Course Title: Matrices and Infinite series Paper Code: MTH 155 A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Course Objective:

The aim of this course is to familiarize the students with the theory of matrices which are used in solving equations in mechanics and the other streams. This course also provides a comprehensive understanding of some basic concepts of linear algebra.

UNIT-A
12 HOURS
Determinants and their properties, special matrices-hermitian, skew hermitian, orthogonal, unitary, rank of matrix, elementary transformations, vector spaces, linear span, linear dependence and independence, bases and dimension.

UNIT-B
15 HOURS
Linear transformations, properties of linear transformations, Rank and Nullity of a linear transformation, Rank-Nullity theorem (without proof), matrix of a linear transformation with respect to a given basis.

UNIT-C
13 HOURS
Eigen values and eigenvectors, characteristic polynomials, minimal polynomials, CayleyHamilton Theorem, diagonalization, Eigen values of special type of matrices.

UNIT-D

14 HOURS
Sequence, Infinite series, convergence, divergence and oscillation of a series, Geometric series, Convergence tests (Comparison test, integral test, D'Alembert's ratio test, Logarithmic test, Cauchy's root test), Alternating series, Absolute convergence of a series, convergence of exponential series.

Reference Books:

1. Narayan, S. and P. K. Mittal. A textbook of Matrices. New Delhi: S. Chand and Co., 2010.
2. Grewal, B.S. Higher Engineering Mathematics, $42^{\text {nd }}$ edition. New Delhi: Khanna Publication, Reprint 2012.
3. Lipschutz, S., and M. Lipson. Schaum's Outline of Linear Algebra, $4^{\text {th }}$ edition. New Delhi: Tata McGraw-Hill, 2008.
4. Hoffman K., and R. Kunze, Linear Algebra, $2^{\text {nd }}$ edition. New Delhi: PHI Learning Pvt. Ltd., Reprint 2014.

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Course Objective:

The objective of the course is to equip the students with the knowledge of basic concepts of partial derivatives, multiple integration and their applications in geometry.

UNIT-A
12 HOURS
Sphere: Equation of a sphere, sphere through four given points, plane section of a sphere, sphere through a given circle, equation of tangent plane of sphere.
Cone: Equation of cone, enveloping cone of sphere, cones with vertex at origin, tangent lines and tangent plane at a point, right circular cone.

UNIT-B
14 HOURS
Cylinder: Equation of Cylinder, enveloping cylinder, right circular cylinder.
Solid Geometry:, Equation of Paraboloid, ellipsoid and hyperboloid in standard forms. Simple properties of these surfaces. Equation of tangent planes to the above surfaces.

UNIT-C
13 HOURS
Functions of two and more variables: Vector-valued function and space curves. Arc length and unit tangent vector. Limit and continuity of multivariable function. Partial derivatives. Directional derivatives, gradient vectors and tangent planes.

UNIT-D
14 HOURS
Multiple Integrals and Integral in vector fields: Double and triple integrals. Fubini's Theorem Without proof, Change of order of integration in double integrals, volume of a region in space, Triple integrals in spherical and cylindrical coordinates, substitution in multiple integrals. Line integrals vector fields. Path independence and surface integrals. Divergence and Stoke's theorem (Applications only).

Reference Books:

1. Thomas, G.B. and R.L. Finney. Calculus and Analytic Geometry. New-Delhi: Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 2012.
2. Loney, S.L. The Elements of Coordinate Geometry, London: McMillan and Company, 1895, Print.
3. Grewal, B.S. Higher Engineering Mathematics, $42^{\text {nd }}$ edition. New-Delhi: Khanna Publication, Reprint 2012.
4. Narayan, S. and P.K. Mittal, Analytical Solid Geometry. Delhi: S. Chand \& Company Pvt. Ltd., 2008. Print.

Course Title: Differential Equations and Fourier series Paper Code: MTH-255 B

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective:

The objective of the course is to enable the students to understand the basic concepts related to ordinary differential, partial differential equations and Fourier series and their applications.

UNIT-A
14 HOURS
Ordinary Differential Equations: Exact Differential Equations of First Order, Homogeneous and Non-homogeneous Linear Differential equations of Second Order with constant coefficients. Method of variation of parameters. Simultaneous linear differential equations.

UNIT-B
14 HOURS

Solution in series of second order linear differential equations with variable coefficients (in particular, solutions of Bessel's equations.) Bessel functions, their recurrence and orthogonal relations, Gamma and Beta functions.

UNIT-C
15 HOURS

Periodic functions, Euler's formula. Dirichlet's conditions. Fourier series of discontinuous functions. Fourier series of Even and Odd functions, half range expansions, Fourier series of different wave forms, Complex form of Fourier series

UNIT-D

13 HOURS

Formulation of partial differential equations, Linear partial differential equations, homogeneous partial differential equations with constant coefficients.
Wave equation and Heat conduction equation in one dimension. Two dimensional Laplace equation and their applications, solution by the method of separation of variables.

Reference Books:

1. Grewal, B.S. Higher Engineering Mathematics. New Delhi: Khanna Publication, 2009
2. Kreyszig, Erwin. Advanced Engineering Mathematics. New Delhi: Wiley Eastern Ltd., 2003.
3. Jain, R K, and K Iyengar S R., Advanced Engineering Mathematics, New Delhi: Narosa Publishing House, 2003.
4. Thomas, George B. and Finney Ross L. Calculus and Analytic Geometry. New Delhi Addison Wesley, 1995

Course Title: Integral Transforms and Complex Analysis Paper Code: MTH-351A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective:

To acquaint the students with the application of Laplace transforms to solve ordinary differential equations. Moreover, basics of Complex Analysis are also included in this course.

UNIT-A
15 HOURS
Laplace Transforms: Laplace transforms: definition, elementary transforms. Transforms of derivatives and integrals. Transforms of periodic functions. Convolution theorem. Inverse Laplace transforms. Application to ordinary differential equations.

UNIT-B
15 HOURS
Complex Analysis: Complex numbers, absolute value, argument. Functions $\mathrm{e}^{\mathrm{z}}, \sin \mathrm{z}, \cos \mathrm{z}, \log \mathrm{z}$ and hyperbolic functions. Analytic functions, Cauchy-Riemann equations. Harmonic functions and their conjugates.

UNIT-C
14 HOURS

Integration of complex functions, Cauchy's theorem (statement only), Cauchy's theorem for multiply connected domains (statement only). Cauchy's integral formula (statement only) and simple consequences.

UNIT-D
12 HOURS

Expansion into Laurent series, singularities, Residues, Cauchy residue theorem (statement only). Evaluation of definite integrals using contour integration

Reference Books:

1. Grewal, B.S. Higher Engineering Mathematics. New Delhi: Khanna Publication, 2009
2. Kreyszig, Erwin. Advanced Engineering Mathematics. New Delhi: Wiley Eastern Ltd., 2003.
3. Jain, R K, and K Iyengar S R. Advanced Engineering Mathematics, New Delhi: Narosa Publishing House, 2003.
4. Thomas, George B. and Finney Ross L. Calculus and Analytic Geometry. New Delhi Addison Wesley, 1995
5. Churchill, R. V, and Brown J. W. Complex Variables and Application. New Delhi: McGraw-Hill, 2008.

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Course Objective: This course familiarizes the students with trigonometry, permutations and combinations, the theory of matrices which are used in solving equations in mechanics and other streams used in Mathematics, Physics etc. The objective is to provide basic understanding of the geometry of two and three dimensions.

UNIT-A

14 HOURS

Trigonometry:
T- Ratios, addition and subtraction formulae, multiple angles, sub-multiple angles, trigonometric equations, inverse trigonometrically functions (proofs of articles are not required).

UNIT-B
14 HOURS
Algebra: Fundamental principle of counting, Permutation and Combination with simple applications. Principle of mathematical induction, statement of Binomial Theorem and its applications.

UNIT-C

12 HOURS

Determinants and Matrices:

Introduction to matrix, Different kinds of matrices, Addition, Multiplication, Symmetric and Skew symmetric matrix, Transpose of matrix. Determinant of matrix, properties of determinant, product of two determinant of third order. Adjoint and Inverse of matrix, Rank of matrices, Condition of Consistency of system of linear equations, Eigen vectors and Eigen values using matrices, Cayley's Hamilton Theorem (without proof).

UNIT-D

16 HOURS

Co-ordinate Geometry:
Polar \& Cartesian co-ordinates in plane, different forms of straight lines. Angle between two Straight lines. Conditions of parallelism and perpendicularity. Standard equations of circle, Parabola, ellipse and Hyperbola (without proof) and simple problems.
Solid Geometry: Sphere, Cone, Cylinder

Reference Books:

1. Mathematics, A Text book for Class XI and XII (Parts I \& II). New Delhi: NCERT 2003.
2. Jain, R K, and S.R.K. Iyengar Advanced Engineering Mathematics, New Delhi: Narosa Publishing House, 2003.
3. Thomas, George B. and Finney Ross L. Calculus and Analytic Geometry. New Delhi Addison Wesley, 1995
4. Narayan, Shanti. A text book of Matrices. New Delhi: S Chand \& co Ltd, 2004.

Course Title: Mathematics for Chemists-II
Paper Code: MTH 260 A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Course Objective: This course is designed to introduce the fundamental concepts of continuity, differentiation and integration of functions of one variable. Its objective is to acquaint students with various applications of these topics relating to extreme value problems, problems of finding areas and distance travelled, moreover to describe connection between integral and differential calculus through Fundamental Theorem of Calculus.

UNIT-A

Function, Limit and Continuity:

Functions and graphs, Domain and Co-Domain, range, Inverse Functions, Exponential and Logarithmic Functions, limit of Functions, Algebraic Computations of limits, Continuity of Functions at a point, Continuity of Functions in interval.

UNIT-B
13 HOURS

Differential of Explicit and Implicit functions:

An Introduction to the Derivative, Differentiation of standard Functions, Formulae on derivative of sum, difference, product and quotient of functions, chain rule, derivative of Trigonometric functions, Inverse Trigonometric functions, Exponential and Logarithmic Functions.

Differentiation of implicit functions, Derivative of functions expressed in parametric form, derivative of higher order.

UNIT-C

11 HOURS

Applications of derivatives:

Increasing and decreasing functions, Sign of derivative, Maxima and Minima of a function of single variable. Rolle's, Lagrange and Cauchy mean values theorems and their applications, Taylor theorem and Maclaurian's theorem with Lagrange's form of remainder and applications of formal expansions of functions. (Proofs of theorems are not required).

UNIT-D
11 HOURS
Integral Calculus:
Integration as inverse of differentiation, Indefinite Integral of standard forms, Methods of Substitution, Methods of fractions, Integration by parts, Definite Integral.

Reference Books:

1. Narayan, Shanti and Mittal P K .Differential Calculus. New Delhi: S Chand \& Co Ltd, 2005.
2. Narayan, Shanti and Mittal P K. Integral Calculus, New Delhi: S Chand \& Co Ltd, 2004.
3. Mathematics, A Text book for Class XI and XII (Parts I \& II). New Delhi: NCERT 2003.

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective: The aim of this course is to familiarize the students with the theory of matrices which are used in solving equations in mechanics and the other streams. This course also provides a comprehensive understanding of the origin and development of ideas to exhibit the techniques origin and development of ideas to exhibit the techniques of solving ordinary differential equations.

UNIT-A
15 HOURS
Rank of matrices, Inverse of Matrices, Gauss Jordan Method, reduction to normal form, Consistency and solution of linear algebraic system of equations, Gauss Elimination Method, Eigen values and Eigen vectors, Diagonalisation of Matrix, Cayley Hamilton theorem. Orthogonal, Hermition and unitary matrices.

UNIT-B

14 HOURS
Concept of limit and continuity of a function of two variables, Partial derivatives, Homogenous Function, Euler's Theorem, Total Derivative, Differentiation of an implicit function, chain rule, Change of variables,Jacobian, Taylor's and McLaurin's series. Maxima and minima of a function of two and three variables: Lagrange's method of multipliers.

UNIT-C
14 HOURS
Formation of ordinary differential equations, solution of first order differential equations by separation of variables, Homogeneous equations, Reduce to Homogenous, exact differential equations, equations reducible to exact form by integrating factors, equations of the first order and higher degree, clairaut's equation.

UNIT-D
13 HOURS
Solution of differential equations with constant coefficients: method of differential operators. Non - homogeneous equations of second order with constant coefficients: Solution by method of variation of parameters, Simultaneously Linear differential equation.

Reference Books :

1. Grewal, B.S. Higher Engineering Mathematics. New Delhi: Khanna Publication, 2009
2. Kreyszig, Erwin. Advanced Engineering Mathematics. New Delhi: Wiley Eastern Ltd., 2003.
3. Jain, R K, and K Iyengar S R. Advanced Engineering Mathematics, New Delhi: Narosa Publishing House, 2003.
4. Thomas, George B. and Finney Ross L. Calculus and Analytic Geometry. New Delhi Addison Wesley, 1995.

Course Title: Engineering Mathematics-II
 Course Code: MTH 152 A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective:

The objective of the course is to equip the students with the knowledge of concepts of vectors and geometry and their applications.

Unit-A

13 HOURS
Functions of Complex Variables: Complex Numbers and elementary functions of complex variables, De-Moivre's theorem and its applications. Real and imaginary parts of exponential, logarithmic, circular, inverse circular, hyperbolic, inverse hyperbolic functions of complex variables. Summation of trigonometric series (C+iS method).

Unit-B

15 HOURS
Integral Calculus: Rectification of standard curves, Areas bounded by standard curves, Volumes and surfaces of revolution of curves.
Multiple Integrals: Double and triple integral and their evaluation, change of order of integration, change of variables, application of double and triple integration to find areas and volumes. Centre of gravity and Moment of inertia.

Unit-C

15 HOURS
Vector Calculus: Scalar and vector fields, differentiation of vectors, velocity and acceleration.
Vector differential operators: Del, Gradient, Divergence and Curl, their physical interpretations. Line, surface and volume integrals.
Application of Vector Calculus: Flux, Solenoidal and Irrotational vectors, Gauss Divergence theorem, Green's theorem in plane, Stoke's theorem (without proofs) and their applications.

Unit-D

14 HOURS
Infinite Series: Convergence and divergence of series, tests of convergence (without proofs): comparison test, Integral test, ratio test, Raabe's test, logarithmic test, Cauchy's root test and Gauss test. Convergence and absolute convergence of alternating series, uniform Convergence and power Series.

Reference Books:

1. Grewal, B.S. Higher Engineering Mathematics. New Delhi: Khanna Publication, 2009
2. Kreyszig, Erwin. Advanced Engineering Mathematics. New Delhi: Wiley Eastern Ltd., 2003.
3. Jain, R. K., and S.R.K. Iyengar. Advanced Engineering Mathematics. New Delhi: Narosa Publishing House, 2003.
4. Thomas, George B., and Finney Ross L. Calculus. Pearson Education, 9th Ed, 2010. Print.

Course Title: Engineering Mathematics-III
 Course Code: MTH 252 A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective:

The objective of the course is to enable the students to understand the basic concepts related to Laplace transforms, Fourier series, ordinary differential and partial differential equations and their applications.

Unit-A

14 HOURS
Fourier series: Periodic functions, Euler's formula. Dirichlet's conditions. Fourier series of discontinuous functions. Fourier series of Even and Odd functions, half range expansions, Fourier series of different wave forms, Complex form of Fourier series. Fourier Transformation.

Unit-B

14 HOURS
Laplace Transforms: Laplace transforms of various standard functions, Linear property of Laplace transforms, Shifting property and change of scale, inverse Laplace transforms, transform of derivatives and integrals, Laplace transform of unit step function, impulse function, periodic functions, applications to solution of ordinary linear differential equations with constant coefficients, and simultaneous differential equations.

Unit-C

14 HOURS

Partial Differential Equations: Formulation of partial differential equations, Linear partial differential equations, homogeneous partial differential equations with constant coefficients.
Wave equation and Heat conduction equation in one dimension. Two dimensional Laplace equation and their applications, solution by the method of separation of variables.

Unit-D

15 HOURS
Analytic Function: Limits, continuity and derivative of the function of complex variable, Analytic function, Cauchy-Riemann equations, conjugate functions, harmonic functions; Complex Integration: Line integrals in the complex plane, Cauchy's theorem, Cauchy's integral formula and derivatives of analytic function. Taylor's and Laurent's expansions (without proofs), singular points, poles, residue, Integration of function of complex variables using the method of residues.

Reference Books :

1. Grewal, B.S. Higher Engineering Mathematics. New Delhi: Khanna Publication, 2009
2. Kreyszig, Erwin. Advanced Engineering Mathematics. New Delhi: Wiley Eastern Ltd., 2003.
3. Jain, R K, and K Iyengar S R. Advanced Engineering Mathematics, New Delhi: Narosa Publishing House, 2003.
4. Thomas, George B. and Finney Ross L. Calculus and Analytic Geometry. New Delhi Addison Wesley, 1995

Course Title: Discrete Mathematics
Course Code: MTH 254 A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective:

The objective of this course is to acquaint the students with the basic concepts in Discrete Mathematics and Graph Theory. It includes the topic like Set Theory, Functions, Relations, Graph and Trees.

Unit-A
14 HOURS
Set Theory, Relation and Functions: Sets, Subsets, Set Operations and the Laws of Set Theory and Venn Diagram, Cartesian Product, Relations, Introduction to Binary relations, Equivalence relation, partition, Partial order relation, Hasse diagram, Permutation, Combination, Pigeonhole Principle, Inclusion-exclusion Principle, Mathematical Induction.

Unit-B

13 HOURS
Mathematical Logic and Recurrence Relations: Propositions, Basic logical operators, Logic equivalence involving Tautologies and Contradiction, Conditional Propositions, Quantifiers, Recursively Defined Sequences, Solving Recurrence Relations, Characteristic Polynomial and Equations, Homogeneous and non-homogeneous linear recurrence relations with constant coefficients, Generating Functions for some standard sequences.

Unit-C

14 HOURS
Graphs: Basic Terminology, Special Graphs, The Handshaking Theorem, Isomorphism of Graphs, Walks, Paths, Circuits, Eulerian and Hamiltonian Paths, Planar and Non Planar Graphs, Coloring of Graph, Directed graphs, Travelling Salesman Problem.

Unit-D

14 HOURS
Trees: Basic Terminology, Binary Trees, Tree Traversing: Preorder, Post-order and In-order Traversals, Minimum Spanning Trees, Prim's and Kruskal's Algorithm, Introduction to Boolean algebra, laws of Boolean algebra, Boolean function, Sum of product form.

Reference Books:

1. Rosen, K. H., Discrete Mathematics and its Applications, $6^{\text {th }}$ Edition, McGraw Hill, 2007.
2. Malik, D.S. and Sen, M.K., Discrete Mathematical Structures: Theory and Applications, Thomson Cengagae Learning, New Delhi, 2004.
3. Lipschutz, S. and Lipson M., Schaum's Outline of Discrete Mathematics, Schaum's Outlines, New Delhi, 2007
4. Ram, B., Discrete Mathematics, Pearson Publications, 2011.
5. Trembley, J.P. and R.P. Manohar., Discrete Mathematical Structures with Applications to Computer Science. McGraw Hill, 1975.

Course Title: Numerical Methods

Paper Code: MTH 256 A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$

Course Objective:

The aim of this course is to teach the applications of various numerical techniques for a variety of problems occurring in daily life. At the end of the course, the students will be able to understand the basic concepts in Numerical Analysis of differential equations.

UNIT-A
15 HOURS
Approximate numbers, Significant figures, rounding off numbers, Inherent errors, Rounding errors, Truncation errors, Absolute, Relative and Percentage error.
Non-Linear Equations: Bisection, Regula-Falsi, Secant, Newton-Raphson, General Iteration Method. Rate of convergence.

UNIT-B
14 HOURS
Systems of Simultaneous Linear Equations: Direct methods: Gauss elimination method, Gauss Jordon method, Matrix inversion method; Iterative methods: Jacobi method and Gauss-Seidal method, Power method for finding largest/smallest Eigen value.

UNIT-C

13 HOURS

Operators: Forward, Backward and Shift (Definitions and some relations among them).
Newton forward and backward, Gauss backward and forward interpolation, Stirling formula, Bessel formula, Lagrange's interpolation, Hermite Interpolation, Newton divided difference Interpolation. Numerical Differentiation, Maximum and Minimum values of a tabulated function.

UNIT-D
14 HOURS
Numerical Integration: General Quadrature formula, Trapezoidal Rule, Simpson's 1/3-Rule, Simpson's 3/8-Rule, Boole's rule, Weddle's Rule.
Numerical solutions to first order ordinary differential equations: Taylor Series method, Picard's Method, Euler's and modified Euler's methods, Runge-Kutta methods

Reference Books:

1. Grewal B.S. Numerical Methods in Engineering and Science. New Delhi: Khanna Publishers, 2014. Print.
2. Shastry, S.S. Introductory Methods of Numerical Analysis. New Delhi: PHI Learning Private Limited, 2005. Print.
3. Iyenger, S.R.K., R.K. Jain, and Mahinder Kumar. Numerical Methods for Scientific and Engineering Computation. Delhi: New Age International Publishers, 2012. Print.
4. Mathews, John H., and D. Fink Kurtis. Numerical Methods using Matlab, 4th Ed. New Delhi: PHI Learning Private Limited, 2012. Print.

Course Title: Numerical Methods Lab
 Course Code: MTH 257B

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$

List of Programs:

1. WAP on Basic Operations (Conditional statement If, for loop).
2. WAP on Bisection, False Position and Secant Method.
3. WAP Newton Raphson Method.
4. WAP to solve the system of linear equations using Gauss Elimination Method.
5. WAP to solve the system of linear equations using Gauss Jacobi Method.
6. WAP to solve the system of linear equations using Gauss Seidel Method
7. WAP on Newton interpolation.
8. WAP on Lagrange's Interpolation.
9. WAP on Trapezoidal rule.
10. WAP on Simpson's rules.
11. WAP on Euler's Method.
12. WAP on Runge-Kutta Methods.

Reference Books:

1. Gottfried, S. Byron. Programming with C. Delhi: Tata McGraw Hill, 2010. Print.
2. Balagurusamy, E. Programming in ANSI C. Delhi: McGrawHill, 2012. Print.
3. Pratap, R. Getting Started with MATLAB: A Quick Introduction for Scientists \& Engineers Oxford Publications. 2010
4. Hanly R. Jeri, and Elliot B. Koffman. Problem Solving and Program Design in C. USA: Addison Wesley, 2013. Print.
5. Kanetker, Yashwant. Let us C. Delhi: BPB Publications, 2005. Print.
6. Balagurusamy, E. Object oriented programming with C++. Delhi: McGrawHill, 2008. Print.

Course Title: Mathematical Foundation of Computer Science Course Code: MTH 190 A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Course Objective: The syllabus of this course is specially designed for the beginners in computer science with the first exposure to mathematical topics essential to their study of computer science or digital logic.

UNIT-A

14 HOURS

Set Theory, Relation and Functions: Sets, Subsets, Set Operations and the Laws of Set Theory and Venn Diagrams, Cartesian Products, Relations, Introduction to Binary relations, Equivalence relations and partitions, Partial order relations, Hasse diagram.

UNIT-B
15 HOURS

Matrix Algebra: Matrix Algebra Matrices, Types of Matrices, Operations on Matrices, and Properties of Determinants (Statement Only). Minors, Cofactors, Adjoint and Inverse of a Matrix, Elementary Transformations in a Matrix Rank of a Matrix. Solution of Simultaneous Equations using Crammer's Rule and Matrix Inversion Method. Characteristics of Polynomial. Eigen Values, Nature of Eigen values, Certain Types of Matrices, Cayley - Hamilton Theorem.

UNIT-C
14 HOURS
Differentiation and Integration: Laws of Derivative, Chain Rule Differentiation Using Log, Repeated Derivatives, Derivatives of Implicit Functions Integration of Algebraic, Logarithmic and Exponential Function, Integration of Functions Using Partial Fraction (Simple Form Using Properties) Integration of Functions by Parts, Definite Integral.

UNIT-D

14 HOURS

Statistics: Introduction to Statistics, Measures of Central Tendency Mean, Median and Modes. Measures of Dispersion, Mean Deviation, Standard Deviation and Coefficient of Variation. Applications of Logarithms: Problems Related To Compound Interest, Depreciation and Annuities.

Reference Books:

1. Grewal, B.S., Advanced Engineering Mathematics. New Delhi: Khanna Publisher, 2007.
2. Grimaldi, Ralph P., Discrete and Combinational Mathematics (5 ${ }^{\text {th }}$ edition.). New Delhi: Pearson Education, 2006.
3. Tremblay, J. P. and Manohar, R. P., Discrete Mathematical Structures with Applications to Computer Science ($9^{\text {th }}$ edition). New Delhi: MGH Publications

Course Title: Numerical Analysis
 Course Code: MTH 551 A

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective:

The aim of this course is to teach the applications of various numerical techniques for a variety of problems occurring in daily life. At the end of the course, the students will be able to understand the basic concepts in Numerical Analysis of differential equations.

UNIT-A

15 HOURS

Approximate numbers, Significant figures, rounding off numbers, Inherent errors, Rounding errors, Truncation errors, Absolute, Relative and Percentage error.
Algebraic and transcendental equations: Review of some concepts, Solution of algebraic and transcendental equations: Bisection method, Secant method, Regula Falsi method, NewtonRaphson method, General iteration method.
Systems of simultaneous Linear Equations: Matrix inversion method, Gauss elimination, Gauss Jordon method, Iterative methods: Jacobi method and Gauss-Seidel method, Eigenvalues and Eigen vectors, Power method for finding largest/smallest Eigen value.
UNIT -B

13 HOURS

Operators: Forward, Backward and Shift (Definitions and relations among them).
Finite Difference Methods: Forward, Backward, Central differences, Newton's forward, backward and divided difference formulae, Gauss, Stirling and Bessel's central difference formulae, Lagrange and Hermite interpolation.

UNIT -C

14 HOURS

Numerical Differentiation and Numerical Integration: Numerical Differentiation, Trapezoidal, Simpson's one third, Simpson's three eight, Boole and Weddle's rule for numerical integration, Taylor's series method, Euler, modified Euler's method, Runge-Kutta methods.

UNIT -D

14 HOURS

Classification of second order partial differential equation, Finite difference approximations to partial derivatives, Solution to elliptic and parabolic equations.

Reference Books:

1. Grewal B.S. Numerical Methods in Engineering and Science. New Delhi: Khanna Publishers, 2014. Print.
2. Shastry, S.S. Introductory Methods of Numerical Analysis. New Delhi: PHI Learning Private Limited, 2005. Print.
3. Iyenger, S.R.K., R.K. Jain, and Mahinder Kumar. Numerical Methods for Scientific and Engineering Computation. Delhi: New Age International Publishers, 2012. Print.
4. Mathews, John H., and D. Fink Kurtis. Numerical Methods using Matlab, 4th Ed. New Delhi: PHI Learning Private Limited, 2012. Print.

Course Title: Mathematics for Chemists
 Course Code: MTH-580

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective:

To provide the understanding and use of mathematical techniques for various Chemistry concepts.

UNIT-A

15 HOURS

Matrices and Determinants: Matrices, Operations on Matrices, Determinants, Singular and non-singular matrices, Adjoint and Inverse of a matrix, Rank of Matrix, The solution of linear equations orthogonal matrices The Eigen value problem, Eigen vectors, Matrix Diagonalization.

UNIT-B
14 HOURS

Differentiation: An Introduction to the Derivative, Differentiation of standard Functions, Formulae on derivative of sum, difference, product and quotient of functions, chain rule, derivative of Trigonometric functions, Inverse Trigonometric functions, Exponential and Logarithmic Functions. Differentiation of implicit functions, Derivative of functions expressed in parametric form, Successive differentiation. Increasing and decreasing functions, maxima and minima of a function of single variable.

UNIT-C

13 HOURS

Integration: Integral as anti-derivative. Integration by substitution, by partial fractions and by parts. The method of partial fractions, parametric differentiation of integrals, Definite integral and its properties. Areas of bounded regions.

UNIT-D

14 HOURS

Permutation and Combination: Idea of Factorial notation for natural numbers, Fundamental Principle of counting, basic concept of Permutation, Basic concept of Combination.
Probability and probability theorems: introduction to probability, addition theorem of probability, multiplication theorem of probability.

Reference Books:

1. Grewal, B. S., Higher Engineering Mathematics. New Delhi: Khanna Publishers, 2007.
2. Kreyszig, Erwin, Advanced Engineering Mathematics. New Delhi: Wiley Eastern Ltd., 2003.
3. Dence, Joseph B., Mathematical Techniques in Chemistry. New Delhi: Wiley, 1975.
4. Narayan, Shanti and Mittal, P. K., A Text Book of Matrices. New Delhi: S. Chand \& Co. Ltd., 2002.

Course Title: Discrete Structures

Course Code: MTH570

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Objective: The objective of this course is to acquaint the students with the basic concepts in Discrete Mathematics viz. sets, functions, relations, groups, graphs etc. required for the implementation of various computer science courses.

UNIT - A
12 Hours
Set Theory: Set and its Representations, Types of sets, Subsets, Operations on Sets-Union, Intersection and Difference of Sets, Venn Diagrams, Statement Problems, Laws- Associative Laws, Distributive Laws, De morgan's Laws. Relation and Functions: Relations, Pictorial Representations of Relations, Composition of Relations, Types of Relations, Closure Properties, Equivalence Relations and Partitions, Hasse diagram, Lattices, Bounded Lattices, Distributive Lattices, Functions, Special functions, Composition of Functions, one-one, onto and Inverse of a function, Mathematical functions, Exponential and Logarithmic Functions

UNIT - B

13 Hours

Group Axioms, Semi groups, Properties of Groups, Subgroups, Cosets, Normal subgroup, Permutation Group, Dihedral Group Recurrence relations, Characteristic Equation, Homogeneous and non-homogeneous linear recurrence relations with constant coefficients, Generating Functions for some standard sequences

UNIT - C

13 Hours

Graphs: Basic Terminology, Special Graphs, Handshaking Theorem, Isomorphism of Graphs, Walks, Paths, Circuits, Eulerian and Hamiltonian Paths, Planar and Non Planar Graphs, Coloring of Graph, Directed graphs, Travelling Salesman Problem Logic and Propositional Calculus, Propositions, Basic logic operators, Logic equivalence involving Tautologies and Contradiction, Algebra of Propositions, Conditional and Biconditional Statements, Logical Implication, Propositional Functions, Quantifiers

UNIT - D

12 Hours
Vectors and Matrices: Vectors, Matrices, Matrix Addition, Scalar Multiplication, Matrix Multiplication, Transpose, Square matrices, Invertible Matrices, Inverses, Determinants Counting and Probability Theory, Basic counting principle, Factorial Notation, Binomial Coefficients, Permutations, Combinations, Sample Space and Events, Finite Probability Spaces, Conditional Probability, Independent Events, Binomial Distribution, Random variables

Reference Books:

1. Rosen, K. H.,Discrete Mathematics and its Applications, 6th Edition, McGraw Hill, 2007.
2. Malik, D.S. andSen, M.K., Discrete Mathematical Structures: Theory and Applications, Thomson Cengagae Learning, New Delhi, 2004.
3. Lipschutz, S. and Lipson M.,Schaum's Outline of Discrete Mathematics,Schaum's Outlines, New Delhi, 2007
4. Trembley, J.P. and Manohar, R.P., Discrete Mathematical Structures with Applicationsto Computer Science, McGraw Hill.
5. Joshi, K.D., Foundations of Discrete Mathematics, Wiley, 1989

Course Title: Statistical Methods for Applied Sciences Course Code: MTH670

\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$

UNIT- A
10 HOURS

Classification, tabulation and graphical, representation of data. Box-plot, Descriptive statistics. Exploratory data analysis.

UNIT- B
10 HOURS

Measures of central tendency- Mean, Median, Mode, Geometric mean, Harmonic mean. Measures of Dispersion- Range, Quartile deviation, Mean deviation, Standard deviation.

UNIT- C

10 HOURS

Theory of probability. Random variable and mathematical expectation. Discrete and continuous probability distributions. Correlation and regression

UNIT- D

10 HOURS

Binomial, Poisson, Negative Binomial, Normal distribution, Beta and Gamma distributions and their applications. Concept of sampling distribution: chi-square, t and F distributions. Tests of significance based on Normal, chi-square, t and F distributions.

Practicals

1. Exploratory data analysis, Box-Cox plots.
2. Fitting of distributions: Binomial, Poisson, Negative Binomial, Normal.
3. Large sample tests, testing of hypothesis based on exact sampling distributions-chi square, t and F.
4. Confidence interval estimation and point estimation of parameters of binomial, Poisson and Normal distribution.
5. Correlation and regression analysis, fitting of orthogonal polynomial regression.
6. Applications of dimensionality reduction and discriminant function analysis.
7. Nonparametric tests.

Reference Books:

1. Anderson TW. 1958. An Introduction to Multivariate Statistical Analysis. John Wiley.
2. Goon AM, Gupta MK \& Dasgupta B. 1977. An Outline of Statistical Theory. Vol. I
3. Goon AM, Gupta MK \& Dasgupta B. 1983. Fundamentals of Statistics. Vol. I.
4. Hoel PG. 1971. Introduction to Mathematical Statistics. John Wiley.
