DAV UNIVERSITY, JALANDHAR

Scheme of Courses for Doctor of Philosophy - Zoology

Syllabus for Course Work

Course Syllabus Applicable to Admissions in 2018

Semester 1

S.No.	Paper Code	Course Title	L	T	P	Credits	Course Type
1.	Research Methodology in Life Sciences				0	4	Core
2.	ZOO801 Advanced Molecular Techniques			0	0	4	Elective
3.	ZOO802	Seminar/Workshop/ Thesis Review	0	0	2	2	Elective
4.	4. Specialization course*		4	0	0	4	Core
		*Total	12	0	2	14	
Specialization Courses (Choose any one of the following)							
1.	ZOO803	Advances in Parasitology	4	0	0	4	Elective
2.	ZOO804 Principles of Toxicology		4	0	0	4	Elective
3.	ZOO805	Molecular Genetics	4	0	0	4	Elective

L: Lectures T: Tutorial P: Practical Cr: Credits

Course Title: Research Methodology in Life Sciences

Paper Code: BCH801

L	T	P	Credits	Marks
4	0	0	4	100

Objective:

To make the students learn how to design an experiment and what are the various research strategies.

Teaching Methodology:

Class room Lectures, practicals, models, charts, power point presentations.

Learning outcomes:

This course will impart the comprehensive knowledge of designing a research experiment, how to write a research paper, the relevant ethics, copy right, impact factor etc.

UNIT-I

Biostatistics: Definition and relevance in biological research; Measures of Central Tendency:Arithmetic Mean, median, mode, quartiles and percentiles; Measures of Dispersion:Range, variance, standard deviation, coefficient of variation; Skewness and Kurtosis.

Inferential Statistics: Hypothesis testing, Errors in Hypothesis Testing-Null Hypothesis, Alternative Hypothesis, Type I and Type II errors, Confidence Limits. Setting up of level of significance. One tailed and Two-tailed tests.

Correlation and Regression: Correlation coefficient (r), properties, interpretation of r, partial and multiple correlations, linear regression: Fitting of lines of regression, regression coefficient, Bivariate and Multiple Regression.

UNIT-II

Parametric and Non-Parametric Statistics: Definition, Advantages, Disadvantages, Assumptions; Parametric Tests: Student's t-test, One Way Analysis of Variance, Two Way Analysis of Variance; Non-Parametric Tests: Analysis of Variance, Chi square and Kendall Rank Correlation

Experimental Set-up:Basic principles and significance of research design; Randomized Block Designs (RBD), completely randomized designs (CRD); Latin square design and Factorial design

UNIT-III

Data collection, organization and interpretation.

Research articles, research papers, popular research articles and reviews; difference between periodicals; journals; monographs, magazines; proceedings.

How to write a research paper, reference styles, process of submission of a paper; process of proof reading of a research manuscript; process of reviewing.

Important journals in life-sciences.

An introduction to Science citation index; H-index, i10 index, Impact factor calculation, Impact factor of a journal; Eigen factor, Major journal search engines.

Copyright act; Academic frauds; Plagiarism; Softwares to check plagiarism.

UNIT-IV

Biosafety and Bioethics in Research: Guidelines for Biosafety and Bioethics; Safety practices and Bio-waste in the laboratory; Radioactivity and Safety; Fire hazards and safety; Institutional Biosafety, Ethics and Animal Ethics compliance and concerns; Genetically modified organisms; Patents and Intellectual property rights; Reproduction of published material, Citation and acknowledgement; Guidelines for Ph.D. thesis.

Reference Books

- 1. Kothari, C.R.Research Methodology–Methods and Techniques. 2nd revised ed. New Delhi: New Age International (P) Ltd. Publishers, 2007. Print.
- 2. McKillup, S. Statistics Explained. An Introductory Guide for Life Scientists. Cambridge, UK: Cambridge University Press, 2006. Print.
- 3. Selvin, S. Biostatistics–How it Works. First Impression. New Delhi: Pearson Education Inc., 2007. Print.
- 4. Agarwal, B.L. Basic Statistics. New Delhi: New Age International, 2006. Print.

Course Title: Advanced Molecular Techniques

Paper Code: ZOO801

L	T	P	Credits	Marks
4	0	0	4	100

Course Objective: To acquaint the students with various instruments used in scientific laboratories and to make them understand the basic principles involved in the important techniques used in scientific research.

UNIT-A 15 hours

- **Microscopy:** Principles of light, phase contrast, fluorescence, confocal, scanning and transmission microscopes; Different fixation and staining techniques for electron microscope (EM); Freeze-etch and freeze-fracture methods for EM, Microphotography and image processing methods in microscopy.
- Centrifugation: Different mechanical and chemical procedures for cell fractionation; Principle of centrifugation and ultra-centrifugation; Different methods of ultra-centrifugations (in brief) and their applications; Structural parts of an analytical ultracentrifuge.

UNIT-B 15 hours

- Molecular biology techniques: PCR, qPCR, RFLP, RAPD, AFLP, Microsatellite, SNP; DNA sequencing: Maxam-Gilbert sequencing, Sanger sequencing; Introduction to Next-Generation Sequencing (NGS).
- **Electrophoresis:** Principles of electrophoresis, Agarose gel electrophoresis, Capillary electrophoresis, Two-dimensional gel electrophoresis, Polyacrylamide gel electrophoresis (PAGE), SDS-PAGE, Southern blotting, Northern blotting, Isoelectric focussing, Applications of electrophoresis.

UNIT-C 15 hours

- Immuno-techniques: Antibody generation, ELISA, RIA, Western blotting, Immunoprecipitation, Flow cytometry and fluorescence, Immunoelectron microscopy, Fluorescent *in situ* hybridization (FISH) and Genome *in situ* hybridization (GISH).
- Radioisotopes: Radioactive isotopes, Half-life of isotopes, Detection and measurement of radioactivity (Gas ionization, Scintillation and autoradiography), Applications of radioisotopes in biological sciences, Metabolic labelling, Magnetic Resonance Imaging.

UNIT-D 15 hours

- Chromatography: Principles of chromatography, Paper chromatography, Thin layer chromatography, High pressure thin layer chromatography, Gas chromatography, Gel permeation chromatography, Ion exchange chromatography, High pressure liquid chromatography, Affinity chromatography.
- **Spectroscopy:** Ultraviolet and Visible light spectroscopy, Fluorescence spectroscopy, Atomic spectroscopy, Nuclear magnetic resonance, X-ray diffraction.

Reference books:

1. Boyer, R. Modern Experimental Biochemistry. 3rd ed. Pearson Education, 2004

- 2. Freshney, R.I. *Culture of Animal Cells: A manual of basic technique.* 5th ed. New York: Wiley Liss Inc., 2006.
- 3. Gurumani, N. Research methodology for Biological Sciences. MJP Publishers, Chennai, 2007.
- 4. Kuby, J. Immunology. 6th ed., W.H. Freeman and Company, 2007.
- **5.** Wilson, Keith and Walker, John. *Practical Biochemistry: Principles and techniques*, 5thEdition, Cambridge University Press, 2000.

L	T	P	Credits	Marks
4	0	0	4	100

Course Title: Advances in Parasitology

Course Code: Z00803

Objective:

To acquaint the students with various aspects of parasites such as their interactions with hosts, pathogenicity, their adaptations to parasitic mode of life and immune evasion mechanisms.

Unit A 15 hours

- Concepts in Parasitology: Parasitism, types of parasites and hosts
- Parasitic adaptations: Morphological, physiological and ecological adaptations
- Effects of parasite on host: Pathogenic and physiological effects
- Host-parasite interactions: Molecular and cellular basis
- Parasite transmission: Various modes of parasite transmission

UNIT B 15 hours

- **Protozoan parasites:** Life-cycle, pathogenesis, treatment and control of *Plasmodium*. *Leishmania*. *Entamoeba* and *Giardia*
- **Trematode parasites:** Life-cycle, pathogenesis, treatment and control of *Fasciolopsis, Schistosoma, Clonorchis* and *Paragonimus*

UNIT C 15 hours

- **Cestode parasites:** Life-cycle, pathogenesis, treatment and control of *Taenia, Echinococcus, Hymenolepis* and *Diphyllobothrium*
- Nematode parasites: Life-cycle, pathogenesis, treatment and control of *Ascaris, Wuchereria, Ancylostoma* and *Dracunculus*

UNIT D 15 hours

- **Immunity to parasites:** Innate immunity, acquired immunity, evasion of immune response by parasites
- Vaccines: General concept, types of vaccines
- Immunodiagnostic Techniques: Immunodiffusion, Immunofluorescence assay (IFA), ELISA, western blotting and Flow cytometry

Reference books

- 1. Kuby J. *Immunology*. Freeman Publications, 2012.
- 2. Chatterjee, K. D. *Parasitology: Protozoology and Helminthlogy*. 13th ed. CBSpublishers and distributors Pvt Ltd, 2009.
- 3. Cheng, T.C. General Parasitology. 2nd ed., London: Academic Press, 1986.
- 4. Garcia, L.S. *Diagnostic Medical Parasitology*. 4th Ed. Washington DC: ASM Press, 2001.

- 5. Ichchpujani R.L.and Bhatia, R.*Medical Parasitology*. 3rd Ed. New Delhi: Jaypee Brothers Medical Publishers, 2002.
- 6. Larry S. Roberts & John Janovy Jr., Foundations of Parasitology Mc. Graw Hill Book Co., (2000).
- 7. Noble, E.R. & Noble, G.A. *Parasitology: The biology of animal parasites.* 5th edition. Philadelphia: Lea & Febiger, 1982.

Course Title: Principles of Toxicology

Course Code: Z00804

L	T	P	Credits	Marks
4	0	0	4	100

Unit-A 15h

- History of Toxicology.
- Measuring Toxicity and Assessing risk.
- Toxiokinetics : Absorption, distribution and elimination of Toxins.

Unit-B

- Toxicopanomics : Application of Genomics, Proteomics and Metabonomics in Toxicology
- Biotransformation of Toxins: Phase I and Phase II reactions.
- Carcinogenesis

Unit-C 15h

- Reproductive toxicology and Teratology.
 - Effects of Toxins on: Respiratory, Cardiovascular, nervous, hepatic, renal and Immune system.

Unit-D 15h

- Ecological Toxicology: Effects of Toxins at population, community and ecosystem level.
- Applications of Toxicology: Forensic Toxicology, Pharmaco Toxicology, Environmental Toxicology.

Books Recommended:

- 1. Hayes, A. W. (2007). Principle and Methods of Toxicology, CRC Press NY.
- 2. Newman, M.C. and Clements, W.H. (2008). Ecotoxicology –A Comprehensive Treatment, CRC Press, NY.
- 3. Stine, K. E. and Brown, T. M. (2006). Principles of Toxicology. CRC Press, NY.
- 4. Walker, C. H., Hopkin, S.P., Silby, R. M. and Peakall, D. B. (2006). Principles of Ecotoxicology, Informa, CRC Press NY.
- 5. Wright, D.A. and Welbourn, R. (2002). Environmental Toxicology, Cambridge University Press, UK.

Course Title: Molecular Genetics

Paper Code: ZOO805

L	T	P	Credits	Marks
4	0	0	4	100

Objectives: To understand the underlying theoretical principles of the scientific methods and approaches of molecular genetics and to enable the students to critically interpret experimental designs related to molecular genetics.

Unit-A 15h

Organization of genome: General features of chromosomes, C-value paradox, Repetitive DNA, General concept of a gene, Protein coding genes, Pseudogene, Gene families, Non-coding genes.

Unit-B

Gene mapping: Gene mapping by somatic cell hybridization, Top-down approach to molecular mapping, Restriction maps and contig construction (the bottom-up approach). **Engineering chromosomes:** Yeast artificial chromosome, Mammalian artificial chromosome, and satellite DNA's artificial chromosomes.

Unit-C 15h

Gene regulation: Genes controlling replication, Post-transcriptional regulation: Alternative splicing, Transport and targeting of RNA, Post-transcriptional gene silencing, Regulation of gene expression, Translational control and targeting of proteins, Mechanism of steroid hormone and stress induced gene expressions.

Unit-D 15h

Functional genomics: cDNA/gene, cloning; site-directed mutagenesis, methods for generation of transgenic animals/ knock-in, knockout models (microinjection, ES cell transformation); RNAi approach.

Whole genome study: Single nucleotide polymorphism, Copy number variations, Pulse field gel electrophoresis, Automated DNA sequencing, Next-generation sequencing.

Reference books:

- 1. Atherly et al., The Science of Genetics, Saunders, 1999.
- 2. Dale & Schartz, From genes to Genome, Wiley and Sons, 2003.
- 3. Latchman, Gene Regulation, Chapman & Hall, 1995.
- 4. Griffiths et al., Modern Genetic Analysis, Freeman, 2002.
- 5. Snustad, D.P. and Simmons, M.J., *Principles of Genetics*, John Wiley & Sons, 2011.
- 6. Benjamin Lewin, *Genes IX*, Jones and Bartlett Publishers, 2008.