DAV UNIVERSITY JALANDHAR

Course Scheme & Syllabus For B.Sc. Chemistry (As per NEP 2020) 1st TO 2nd SEMESTER 2023–2024

2023-2024

PROGRAM EDUCATION OBJECTIVES (PEO)

PEO-1 To provide the students an in-depth understanding of the basic concepts of chemical sciences.

PEO-2 To develop student skill in problems solving, critical thinking and analytical reasoning.

PEO-3 To pursue higher studies, research and analysis in various disciplines of chemistry.

PEO-4 To attain entrepreneurship andself-empowerment in the area of chemical sciences.

PEO-5 To Provide a contemporary grounding in professional responsibility and ability to find solutions in a global, economic, environmental and societal context.

Programme Outcomes

PO1. Critical Thinking: Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.

PO2. Effective Communication: Speak, read, write and listen clearly in person and through electronic media in English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology.

PO3. Social Interaction: Elicit views of others, mediate disagreements and help reach conclusions in group settings.

PO4. Effective Citizenship: Demonstrate empathetic social concern and equity centered national development, and the ability to act with an informed awareness of issues and participate in civic life through volunteering.

PO5. Ethics: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.

PO6. Environment and Sustainability: Understand the issues of environmental contexts and sustainable development.

PO7. Self-directed and Life-long Learning: Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes

Program Specific Outcomes (PSO)

PSO-1 The students will understand the existence of matter in the universe as solids, liquids, and gases which are composed of molecules, atoms and sub atomic particles.

PSO-2 Students will learn to estimate inorganic salt mixtures and organic compounds both qualitatively and quantitatively using the classical methods of analysis in practical classes.

PSO-3 Students will grasp the mechanisms of different types of reactions both organic and inorganic and will try to predict the products of unknown reactions.

PSO-4 Students will learn to synthesize the chemical compounds by maneuvering the addition of reagents under optimum reaction conditions.

	Credit D	etails	
S.No.	Course Category	Course Category	3-Yr B.Sc chemistry
		Abbreviation	/ (Credits)
1.1	Discipline Specific Courses-Core	DSC	58
1.2	Discipline Specific-Skill Enhancement	DS-SEC	5
	Courses- Core		
1.3	Discipline Specific-Value Added	DS-VAC	0
	Courses-Core		
	Total of Discipline Specific Core (63	
2.1	Minor Courses	MC	
	OR	I	1
2.2	Interdisciplinary Courses	IDC	22
3	Multidisciplinary Courses	MDC	9
4	Ability Enhancement Course-	AEC-C	8
	Common		
5	Value Added Courses-Common	VAC-C	6
6.1	Skill Enhancement Courses- Common	SEC-C	8
6.2	Skill Enhancement Courses-Summer	SEC-SI	4
	Internship		
	Total of Skill Enhancement Co	urses	
	Total Credits		120

Scheme of Courses- Bachelor of Chemistry

Scheme of Courses- Bachelor of Honours in Chemistry/(Hons/(Hons. with Res.)

Credit Details

S.No.	Course Category	Course	4-Yr B.Sc	4-Yr .Sc Chemistry
		Category	Chemistry	(Hons/(Hons. with
		Abbreviation	(Hons.)/(Credits)	Res.) (Credits)
1.1	Discipline Specific	DSC		
	Courses-Core		98	86
1.2	Discipline Specific-	DS-SEC		
	Skill Enhancement		5	5
	Courses-Core			
1.3	Discipline Specific-	DS-VAC	0	0
	Value Added			
	Courses-Core			
	Total of Discipline	Specific Core	103	91
	Course	S		
2.1	Minor Courses	MC		
	I	OR	1	
2.2	Interdisciplinary	IDC	22	22
	Courses			
3	Multidisciplinary	MDC	9	9
	Courses			
4	Ability Enhancement	AEC-C	8	8
	Course- Common			
5	Value Added	VAC-C	6	6
	Courses-Common			
6.1	Skill Enhancement	SEC-C	8	8
	Courses- Common			
6.2	Skill Enhancement	SEC-SI	4	4
	Courses-Summer			
	Internship			
6.3	Skill Enhancement	SEC-RP		12
	Courses- Research			
	Project/Dissertation			
T	otal of Skill Enhanceme	ent Courses		
	Total Credits		160	160

			In	In hours			
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1.	CHM101	Physical Chemistry-I	3	-	2	4	DSC
2.	CHM102	Organic Chemistry-I	2	-	2	3	DSC
3.	PHS152	Modern Physics (Physics)	3	-	2	4	IDC
4.		Multidisciplinary Courses	-	-	-	3	MDC
5.		Ability Enhancement Course- Common	-	-	-	2	AEC- C
6.		Skill Enhancement Courses- Common	-	-	-	2	SEC-C
7.		Value Added Courses-Common	-	-	-	3	VAC-C
						21	

Semester 1

L-Lectures T-Tutorial P-Practical Cr.- Credits

Semester 2

			In hours				
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	CHM111	Inorganic Chemistry-I	3	-	2	4	DSC
2	PHS153	Optics and Lasers (Physics)	3	-	2	4	IDC
3		Multidisciplinary Courses	3	-	-	3	MDC
4		Ability Enhancement Course- Common	-	-	-	2	AEC- C

5	Skill Enhancement Courses- Common	-	-	-	3	SEC-C
6	Value Added Courses- Common	-	-	_	3	VAC-C
					19	

L-Lectures T-Tutorial P-Practical Cr.- Credits

Course	CHM101						
Code							
Course Title	Physical	Physical Chemistry -I					
Hours	L:3, T:0,	P:2					
Credits	4						
Туре	Core	Core					
Course	On the co	mpletion of the course,	the stude	ent will	gain the	followi	ng
Outcomes	knowledg	e and skills:					
	CO1: De	rive mathematical exp	pression	s for di	ifferent	proper	ties of gas
	and unde	rstand their physical s	ignifica	nce			
	CO2: Ex	xplain different phys	sical pr	opertie	s of l	iquids	and their
	applicatio	ons in day to day life	and Ex	xplain t	he crys	stal stru	ucture and
	calculate	related properties of c	ubic sys	tems.			
	CO3: Exj	plain the concept of io	nization	of elect	trolytes	with er	nphasis on
	weak acio	l and base and hydroly	ysis of sa	ılt.			
	CO4: Ap	ply the concepts of phy	sical pr	opertie	s of liqu	iids, pH	l and
	electrolyt	es while studying othe	r chemis	stry cou	rses an	d every	day life.
Examination	Theory +	Practical					
Туре							
Assessment	Written	Assignment/Project	MSE	MSP	ESE	ESP	ABL/PBL
Tools	Quiz	Work					
Weightage	10%	-	25%	-	35%	25%	5%

Examination Mode	Theory + Practical	
Syllabus	 Unit 1: Gaseous State Kinetic molecular model of a gas: Postulates of kinetic theory of gases, Derivations of gas laws; Maxwell distribution and its use in evaluating molecular velocities (average, root mean square and most probable); effect of temperature on distribution of molecular velocities; Expansivity and compressibility; Derivation for expression for average, root mean square and most probable velocity. Collision frequency; collision diameter; mean free path, viscosity of gases including its temperature and pressure dependence; relation between mean free path and coefficient of viscosity, calculation of mean free path with temperature and pressure. Degrees of freedom, law of equipartition of energy, heat capacities of an ideal gas Deviations from ideal gas behaviour, compressibility factor, Z, and its variation with pressure for different gases; causes of deviation from ideal behavior, van der Waals equation of state, its derivation and application in explaining real gas behaviour, virial coefficients and calculation of Boyle temperature. PV isotherms of real gases, and their comparison with vander Waals isotherms, continuity of states, critical constant; relation between critical constants and vander Waals constants, law of corresponding states. 	CO1
	 Unit 2: Liquid State and Solid State Physical properties of liquids; vapour pressure, surface tension, viscosity and their determination. Young-Laplace equation, Effect of addition of various solutes on surface tension and viscosity; Explanation of cleansing 	CO2

action of detergents; Effect of Temperature and pressure	
on viscosity of liquids; Reynolds number, Refraction and	
optical activity.	
• Nature of the solid state, law of constancy of interfacial	
angles, law of rational indices, Miller indices, X-ray	
diffraction, Bragg's law	
Unit 3: Ionic Equiliria	CO3
• Strong, moderate and weak electrolytes, degree of	
ionization, factors affecting degree of ionization,	
ionization constant and ionic product of water. Ionization	
of weak acids and bases, pH scale, common ion effect;	
Salt hydrolysis-calculation of hydrolysis constant, degree	
of hydrolysis and pH for different salts; Buffer solutions;	
derivation of Henderson equation and its applications;	
Solubility and solubility product of sparingly soluble	
salts- applications of solubility product principle;	
Qualitative treatment of acid-base titration curves	
(calculation of pH at various stages).	
Unit 4: Practical	CO4
• Surface tension measurements.	
Determine the surface tension by (i) drop number (ii)	
drop weight method.	
Study the variation of surface tension of detergent	
solutions with concentration. Determine cmc.	
• Viscosity measurement using Ostwald's viscometer.	
Determination of viscosity of aqueous solutions of (i)	
polymer (ii) ethanol and (iii) sugar at room temperature.	
• pH metry	
Study the effect on pH of addition of HCl/NaOH to	
solutions of acetic acid, sodium acetate and their	
mixtures.	

pH metric titration of (i) strong acid vs. strong base, (ii)
weak acid vs. strong base.
Determination of dissociation constant of a weak acid.

Text Book/s

1. Atkins, P.W.; Paula, J.de. (2014), Atkin's Physical Chemistry Ed., 10th Edition, Oxford University Press.

2. Ball, D. W. (2017), Physical Chemistry, 2nd Edition, Cengage Learning, India.

3. Castellan, G. W. (2004), Physical Chemistry, 4th Edition, Narosa.

4. Kapoor, K.L. (2015), A Textbook of Physical Chemistry, Vol 1, 6th Edition, McGraw Hill Education.

5. Khosla, B.D.; Garg, V.C.; Gulati, A. (2015), Senior Practical Physical Chemistry, R. Chand & Co, New Delhi.

6. Kapoor, K.L. (2019), A Textbook of Physical Chemistry, Vol.7, 1st Edition, McGraw Hill Education.

7. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P.(2003), Experiments in Physical Chemistry, 8th Edition, McGraw-Hill, New York.

Reference Book/s

1. Moore, W.J. (1972), Physical Chemistry, 5th Edition, Longmans Green & Co. Ltd.

2. Glasstone, S. (1948), Textbook of Physical Chemistry, D. Van Nostrand company, New York

3. Halpern, A. M. and McBane, G. C. Experimental Physical Chemistry 3rdEd.; W.H. Freeman & Co.: New York, 2003.

Course	CHM102	CHM102						
Code								
Course Title	Organic	Organic Chemistry -I						
Hours	L:2, T:0,	P:2						
Credits	3							
Туре	Core							
Course	On the co	mpletion of the course,	the stude	ent will	gain the	e follow:	ing	
Outcomes	knowledg	e and skills:						
	CO1: Ga	in the knowledge of b	asics co	ncepts	of organ	nic Che	mistry and	
	stereoche	mistry of organic com	pounds					
	CO2: Lea	arn about chemistry of	falkane	s and cy	ycloalka	nnes		
	CO3: Lea	arn about chemistry of	falkene	s, cycloa	alkenes	and die	enes	
	CO4: Stu	dents will gain the pra	actical k	nowled	ge of ba	asics tec	hniques of	
	organic c	hemistry						
Examination	Theory +	Practical						
Туре								
Assessment	Written	Assignment/Project	MSE	MSP	ESE	ESP	ABL/PBL	
Tools	Quiz	Work						
Weightage	10%	-	25%	-	35%	25%	5%	
Examination	Theory +	Theory + Practical						
Mode								
Syllabus	Unit 1: Fundamentals of Organic Chemistry CO1							
	• Hy	ybridization, nature of b	onding i	n organ	ic comp	ounds;		
	Cı	arved arrow notation,	drawing	electro	on mov	ements		
	wi	th arrows half-headed a	and doub	le-head	ed a			

• rrows, homolytic and heterolytic bond breaking; and	
electronic effects in Organic molecules.	
• Types of reagents – electrophiles and nucleophiles;	
Types of organic reactions and Reactive intermediates –	
carbocations, carbanions, free radicals, carbenes, arynes	
and nitrenes, ketenes, benzyne (with examples).	
Assigning formal charges on intermediates and other	
ionic species.	
• Types of reactions and mechanism in organic chemistry;	
Methods of determination of reaction mechanism	
(product analysis, intermediates, isotope effects, kinetic	
and stereochemical studies).	
• Aromaticity: Concept of aromaticity, Huckel's rule,	
Homo-aromatic, non-aromatic and anti-aromatic	
systems. Aromaticity in benzenoid and non-benzenoid	
molecules, Annulenes.	
• Stereochemistry of Organic Compounds: Concept of	
isomerism. Types of isomerism. Optical isomerism -	
Conformation and configuration of molecules, elements	
of symmetry and concept of chirality. Stereogenic	
center, optical activity, projection formulae - Fischer,	
Saw-horse, Newman and Flying wedge representations;	
Interconversion of these formulae.	
• Enantiomers and diastereomers and their properties;	
chiral and achiral molecules with two stereogenic	
centers; threo and erythro isomers, meso compounds,	
resolution of enantiomers, inversion, retention and	
racemization.	
• Relative and absolute configuration, sequence rules, D &	
L; R & S systems of nomenclature. Geometric isomerism	
– determination of configuration of geometric isomers. E	
& Z system of nomenclature, geometric isomerism in	
 oximes and alicyclic compounds.	

[
	Conformational isomerism – conformational analysis of ethane and n-butane; conformations of cyclohexane, axial and equatorial bonds, conformation of mono	
	substituted cyclohexane derivative.	
Unit 2:	Alkanes and Cycloalkanes	CO2
	IUPAC nomenclature of branched and unbranched alkanes, the alkyl group, classification of carbon atoms in alkanes. Isomerism in alkanes. Methods of formation of alkanes (with special reference to Wurtz reaction, Kolbe reaction, Corey-House reaction and decarboxylation of carboxylic acids) Physical properties and chemical reactions of alkanes. Mechanism of free radical halogenation of alkanes: orientation, reactivity and selectivity. Cycloalkanes – nomenclature, methods of formation, chemical reactions, Baeyer's strain theory and its limitations. Ring strain in small rings (cyclopropane and cyclobutane), theory of strain less rings. The case of cyclopropane ring; banana bonds.	
Unit 3:	Alkenes, Cycloalkenes, Dienes	CO3
	Alkenes, Cycloalkenes, Dienes Nomenclature of alkenes, methods of formation, mechanisms of dehydration of alcohols and dehydrohalogenation of alkyl halides, regioselectivity in alcohol dehydration. The Saytzeff rules, Hofmann elimination. Physical properties and relative stabilities of alkenes. Chemical reactions of alkenes – mechanisms involved in hydrogenation, electrophilic and free radical additions, Markownikoff's rule, hydroboration-oxidation, oxymercuration-reduction. Epoxidation, ozonolysis, hydration, hydroxylation and oxidation with KMnO4, Polymerization of alkenes; Substitution at the allylic and	

vinylic positions of alkenes; Industrial applications of	•
ethylene and propene.	
Cycloalkenes: Methods of formation, conformation and	l
Chemical reactions of cycloalkenes.	
• Dienes: Nomenclature and classification of dienes:	
isolated, conjugated and cumulated dienes. Structure of	2
allenes and butadiene, methods of formation,	,
polymerization. Chemical reactions- 1,2 and 1,4	
additions, Diels-Alder reaction.	
Unit 4: Organic Chemistry Lab I	CO4
Calibration of Thermometer	
80-82° (Naphthalene), 113-114° (acetanilide), 132.5-133°	,
(Urea), 100° (distilled Water)	
Determination of melting point	
Naphthalene 80-82°, Benzoic acid 121.5-122°	
Urea, 132.5-133°, Succinic acid 184-185°	
Cinnamic acid 132.5-133°, Salicylic acid 157-5-158°	
Acetanilide 113-5-114°, m-Dinitrobenzene 90°	
p-Dichlorobenzene 52°. Aspirin 135°.	
Determination of boiling points	
Ethanol 78°, Cyclohexane 81.4°, Toluene 110.6°, Benzne 80°,	,
Mixed melting point determination	
Urea-Cinnamic acid mixture of various compositions (1:4,	,
1:1, 4:1)	
Distillation	
Simple distillation of ethanol-water mixture using water	
condenser, Distillation of nitrobenzene and aniline using air	•
condenser.	
Crystallization	
Concept of induction of crystallization	
Phthalic acid from hot water (using fluted filter paper and	
stemless funnel), Acetanilide from	L

boiling water, Naphthalene from ethanol, Benzoic acid from	
water.	
Decolorisation and crystallization using charcoal	
Decolorisation of brown sugar (sucrose) with animal charcoal	
using gravity filtration.	
Crystallization and decolorisation of impure naphthalene	
(100g of naphthalene mixed with 0.3g of Congo Red using 1g	
decolorising carbon) from ethanol.	
Sublimation	
Camphor, Naphthalene, Phthalic acid and Succinic acid.	
Extraction	
Isolation of caffeine from tea leaves	
Steam distillation	
Purification of aniline/nitrobenzene by steam distillation	

Text Book/s

1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd.(Pearson Education).

2.Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

3.Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

4. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.

5.Kalsi, P. S. Stereochemistry Conformation and Mechanism, New Age International, 2005.

6.McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

Reference Book/s

1.Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)

2.Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry,5th Ed., Pearson (2012)

Course	CHM111						
Code							
Course Title	Inorganic Chemistry -I						
Hours	L:3, T:0,	P:2					
Credits	4						
Туре	Core						
Course	On the co	mpletion of the course,	the stud	ent will	gain th	e follow	ving
Outcomes	knowledg	e and skills:					
	CO1: Stu	idents will comprehei	nd the s	tructur	e of ato	om and	the role of
	quantum	mechanics in its unde	erstandi	ng			
	CO2: Un	derstand and utilize	the kno	wledge	of the	periodi	c table and
	periodic	properties					
	CO3: U	nderstand about dif	ferent (types of	of bond	ling ar	nd theories
	explainin	g these bondings.					
	CO4: Th	CO4: The course will help them to understand the difference between					
	qualitative and quantitative analysis They will use titration as a skill for						
	quantitative analysis. Students will also learn to perform the test for						
	qualitativ	ve estimation of variou	ıs acid a	nd basi	ic radic	als.	
Examination	Theory +	Theory + Practical					
Туре							
Assessment	Written	Assignment/Project	MSE	MSP	ESE	ESP	ABL/PBL
Tools	Quiz	Work					
Weightage	10%	-	25%	-	35%	25%	5%
Examination	Theory +	Practical	•				
Mode							
Syllabus	Unit 1: A	tomic Structure					CO1
	• Tł	ne Bohr's theory of ato	omic stru	icture a	nd how	it was	
	de	eveloped					

	1
• Wave Mechanics: The wave-nature of electrons, The	
uncertainty principle and its significance, de Broglie	
equation, The Schrodinger wave equation,	
• Quantum numbers and their necessity in explaining the	
atomic structure: concept of orbitals	
• Writing electronic configuration and the rule's used:	
Pauli's Exclusion Principle, Hund's rule of maximum	
multiplicity, The aufbau principle and its limitations	
Unit 2: Periodic Properties	CO2
• The long form of periodic table,	
• Effective nuclear charge, shielding or screening effect,	
Slater rules, variation of effective nuclear charge in	
periodic table	
• Periodic properties & trends in the periodic properties:	
Atomic and ionic radii, Ionization energy, factors	
affecting it, Electron affinity, Electronegativity,	
Pauling's and Mulliken's electronegativity scales.	
Variation of electronegativity with bond order, the inert-	
pair effect	
• Applications in predicting and explaining chemical	
behaviour	
Unit 3: Chemical Bonding	СОЗ
• Covalent Bond: Lewis structures, Valence Bond theory,	
Hybridization of atomic orbitals, Resonance, Molecular	
orbital theory. Molecular orbital diagrams of diatomic	
and simple polyatomic molecules N2, O2, C2, B2, F2;	
heteronuclear diatomic Molecules HF, CO and NO.	
Formal charge, Valence shell electron pair repulsion	
theory (VSEPR) and shapes of molecules, Limitations of	
the VSEPR model.	

• Covalent character in ionic compounds: polarizing	
power and polarizability. Fajan's rules and	
Consequences of polarization.	
• Ionic character in covalent compounds: Bond moment	
and dipole moment. Percentage ionic character from	
dipole moment and electronegativity difference.	
• Ionic bond: General characteristics, types of ions, size	
effects, radius ratio rule and its limitations.	
• Non-covalent bonds: vander Waals forces, Dipole	
moments, dipole-dipole interactions, dipole-induced	
dipole forces. Hydrogen bonding (theories of hydrogen	
bonding, valence bond treatment) Effects of chemical	
force on the melting and boiling points, solubility	
energetics of dissolution process.	
• Bonding in metals and semiconductors: Qualitative idea	
of band theories for metals, Semiconductors and	
insulators	
Unit 4: Practical	CO4
Unit 4: Practical Qualitative Analysis: 	CO4
	CO4
• Qualitative Analysis:	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals Quantitative Analysis: 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals Quantitative Analysis: Calibration and use of apparatus, 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals Quantitative Analysis: Calibration and use of apparatus, Preparation of solutions of different Molarity/Normality 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals Quantitative Analysis: Calibration and use of apparatus, Preparation of solutions of different Molarity/Normality of titrants. 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals Quantitative Analysis: Calibration and use of apparatus, Preparation of solutions of different Molarity/Normality of titrants. Acid-Base Titrations 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals Quantitative Analysis: Calibration and use of apparatus, Preparation of solutions of different Molarity/Normality of titrants. Acid-Base Titrations Estimation of carbonate and bicarbonate present 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals Quantitative Analysis: Calibration and use of apparatus, Preparation of solutions of different Molarity/Normality of titrants. Acid-Base Titrations Estimation of carbonate and bicarbonate present together in a mixture. 	CO4
 Qualitative Analysis: Semi-micro analysis of salt mixtures containing two acidic and two basic radicals Quantitative Analysis: Calibration and use of apparatus, Preparation of solutions of different Molarity/Normality of titrants. Acid-Base Titrations Estimation of carbonate and bicarbonate present together in a mixture. Estimation of free alkali present in different 	CO4

Estimation of Fe(II) and oxalic acid using standardized
KMnO4 solution
Estimation of oxalic acid and sodium oxalate in a given
mixture.

Text Book/s

1. Concise Inorganic Chemistry: J D Lee, 4th Edn, Wiley, (2021)

2. Principles of Inorganic Chemistry by B.R. Puri, L.R. Sharma, K.C. Kalia

3. Bassett, J., Denney, R. C., Jeffery, G. H., Mendham, J., Vogel's Textbook of Quantitative Inorganic Analysis (revised); 4th edition, Pubs: Orient Longman, 1978.

Reference Book/s

1. Basic Inorganic Chemistry, F A Cotton, G Wilkinson and P. L. Gaus, 3rd Edition. Wiley. India

2. Shriver and Atkins' Inorganic Chemistry, 5th Edition.

3. Pearson - Inorganic Chemistry, 5/E - Catherine Housecroft

4. Pfennig, Brian William-Principles of inorganic chemistry-Wiley (2015)

5. Svehla G., Vogel's Qualitative Inorganic Analysis (revised); 7th edition, Pubs: Orient Longman,1996.

Course	PHS152							
Code								
Course	Modern Physics							
Title								
Hours	L:3, T:	0, P:2						
Credits	4							
Туре	Interdi	sciplinary						
Course	On the o	completion of the co	ourse, t	he stud	lent wil	l be ab	le to	
Outcomes	CO1: K	now the main aspec	ts of th	e inado	equacie	s of cla	assical mec	hanics and
	understa	and the historical de	velopn	nent of	quantu	m mec	hanics and	the ability
	to discu	ss and interpret exp	erimen	ts that	reveal (the dua	l nature of	matter
	CO2: U	nderstand the centra	al conc	epts of	quantu	m mec	hanics: way	ve
	function	ns, momentum and e	energy	operato	or, the S	Schrod	inger equat	ion,
	probabi	lity density and the	normal	ization	techni	ques, s	kill develop	pment on
	problem	n-solving e.g. one-di	imensi	onal rig	gid box,	, tunne	lling throug	gh a
	potentia	ll barrier, step poten	tial, re	ctangul	ar barr	ier.		
	CO3: K	nowledge about pro	operties	of the	atomic	nucleu	us, liquid di	rop model
	and nuc	lear shell model and	d radio	activity	, radioa	active of	decay like a	lpha, beta,
	and gan	and gamma decay.						
	CO4: C	orrelate between the	eory an	d expe	rimenta	ıl resul	ts of basic of	quantum
	physics	and apply knowled	ge to fi	nd out	planck	's cons	tant, ioniza	tion
	potentia	l, e/m ratio etc.						
Examinati	Theory-	+ Practical						
on Mode								
Assessmen	Writte	Assignment/Proj	MS	MS	ESE	ESP	ABL/PB	Assessme
t Tools	n Quiz	ect Work	E	Р			L	nt Tools
Weightage	10%	-	25	-	35	25	5%	Weightag
			%		%	%		e
Examinati	Theory	+ Practical						
on Mode								
Syllabus								СО
								Mapping
Unit 1	Wave P	Particle Duality						

effect, particle diffraction, uncertainty principle and its	1
applications. Pair production, Wave Properties of Particles; de	
Broglie waves, Waves of probability, the wave equation, phase	
and group velocities	
Quantum Mechanics	
Difference between classical and quantum mechanics, wave	
function and wave equations, Schrodinger's equation, time	2
dependent and steady state forms, Expectation values, Particle in	
a box, reflection and transmission by a barrier, tunnel effect,	
harmonic oscillator.	
Atomic Nucleus and Radioactivity	
Nuclear Properties: The neutron, stable nuclei, nuclear sizes and	
shapes, binding energy, meson theory of nuclear forces, Nuclear	3
Models: liquid drop model, shell model, Radioactivity:	
Radioactive decay, Half-life, radioactive dating, radioactive	
series, alpha decay and its theory, beta decay, gamma decay,	
radiation hazards and radiation units	
Modern Physics Laboratory experiments:	
1. Determination of Planck's constant using photocell.	
2. To find half-life period of a given radioactive substance	
using GM counter	
3. To determine charge to mass ratio (e/m) of an electron by	
Millikan Oil Drop Method.	
4. Study of excitations of a given atom by Franck Hertz set up.	4
5. To find the ionization potential of mercury using gas filled	
diode	
6. Study of C.R.O. as display and measuring device, Study of	
Sinewave, square wave signals.	
Sinewave, square wave signals.7. To find conductivity of given semiconductor crystal using	
7. To find conductivity of given semiconductor crystal using	
	 applications. Pair production, Wave Properties of Particles; de Broglie waves, Waves of probability, the wave equation, phase and group velocities Quantum Mechanics Difference between classical and quantum mechanics, wave function and wave equations, Schrodinger's equation, time dependent and steady state forms, Expectation values, Particle in a box, reflection and transmission by a barrier, tunnel effect, harmonic oscillator. Atomic Nucleus and Radioactivity Nuclear Properties: The neutron, stable nuclei, nuclear sizes and shapes, binding energy, meson theory of nuclear forces, Nuclear Models: liquid drop model, shell model, Radioactivity: Radioactive decay, Half-life, radioactive dating, radioactive series, alpha decay and its theory, beta decay, gamma decay, radiation hazards and radiation units Modern Physics Laboratory experiments: Determination of Planck's constant using photocell. To find half-life period of a given radioactive substance using GM counter To determine charge to mass ratio (e/m) of an electron by Millikan Oil Drop Method. Study of excitations of a given atom by Franck Hertz set up. To find the ionization potential of mercury using gas filled diode

	9. Study of Solar Cell characteristics
Text	1. Shaweta MOHAN and Kulwanr S. Thind , Elements of
Books	Modern Physics, Vishal Publications, 2021
	2. B.Sc. Practical Physics eBook : CL Arora
Reference	1. A. Beiser, Concepts of Modem Physics: McGraw Hill, 1987
Books	2. Ghatak and Loknatham. Quantum Mechanics:(Springer),
	2004.
	3. K. Hyde, Basic ideas and Concepts in Nuclear Physics:
	(Institute of
	Physics), 2004

Course	PHS153	3						
Code								
Course	Optics a	and Lasers						
Title								
Course	On the o	completion of the co	ourse th	ne stude	ent will	be abl	e to	
Outcomes	CO1:To	impart students' kr	nowled	ge of in	nterfere	ence an	d gain insi	ghts about
	the Frau	nhoffer diffraction	in deta	il.				
	CO2 To	understand the con	cept of	polari	zation,	and its	application	ns in day to
	day life.							
	CO3 To	understand the con	cept of	LASE	R, its v	vorking	g mechanis	m and
	various	various types and						
	applications.							
	CO4: To have hand on training of various optics experiments.							
Examinati	Theory+ Practical							
on Mode								
Assessmen	Writte	Assignment/Proj	MS	MS	ESE	ESP	ABL/PB	Assessme
t Tools	n Quiz	ect Work	Е	Р			L	nt Tools
Weightage	10%	-	25	-	35	25	5%	Weightag
			%		%	%		e
Examinati	Theory	+ Practical	•	1	•		1	
on Mode								

Syllabus		СО			
		Mapping			
Unit 1	Interference and Diffraction				
	Types of interference, Young's double slit experiment, Fresnel's				
	biprism, thickness of thin transparent sheet, Interference in thin				
	films, Newton's rings and their application, Application of thin				
	film interference Franunhoffer diffraction at a single slit and its	1			
	discussion, Fraunhoffer diffraction at double slit, Diffraction of				
	N slits and its discussion Missing orders, dispersive power,				
	Rayleigh Criterion for resolving power, resolving power of a				
	diffraction grating.				
Unit 2	Polarization				
	Transverse nature of light waves. Plane polarized light -				
	production and analysis. Circular and elliptical polarization,				
	Polarization by transmission and reflection, polarisers and				
	analyzers; Malus Law, Brewster's Law ,Theory of double				
	refraction, Quarter wave and half wave plates, Elliptically and				
	circularly polarized light production Optical activity, specific				
	rotation. Half shade polarimeter;				
Unit 3	LASERs				
	Interaction of light with matter; Einstein relations; light				
	amplification population inversion; active medium, pumping;				
	metastable states; principle pumping schemes; optical resonant	3			
	cavityHe-Ne Laser, Ruby Laser, laser beam characteristics and				
	applications, shape and width of spectral lines, line broadening				
	mechanism, natural, collision and Doppler broadening.				
Unit 4	Laboratory experiments				
	1. To determine the wavelength of light using Newton's ring				
	set up.				
	2. To determine the wavelength of laser source using				
	diffraction of single slit.				
	3. To study the specific rotation of sugar solution	4			
	Laurent's half shade polarimetermethod				

	4. Study of C.R.O. as display and measuring device, Study					
	of Sinewave, squarewave signals (half wave and full wave					
	rectification)					
	5. To compare the focal length of two lenses by Nodal slide					
	method.					
	6. Determination of Plank's constant using photoelectric effect.					
	7. To measure beam divergence of He-Ne Laser.					
	8. To determine the refractive index of the material of a given					
	prism using Sodium light					
Text	1. Subramanayam, N.; Lal, B. and Avadhamulu; M. N. Textbook					
Books	of Optics. New Delhi: S. Chand & Company, 2006.					
	2. B.Sc. Practical Physics, C. L. Arora.					
Reference	1.Jenkins, F.A.; White, H.E. Fundamentals of Optics. USA:					
Books	McGrawHill Publication,					
	2. Ghatak, A. Optics. New Delhi: Tata McGraw Hill Publication,					
	2008					

COMMON COURSES (MANDATORY) TO BE OFFERED AS PER FOLLOWING INSTRUCTION

Mandatory Co	mmon Courses	Sem. I	Sem. II	Sem. III	Sem. IV
	EVS (3	BBA,	B.Tech.		
Value Added	Credits)	B.Com.,	CSE, B.Sc.		
Courses	Faculty Name:	B.Sc.	(Life		
	Dr. Harpreet	Health &	Sciences &		
	Walia & Dr.	Phy Edu.,	Basic		
	Raj Bala)	B.Tech. AI	Sciences		
		& Others,	BCA, B.Sc.		
		B.A.	Food &		
		English &	Science		
		JMC			
	Human Values	B.Tech.	BBA,		
	& Ethics (3	CSE, B.Sc.	B.Com.,		
	Credits)	(Life	B.Sc.		
	Faculty: Sh.	Sciences &	Health &		
	B.P. Bedi	Basic	Phy Edu.,		
		Sciences	B.Tech. AI		
		BCA, B.Sc.	& Others,		
		Food &	B.A.		
		Science	English &		
			JMC		

	Community	-	-	BCA,	B.Sc. Life
	Engagement			B.Sc.	Sciences &
Ability	(CEC) 2 Credits			CS,	Basic
Enhancement	Faculty: Dr.			BBA,	Sciences,
Courses	Sunita Paul			B.Com.,	B.Sc.
				B.Tech.	Agriculture,
				Engg.	Phy Educ. &
				(All)	B.A. B.Ed. &
					B.Sc. B.Ed.
	Communication	Life	B.Sc.		
	Skills	Sciences.	Physics,		
	(2 Credits)	B.Sc.	Chemistry,		
		Health &	Math,		
		Phy Edu.			
	Or		B.Tech.		
	Cambridge	B.Tech.	CSE,		
	English-I &	CSE,	B.Tech. AI		
	Cambridge	B.Tech. AI	& Others,		
	English-II	& Others,	BCA, B.A.		
	(To be offered in	BCA, B.A.	English,		
	two Semester)	English,	BBA,		
	Faculty:	BBA,	B.Com.,		
	English Deptt.	B.Com.,	B.Sc. Food		
		B.Sc. Food	& Science		
		& Science	Cambridge		
		Cambridge	English-II		
		English-I			

Common Courses

Ability-	Cr.	Deptt.	Skill-	Cr.	Deptt.	Value-	Cr.	Deptt
Enhance			Enhancem			Added		•
						Courses		

ment			ent					
Courses			Courses					
Personalit	1L+	CBM&	Essentials	2L+1	CBM&	Environme	2L+1	EVS
У	1P	Е	of	Р	Е	ntal Studies	Р	&
Enhancem			Entreprene			(Mandator		Botan
ent			urship-			y)		у
			Thinking			(EVS104)		
			and Action					
Personalit	2P	Psycho	Design	2P	Mech.	Human	2L+1	Engli
у		logy	Thinking		Engg.	Values and	Т	sh
Developm			(MED104)			Ethics		
ent						(HVE101)		
(PSY190)								
						(Mandator		
						y)		
Behaviour	1L+	Psycho	Design	2L	CBM&	Gender	2 Cr.	EVS
al & Life	1P	logy	Thinking &		Е	Sensitizatio		&
Skills			Innovation			n		Botan
			(MGN102S					у
)					
Global	2L	English	Data	2L+1	CSE	Professiona	2 Cr.	CBM
Citizenshi			Analytics	Р		1 Ethics		&Е
p in								
Higher								
Education								
Communi	1L+	English	Cyber	3	CSE	Sustainabl	2 Cr.	Botan
cation	1P		Security	(2L+		e		у &
Skills				1P)		Developme		EVS
(ENH151)						nt		
(Mandato			Digital	1L+1	CSA	Green	2 Cr.	Elect.
ry)		English	Fluency	Р		Technologi		Engg.
OR	1L+		(CSP191)			es		
	1P							

Cambridg								
e English-								
Ι	1L+							
(ENH111)	1 P							
(Mandato								
ry#)								
&								
Cambridg								
e English-								
II								
(Mandato								
ry#)								
# To be								
offered in								
two								
semesters								
Technical	2L	Chemic	Fundament	3 Cr	CSE	General	2 Cr.	Engli
Report		al	als of	2L-		Studies		sh
Writing		Engg.	Computer	1P				
			programmi					
			ng & IT					
			(FCPIT)					
Leadershi	2L	CBM&	Python	3 Cr.	CSE	NSS	2 Cr.	NSS
р		Е	Programmi	(2L+			(1L+	
Managem			ng	1P)			1P)	
ent								
Creative	1L+	Educati	Disaster	2L	Civil	Therapeutic	2 Cr.	Phy
& Critical	1 P	on	Preparedne		Engg.	Yoga	1L+1	Edu.
Thinking			ss and				Р	
			Planning					
			(CED100)					

Communit	1L+	Agricul	Intellectual	2 Cr.	Physics	Health	&	2 Cr.	Phy
у	1P	ture	Property			Yoga		1L+1	Edu.
Engageme			Rights					Р	
nt &									
Social									
Responsib									
ility									
(Mandato									
ry)									
			Apiculture	2 Cr	Zoology				
			(ZOL192)						
			NCC*	3 Cr.	NCC				
				(2L+					
				1P)					
			LATEX	3 Cr.	Mathem				
				(1L+	atics				
				2P)					
			Programmi	3 Cr	Physics				
			ng with	(2L+					
			FORTRAN	1P)					

Sr.	Course Name (Course Code)	Faculty/Department
No.		
1	Basics of Physics	Physics
2	Basics of Chemistry	Chemistry
3	Basics of Biology (ZOL194)	Zoology & Botany
4	Introductory Biotechnology (BTG100)	Biotechnology
5	Introductory Microbiology (MCR100)	Microbiology
6	Functioning of the Human Body	Zoology
7	Introductory Botany	Botany
8	Business Management for Beginners	СВМЕ
9	Fundamental of Mutual Funds	СВМЕ
	(MGN102M)	
10	Economics for Beginners (ECN101M)	СВМЕ
11	Professional Communication (ENH161)	English
12	Fine Arts (EDU199)	Fine Arts & Performing Arts
		(Edu)
13	Jyotish: 'Eye of the Veda'	Vedic Studies
14	Mathematical Statistics	Mathematics
15	Introductory Journalism	JMC
16	Professional Photography (MCJ151)	JMC
17	Library Information Sciences	Library Sciences

List of Multi-disciplinary open elective courses at DAV University