 (4.8231,

1.0034), 0.11 (3.6990, 1.0251), 0.28 (2.2064, 1.1603), 0.43 (1.5902, 1.3880), 0.61(1.2226,
1.8417), 0.80 (1.0561, 2.6406), 0.89 (1.0144, 3.1869), 0.94 (1.004, 3.5522), 1.00 (1.0, 4.06)

8.50 (a) 1.7951, 1.4679
(b) 1.7951, 1.4679
(c) 65.21% water, 65.82 kPa

8.51 x1 = 0.20, g1 = 1.0720, g2 = 1.0059, P = 100.15 kPa, y1 = 0.2126
x1 = 0.90, g1 = 1.0007, g2 = 1.0815,
P = 100.03 kPa, y1 = 0.894

8.52 g1 = 1.0288, g2 = 2.6100
8.53 20.22 kPa, 53.57% ethanol
8.54 93.3 kPa, 57.1% A
8.55 (a) 128.6 kPa, 34.25% A

(b) No change
8.56 123.21 kPa, 38.54% A
8.57 Azeotrope exists at

121.8672 kPa, y1 = 0.8379
8.58 342 K, 0.0975 kg



8.59 Mole fractions of water in the liquid and vapour against pressure (kPa):
Aniline-rich phase:
9.22 (0, 0), 42.475 (0.1, 0.805), 75.73
(0.2, 0.903), 108.99 (0.3, 0.941),
142.24 (0.4, 0.961), 146.23 (0.412, 0.963)
Water-rich phase:
146.23 (0.984, 0.963), 145.06 (0.990, 0.977), 144.67 (0.992, 0.981), 144.08
(0.995, 0.988), 143.49 (0.998, 0.995),
143.10 (1.00, 1.00)

8.60 Mole fractions of ether in the liquid and vapour against temperature in K:
Water-rich phase:
307 (0.0123, 0.9295), 313 (0.00914, 0.9277), 323 (0.0056, 0.8796), 333 (0.0034, 0.8047), 343
(0.0018, 0.6945), 353 (0.00098, 0.5334), 363 (0.00037, 0.3092)

8.61 (a) 369.2 K,
(b) 4.78% aniline

8.62 (a) 361.6 K, 21.9% toluene, 13.1%
ethylbenzene, 65.0% water
(b) 387.8 K, 26.8% toluene, 73.2% ethyl benzene

8.63 Mole fraction of heptane in the vapour against temperature in K:
361.53 (0.35), 359.45 (0.40), 357.23 (0.45), 354.83 (0.50), 353.82 (0.52), 352.40 (0.548)

8.64 (a) 366 K, pure water
(b) 374.9 K, pure toluene
Last drop of vapour contains 44.36% toluene

8.65 (a) 388.8 K, pure component 1
(b) 365.5 K, pure component 2

8.66 (a) g1 = 1.1570, g2 = 1.4796
(b) 0.318

CHAPTER 9



9.5 6.09 � 105
9.6 – 57,350 J/mol
9.7 5.7498 � 10–4
9.8 Yes
9.9 (a) – 24,800 J/mol, feasible

(b) 2.067
(c) DG0 = – 7.53305 � 104 + 6.12 � 104(T)–1 + 63.710T ln T – 181.11T – 44.958 � 10–
3T2 + 4.7805 � 10–6T3
(d) 1.7297

9.10 14.3692
9.11 (a) Above 812.4 K, quite favourable

Below 550 K, unfavourable
(b) 75.42%, 45.69%



(c) 81.94%, 55%
9.12 1.0506 � 10–3

9.13 DG0 = – 4.35946 � 104 + 13.003 T lnT
– 1.8564 � 10–2T2 + 2.43835 � 10–6T3
+ 54.972T

+ 2.2329 � 10–3T – 1.5640 lnT – 6.612
9.14 DG0 = – 3.92016 � 104 + 13.003T lnT

– 1.8564 � 10–2T2 + 2.43835 � 10–6T3
+ 44.51T

2.2329 � 10–3T – 1.5640 lnT – 5.3538
9.15 1.37 � 10–5
9.16 40.7%
9.17 16.6%
9.18 51.35%
9.19 15.05%
9.20 Ethylene: 21.9%, Steam: 74.0%, Ethanol: 4.1%
9.21 22.51%
9.22 58.92%
9.23 7.77% SO3, 0.34% SO2, 7.34% O2, 84.55% N2
9.24 32.05% CO2, 14.36% CO, 53.59% O2
9.25 46.3% CO2, 35.8% CO, 17.9% O2

Q = – 121.859 kJ/mol C burned
9.26 e = 0.07243, yNO2 = 0.135

yN2O4 = 0.119
9.27 (a) CO = 48.26%, CH3OH = 11.74%

(b) Concentration will increase.
9.28 3.285%
9.29 (a) 2.08%

(b) 3.4%
9.31 11.58 bar
9.32 (a) 0.4976

(b) 0.8251
9.33 11.93% A, 11.93% B, 76.14% C
9.34 Pressure in bar is given in brackets against temperature in K:



298 (0.0032), 400 (0.342), 500 (5.23) 600 (32.22), 700 (118.06)
9.35 0.4192
9.36 (a) 14.781

(b) Below about 345 K, the reaction is highly favourable. But above 420 K, unfavourable (c)
0.85%, 4.04%
(d) 1.13%, 5.38%
(e) 0.847%

9.37 0.1028
9.38 0.003733, 2.074 � 10–4 mol/kg, 0.0553 mol/kg
9.39 81.09%
9.40 1 bar (55.47%), 2 bar (42.64%), 3 bar (35.92%)
9.41 0.0481 bar
9.42 617.87 K
9.43 23 bar, yA = 0.072, yB = 0.87, yC = 0.058
9.44 4.1 bar
9.45 T (K) and P (bar) given in brackets against mole fraction of CO resulting in deposition of C:

0.3422 (900, 1), 0.3434 (900, 5), 0.1248 (900, 10), 0.6946 (1000, 1), 0.4259 (1000, 5), 0.3263
(1000, 10)

9.46 Acetylene: 0.4142, Hydrogen: 0.4142, Ethylene: 0.1716
9.47 8%
9.48 A: 31.58%, B: 26.32%, C: 21.05%,

D: 15.79%, E: 5.26%
9.49 A: 23.54%, B: 5.53%, C: 12.47%, D: 27.81%, E: 30.65%
9.50 4
9.51 4



Index
Absolute temperature, 12–14, 97–99
Absorption refrigeration, 163–165
Acentric factor, 64
Activity, 255–256, 431, 461–462

effect of temperature and pressure on, 256
and equilibrium constant, 431–433
in solutions, 296
standard state for, 255, 296–297

Activity coefficient, 292, 297–300,401–402, 460
calculation of, 401
and excess chemical potential, 319
effect of pressure on, 299
effect of temperature on, 299–300
equations for, 368–374
and Gibbs–Duhem equation, 303–304
in testing consistency of VLE data, 395–400

Adiabatic
flame temperature, 77
mixing, 105
reaction temperature, 77

Adiabatic process, 55–57
work of compression, 144
work of expansion, ideal gas, 55–57

Air refrigeration cycle, 161–162
Air–standard cycles, 180–182, 183–185
Availability, 90, 93
Azeotropes, 364–368, 370–371

Benedict–Webb–Rubin equation, 64–65
Bernoulli equation, 129
Boiling point diagram, 347–348, 403–406
Brayton cycle, 189–190
Bubble point, 347, 349, 389

Canonical variables, 211–212
Carlson–Colburn relation, 402
Carnot cycle, 95–97

for power plants, 171–172
for refrigeration, 152–154

Carnot efficiency, 97–98
Carnot’s principle, 95–97
Chemical equilibrium (see Chemical reaction equilibrium)
Chemical potential, 284–287, 338–339, 430, 433

as criteria of equilibrium, 338–339
effect of T and P on, 285–286
excess, 318–319

Chemical reactions:
adiabatic, 77
entropy change of, 107
equilibrium constant for, 431–436, 462, 466–467
equilibrium conversion, 2, 425–426, 428, 446–448, 451, 454–455
extent of, 426, 428



feasibility of, 434–435
heat effects of, 69–77
independent, 467, 469
liquid-phase, 459–460
reaction coordinates (see also Extent of), 426
simultaneous, 465–467
in solutions, 461
stoichiometry of, 426

Chemical reaction equilibrium, 425–470
constants, 431–436, 440
criteria for, 429–431
effect of excess reactant on, 454
effect of inerts on, 451
effect of pressure on, 446–448
effect of products on, 457
effect of temperature on, 436–440
in heterogeneous reactions, 461–462
in homogeneous gas phase reactions, 446–448
in liquid phase reactions, 459–461
in multiple reactions, 465–468
standard state for, 434

Clapeyron equation, 213–214, 337–338
Claude process, 168
Clausius

inequality, 108–110, 330
statement, 91–92

Clausius–Clapeyron equation, 214, 338
Clearance, 147–149

effect of, 147–149
volume, 147–149

Closed cycle
gas turbine system, 188
heat engine system, 180

Closed system, 3, 26, 112, 343
Coefficient

of compressibility, 207, 227, 239
of volume expansion, 207, 227, 239

Coefficient of performance (COP)
of heat pump, 15, 91, 65
of refrigeration cycles, 15, 152, 153, 156, 162

Coexistence equation, 398–399
Combustion, standard heat of, 70
Compressibility, isothermal (see Coefficient of compressibility)
Compressibility factor, 65, 67, 247, 257–258
Compression ratio, 184–185
Compressors, 143–149

multi-stage, 145–146
theoretical volumetric efficiency of, 147–149
work of isentropic, 144
work of isothermal, 145

Conservation
of energy, 24, 127
of mass, 126–127

Consistency test of VLE, 395–400
Continuity equation, 126–127
Control volume, 126–127
Convergent–divergent nozzle, 138–139
Corresponding states, principle of, 68–69



Criterion
of equilibrium, 330–332, 429–431
of stability, 332–333

Critical
point, 50
pressure ratio, nozzle, 139
properties, 50, 62, 68
solution temperature, 405, 408

Cut-off ratio, 184
Cycle efficiency, 169
Cycles

Carnot, 95, 152–154, 172
gas turbine, 188–190
internal combustion engine, 180–187
refrigeration, 151–165
steam power plant, 170–178

Dalton’s law, 353
Degrees of freedom, 11, 342–344, 469
Departure functions, 256–259
DePriester nomographs, 389
Derived properties, 206–207
Dew point temperature, 347–348, 389
Diesel cycle, 183–185
Differentials of energy properties, 210
Differential expressions

for enthalpy, 210, 217–218
for entropy, 216–217
for internal energy, 210, 217–218

Diffuser, 139, 142
Dilute solutions, 293
Distillation, 1, 395
Displacement volume, 148
Dual cycle, 187–188
Duhem–Margules equation, 356
Duhem’s theorem, 343–344

Efficiency
Carnot, 96–100, 172
compressor, 144, 148–149
ejector, 143
gas liquefaction, 169
gas turbine, 190
of internal combustion engine, 182, 184–185, 188
of steam power plant, 171–172, 175, 178
theoretical volumetric, 147–149

Endothermic reactions, 70, 437–438
Energy, 6, 8, 24, 34–36

availability of, 90, 93–94
balance, 35, 127–129
conservation of, 24, 127
degradation of, 90, 91, 93–95
equation, 127–129
internal, 24–27, 34–35, 41, 51, 93
kinetic, 8, 24–28, 35–36
potential, 8, 24–27, 35–36
properties, 206



Engines
Carnot, 171–172
heat, 14, 180
internal combustion, 180–187

Enthalpy, 31–33
calculation of, 32–34, 220–226
change of chemical reaction, 69–70
change of combustion, 70
change of formation, 70–71
change of mixing, 309–312, 351
change of phase change, 213
change, constant pressure process, 32, 41
change, constant volume process, 32
change, steady–state flow process, 36
departure, 257–259, 263
differential equation for, 210, 217–218
effect of T and P on, 220–222
ideal gas, 55, 218–219
partial molar, 281–284, 300
residual (see Enthalpy departure)

Enthalpy–entropy diagram, 260–261
Entrance work, 35
Entropy, 84–86, 92–97, 99–109

absolute, 119
calculation of, 103–107, 216, 220–226
change as criterion of equilibrium, 330–331
change of mixing, 105–106, 310–311
departure, 257–259, 263–264
differential equation for, 216–217
effect of T and P on, 220–222
and heat, 93–94
heat capacity relations, 215–216
for ideal gas, 103–104, 106–107
and irreversibility, 115–116
of isolated systems, 111–112
and nature of processes, 94–95
partial molar, 286, 310
principle of increase of, 112
and probability, 118–119
residual (see Entropy departure)
statistical explanation of, 118–119
and temperature, 94

Equality of chemical potentials, 339
Equations of state, 51, 60–65, 250

approach for VLE, 345, 386
Benedict–Webb–Rubin, 64
limiting conditions for, 61
Peng–Robinson, 64, 387
Redlich–Kwong, 63, 387
Redlich–Kwong–Soave, 64, 387
van der Waals, 61–62
Virial, 65

Equilibrium, 1, 3, 329–332
chemical reaction, 425–479
constant for vaporisation, 363
constant, 431–436
criteria of, 330–332, 429–431
liquid–liquid, 408–410



mechanical, 10, 330
phase, 329–410
state, 1, 3, 329, 331–332, 436
thermal, 10–12, 330
vapour–liquid, 344–406

Equilibrium constant, 431–436
and activity, 431–433
effect of pressure on, 446
effect of reaction stoichiometry on, 432–433
effect of temperature on, 436–440
and free energy change, 433–434
evaluation of, 440
for multiple reactions, 466–467

Equilibrium conversion, 1, 2, 425–426, 428
effect of excess reactants on, 454
effect of inerts on, 451
effect of pressure on, 446–448
effect of products on, 457
in multiple reactions, 465–467

Equilibrium yield (see Equilibrium conversion)
Exact differential equation, 209–210, 237
Excess properties, 317–319, 333
Exothermic reactions, 69, 436–437
Expansion engine vapour compression, 156–157
Extensive properties, 4, 206–207, 273, 276
Extent of reaction, 426–428, 430, 467–468
Extract, 409
Extraction, 409

Fanning friction factor, 135
Feasibility of process, 332, 434–435
First law of thermodynamics, 24–29

for cyclic process, 25
for flow process, 34–35, 127–129
for non–flow process, 26–31
limitations of, 89–90

Flame temperature, 77
Flash calculation, 390–391, 392–395
Flow energy, 35, 127
Flow in pipes, 135–136
Flow processes

in compressors, 143–149
continuity equation of, 126–127
energy balance, 127–129
in ejectors, 142–143
mechanical energy balance for, 129
in nozzles, 137–140
in pipes, 135–137
in throttling, 143–144
total energy balance for, 128

Force, 5
Formation

Gibbs free energy of, 440
heat of, 70–71, 442

Free energy
Gibbs, 206–209
Helmholtz, 206–209



Free expansion, 16, 167–168
Friction factor, 135
Fugacity coefficient, 246–248, 289, 344–346, 386, 432, 448

generalised chart for, 248–249
Fugacity, pure fluids, 244–255

calculation of, 247–253
effect of pressure on, 246–247
effect of temperature on, 246
of gases, 244–246
of liquids and solids, 254
of van der Waals gas, 251–252
standard state for, 245

Fugacity, solutions, 288–293, 333–335, 355–356, 362
as criterion of equilibrium, 340
and equilibrium constant, 431–433, 436
in gaseous mixtures, 288–291
of ideal solutions, 290–293
in liquid mixtures, 291–293, 334–335, 352–353, 356, 363, 460
in VLE, 344–345

Function
path, 4, 102–103
state, 4, 25–26, 101–102

Fundamental property relations, 210–211, 238
Fusion curve, 50–51

Gas
ideal, 12, 51–57
liquefaction, 166–169
real, 60–65
solubility, Henry’s law for, 294
turbines, 188–190

Gas turbine cycle, 188–190
Generalised charts

compressibility factor, 68–69, 258
enthalpy departure, 259
entropy departure, 259
fugacity coefficient, 248–249

Generalised correlation for
enthalpy departure, 258–259
entropy departure, 258–259

Giauque functions, 440–442
Gibbs–Duhem equation, 302–304, 334, 368, 395–396, 398–399
Gibbs free energy, 206–209

at equilibrium, 331–332, 335–336, 428–430
change as criteria of equilibrium, 330–331, 429–431
change of mixing, 308, 311, 315, 332
change on reaction, 429–431, 433–435
differential equation for, 210
effect of temperature on, 235–236
excess, 318–319, 333, 369, 398
of formation, 440
functions (see Giauque functions)
partial molar, 284 (see also Chemical potential)

Gibbs–Helmholtz equation, 235–236, 437
Gibbs paradox, 107
Gross heating value, 70



Heat, 4, 7–8, 25, 35, 40–41, 89–90, 93
of combustion, 70–71
and entropy, 93–94
of formation, 70–71
latent, 213, 337
of mixing, 300, 311–312
quality of, 89–90
of reaction, 69–74
reservoir, 14, 94, 96
sign convention for, 25
of solution, 311–312
specific, 40
of vaporisation, 214

Heat capacity, 4, 40–41, 53, 215
constant pressure, 40–41, 53, 239
constant volume, 40–41, 53, 239
effect of pressure and volume on, 229–230
entropy change and, 215
of ideal gas, 53–54, 231
mean, 315–316
ratio of, 229
relationship between, 226–227, 243

Heat engines, 14, 91, 180
efficiency, 14, 91

Heat pump, 15, 91, 165
COP of, 15, 165

Heat of reaction, effect of T on, 72–74
Helmholtz free energy, 206–208

as criterion of equilibrium, 331
differential equations for, 210

Henry’s law, 293–294, 295–296, 298
for activity coefficients, 298
and gas solubility, 294
and Lewis–Randall rule, 293–294, 305
for standard state, 298–301, 460–461

Hess’s law, 71
HS diagram, 260–261
HT diagram, 260, 262–263

construction of, 262–263

Ideal gas, 12, 51–57
adiabatic process for, 55–57
as Carnot cycle fluid, 98–99
constant pressure process for, 53–54
constant volume process for, 52–53
enthalpy of, 51, 218–219
equation, 12, 51
heat capacity of, 53–54, 231
internal energy of, 51, 218–219
isothermal process for, 54–55
Joule–Thomson coefficient of, 52, 143, 235
polytropic process for, 57
property changes of mixing for, 310–311

Ideal solution, 290–293, 351–357
and Lewis–Randall rule, 290–292
phase equilibrium for, 351–355
property changes of mixing, 310–311



and Raoult’s law, 292–293, 298, 351–357
and standard states, 298

Immiscible systems, 332–333
Independent chemical reactions, 469
Intensive property, 4, 206, 274, 276, 341–342
Internal combustion engines, 180–187
Internal energy, 25–27, 30, 34–35, 41

change in constant volume process, 32, 41
change in non–flow process, 26–27
differential equation for, 218–219
effect of T and P on, 220–222

Invariant system, 343
Inversion temperature, 143
Irreversible process, 16–19, 94–95, 102–103, 108–110, 115–116, 208, 330–331
Isenthalpic process, 52
Isentropic

expansion, liquefaction, 168–169
flow, 136

Isolated system, 3, 94, 112, 330
Isothermal

compressibility, 207, 227, 239
compression, work of, 144–145
expansion, work of, 54–55
mixing, ideal gases, 106–107
process, 54–55

Jacobians, 236–238
thermodynamic relations using, 238–244

Jet pumps, 142
Joules experiment, 24
Joule–Thomson

coefficient, 52, 143, 166–167, 233–235, 244
expansion, 143
inversion curve, 233–234
inversion temperature, 143
liquefaction, 166–168

Kelvin–Planck statement, second law, 91–92
Kelvin temperature, 12–14
Kinetic energy, 8, 25–26, 35–36
K–values for VLE, 386–390

DePriester nomographs, 389–390

Latent heat (see Enthalpy change of phase change)
Law of conservation of energy, 24, 127
LeChatlier’s principle, 436, 446–447
Lewis fugacity rule (see Lewis–Randall rule)
Lewis–Randall rule, 290–292, 341, 356

for activity coefficient, 298
and Henry’s law, 293–294, 305
standard state based on, 300–301, 313

Limiting conditions for equations of state, 51
Linde process, air liquefaction, 167–168
Liquefaction process, 166–169

by isentropic expansion, 168–169
by throttling, 166–168
by vaporisation of liquid, 166



Liquid–liquid equilibrium, 408–410
Liquids, fugacity of, 254, 291–293

Liquid–vapour equilibrium (see Vapour–liquid equilibrium)
Lost work, 116

Mach number, 138
Margules equation, 319, 369–370
Maximum

net work, 209
velocity for flow, 136–137
work, 18, 207–208

Maximum–boiling azeotrope, 365–366
Maxwell’s equations, 211–213, 215, 238–239
Mechanical energy balance, 128–129
Minimum–boiling azeotrope, 364–365
Mnemonic diagrams, 212
Molality, 460–461
Mollier diagrams, 260–261
Multistage compression, 145–147

with interstage cooling, 146
work requirement, 146

Negative deviation, 318, 363–365
Net heating value, 70
Newton’s second law, 5
Non–ideal solutions, 293–294, 307, 361–367

ideal behaviour of, 293–294
negative deviation in, 318, 363–365
positive deviation in, 318, 363–365

Nozzles, 137–140
convergent–divergent, 138–140
critical pressure ratio in, 139
relation between A and u, 137–138
throat velocity for, 138–140

NRTL equation, 372
Number of degrees of freedom, 11, 342–344

Open cycle, 180
gas turbine power plant, 188

Open systems, 3
Ordinary vapour compression cycle, 154–156
Osmosis, 340
Osmotic pressure, 340–341
Otto cycle, 180–182

Partial
heat of mixing, 300
pressure, 288, 290

Partially miscible systems, 403–405
Partial molar property, 273–281

determination of, 279–281
physical meaning of, 274–275
and properties of solutions, 276–277

Path functions, 4, 102
Peng–Robinson equation, 64, 387
Perpetual motion machine, 24



Phase, 3
change and entropy change, 103
diagrams, 346–351, 353–355, 362–366, 404–406, 408–410
equilibrium, 329–410
rule, 11, 341–343, 469

Phase equilibrium, 329–410
criterion of, 292, 330–332
in multicomponent systems, 338–340
in single component systems, 335–336

PH diagrams, 155, 259–260
Plait point, 409
Polytropic process, 57
Positive deviation from ideality, 318, 363–365
Potential energy, 8, 25–27, 35–36
Power–plant cycles, 170–179
Poynting correction, 346, 388
Practical efficiency, 169
Pressure, 5–6

critical, 50
of decomposition, 462
drop, 135
osmotic, 340–341
partial, 288, 290, 353–354, 362–364, 432, 462
reduced, 68–69

Pressure ratio
critical, 139
turbine, 190

Principle of corresponding states, 68–69
Probability and entropy, 118–119
Properties, 4

critical, 50, 62
derived, 206–207
energy, 206
excess, 317–319
extensive, 4
intensive, 4
partial molar, 273–281
path, 4, 102
reduced, 68–69
reference, 206
residual, 257–259

Property changes on mixing, 296, 307–311
and excess property changes, 317
for ideal solutions, 310–311

PT diagram, 50–51, 61
PV diagram for IC engines, 181, 184, 187
PV isotherm, 49–50, 61, 65
PVT behaviour of fluids, 49–51

Raffinate, 409
Rankine cycle, 171–172
Raoult’s law, 292–293, 295–296, 298, 305, 351–355, 362–363
Reaction coordinate, 426
Redlich–Kister consistency test, 398
Redlich–Kwong equation, 63, 387
Redlich–Kwong–Soave equation, 64, 387
Reduced properties, 68–69



Reference properties, 206
Refrigerant, choice of, 159–160
Refrigeration cycle, 151–165

absorption, 163–165
air, 161–162
capacity of, 152
Carnot cycle for, 152–153
COP of, 152, 153, 156, 162
vapour compression cycle, 154–156

Regenerative cycle, 177–178
Reheat cycle, 174–175
Relative volatility, 354–355
Residual properties (see Departure functions)
Reverse osmosis, 340
Reversible

process, 16–19, 95, 103, 108–110, 207–209, 213, 330
work, 17–19, 207–209

Saturated phases, 50
Saturation

pressure, 50
temperature, 50

Second law of thermodynamics, 90–92, 111–112
Shaft work, 34–36, 122–129, 144–145
Solubility of gas in liquid, Henry’s law, 294
Sonic velocity, 137
Specific heat (see also Heat capacity), 4, 40–41, 215
Stability criteria, 332–333
Standard

Gibbs free energy change, 433–437, 441
heat of combustion, 70–71
heat of formation, 70–71, 442
states, 69–70, 245, 255, 296–301, 308
vapour power cycle (see Rankine cycle)

Standard heat of reaction, 69–71, 438–439
effect of temperature on, 72–74

State, 3
equilibrium, 3, 329, 331, 332, 436
functions, 4, 25–26, 101–102, 207
steady, 10, 34, 329

Steady–state flow process, 34–36
Steam–power plants, 170–179

Rankine cycle for, 171–173
regenerative cycle for, 177–179
reheat cycle for, 174–176

Steam tables, 483–490
Stoichiometric

numbers, 72, 426
reaction, 426

Sublimation, 51
Surroundings, 3, 26, 112
System, 2

adiabatic, 112
closed, 3, 26, 112
heterogeneous, 3
homogeneous, 3
isolated, 3, 25, 84, 112–113, 330



open, 3

Tangent–intercept method, 280–281
Temperature, 11–14

absolute, 12–14, 97–99
adiabatic reaction, 77
critical solution, 409
critical, 50
and entropy, 94
flame, 77
Joule–Thomson inversion, 143
of reaction, 77
reduced, 68–69
saturation, 50
three–phase equilibrium, 404–406
upper critical solution, 405

Temperature scale, 12–14, 97–99
ideal gas, 12–14, 98–99
thermodynamic, 97–99

Ternary equilibrium diagrams, 408–410
TH diagram, 260

construction of, 262–263
Theoretical volumetric efficiency, 147–149
Thermal efficiency

of gas turbines, 190
of IC engines, 182, 184–185, 188
of steam power plants, 171–172, 175, 178

Thermodynamic
consistency, 395–400
efficiency, 169
equilibrium, 11, 330–331, 339
temperature, 13–14, 97–98

Thermodynamic diagrams, 259–264
construction of, 262–264
types of, 259–262

Thermodynamics
limitations of, 1–2
scope of, 1–2
third law of, 118–119
zeroth law of, 11–12

Three–phase equilibrium temperature, 404–406
Throttling process, 143, 233, 259–260
Tie line, 347, 354, 410
Ton of refrigeration, 152
Total energy balance, 128
Triangular diagrams, 409–410
Triple point, 13, 51, 97, 343
TS diagram, 260–261

construction of, 263–264
for IC engines, 181, 184, 187
for liquefaction, 167–168
for refrigeration, 153, 155–157, 159, 161
for steam power plants, 172, 175, 178

UNIFAC equation, 374
UNIQUAC equation, 371–373
Unit



operations, 1–2
processes, 1

Univariant system, 343
Upper critical solution temperature, 405

van der Waals equation, 61–62
van Laar equation, 370–371
van’t Hoff equation, 437
Vaporisation curves, 50–51
Vaporisation equilibrium constant (see K–values for VLE)
Vapour–compression refrigeration cycle, 154–157

expansion engine, 156–157
ordinary, 154–156

Vapour–liquid equilibrium, 344–406
activity coefficient equations for, 369–374
activity coefficient model approach for, 345
basic equations for, 344–345
boiling point diagrams, 347–348
consistency tests for, 395–400
diagrams, 346–350
effect of pressure on, 349
equations of state approach for, 345, 386
equilibrium diagram, 348
flash calculations, 390–391
fugacity of components under, 344–346
immiscible systems, 405–406
K–values for, 387–390
partially miscible systems, 403–404
P–x–y diagrams, 350

Virial equation, 65–66
Volume

change of mixing, 308–309, 313–314, 317, 351–352
coefficient of expansion, 207, 227, 239
critical, 50
excess, 317
partial molar, 274–275, 280–284
reduced, 68
residual, 248–250

Wilson equation, 371–372
Wohl’s equation, 369
Work, 4, 6–8, 25, 34–35, 89–90

of adiabatic compression, 144–145
of adiabatic expansion, 56–57
function (see Helmholtz free energy)
of isothermal compression, 144–145
of isothermal expansion, 54–55
lost, 116
requirement for compressors, 144–145
reversible, 17–19
shaft, 31–33, 127–129, 144–149
sign convention for, 25

x–y diagrams, 348–349
x–y–P diagrams, 349, 350, 353–354
x–y–T diagrams (see Boiling point diagram)



Zero area method, 398
Zeroth law of thermodynamics, 11–12
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