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The availability of massive amounts of DNA sequence information has begun to revolutionize the practice of
biology. As a result, current large-scale sequencing output, while impressive, is not adequate to keep pace with
growing demand and, in particular, is far short of what will be required to obtain the 3-billion-base human
genome sequence by the target date of 2005. To reach this goal, improved automation will be essential, and it
is particularly important that human involvement in sequence data processing be significantly reduced or
eliminated. Progress in this respect will require both improved accuracy of the data processing software and
reliable accuracy measures to reduce the need for human involvement in error correction and make human
review more efficient. Here, we describe one step toward that goal: a base-calling program for automated
sequencer traces, phred, with improved accuracy. phred appears to be the first base-calling program to achieve a
lower error rate than the ABI software, averaging 40%–50% fewer errors in the data sets examined
independent of position in read, machine running conditions, or sequencing chemistry.

Overview of Sequence Data Processing

At present, nearly all DNA sequencing is done using
the enzymatic dideoxy chain-termination method
of Sanger (Sanger et al. 1977). One starts with a pu-
rified DNA template of interest (usually in single-
stranded form) and an oligonucleotide primer
complementary to a specific site on the template
strand. For each of the 4 bases (A, C, G, T), a reaction
is carried out in which DNA polymerase synthesizes
a population of labeled single-stranded fragments of
varying lengths, each of which is complementary to
a segment of the template strand and extends from
the primer to an occurrence of that base. These frag-
ments are then separated according to length by gel
electrophoresis, whereupon their relative sizes, to-
gether with the identity of the final base of each
fragment, allow the base sequence of the template
to be inferred.

In automated sequencing (Smith et al. 1986),
the fragments are labeled with fluorescent dyes at-
tached either to the primer (dye primer chemistry)
or to the dideoxy chain-terminating nucleotide (dye
terminator chemistry) (Prober et al. 1987). Typically
a different dye is used for each of the four reactions,
so that they can be combined and run in a single gel

lane (in the case of dye–terminator chemistry, this
also allows all four reactions to be carried out in a
single tube). Multiple templates (36 or more at a
time) are analyzed in separate lanes on the same gel.
At the bottom of the gel, a laser excites the fluores-
cent dyes in the fragments as they pass, and detec-
tors collect the emission intensities at four different
wavelengths. The laser and detectors scan the bot-
tom of the gel continuously during electrophoresis
in order to build a gel image in which each lane has
a ladder-like pattern of bands of four different col-
ors, each band corresponding to the fragments of a
particular length.

Computer analysis is then used to convert the
gel image to an inferred base sequence (or read) for
each template. Typically this analysis consists of
four distinct steps: lane tracking, in which the gel
lane boundaries are identified; lane profiling, in
which each of the four signals is summed across the
lane width to create a profile, or trace, consisting of
a set of four arrays indicating signal intensities at
several thousand uniformly spaced time points dur-
ing the gel run; trace processing, in which signal
processing methods are used to deconvolve and
smooth the signal estimates, reduce noise, and cor-
rect for dye effects on fragment mobility and for
long-range electrophoretic trends; and base-calling,
in which the processed trace is translated into a se-
quence of bases. This paper focuses only on the last
step.
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The processed traces are usually displayed in the
form of chromatograms consisting of four curves of
different colors, each curve representing the signal
for one of the four bases and drawn left to right in
the direction of increasing time to detection (in-
creasing fragment size). An idealized trace would
consist of evenly spaced, nonoverlapping peaks,
each corresponding to the labeled fragments that
terminate at a particular base in the sequenced
strand. Real traces deviate from this ideal for a vari-
ety of reasons having to do with imperfections of
the sequencing reactions, of gel electrophoresis, and
of trace processing. Because of anomalous migration
of very short fragments (caused by relatively greater
effects of the dye and specific base sequence on mo-
bility) and unreacted dye–primer or dye–terminator
molecules, the first 50 or so peaks of a trace are noisy
and unevenly spaced. Toward the end of the trace,
the peaks become progressively less evenly spaced as
a result of less accurate trace processing, less well
resolved as diffusion effects increase and the relative
mass difference between successive fragments de-
creases, and more difficult to distinguish from noise
as the number of labeled fragment molecules of a
given size decreases. In particular, poorly resolved
peaks for the same base may yield a single broad,
often lumpy peak.

In better resolved regions of the trace, the most
commonly seen electrophoretic anomalies are com-
pressions (Sanger and Coulson 1975; Sanger et al.
1977), which occur when bases near the end of a
single-stranded fragment bind to a complementary
upstream region, creating a hairpin-like structure
that migrates through the gel more rapidly than ex-
pected from its length, thus causing a peak to be
shifted left of its expected position. This can result
in one peak being beneath another or in two suc-
cessive peaks for the same base being merged into
one. GC-rich sequence tends to be more compres-
sion prone than AT-rich sequence because of the
greater likelihood of stable hairpins. Dye–termina-
tor chemistry appears to resolve most compressions
(Lee et al. 1992), possibly because the dye on the
terminal nucleotide interferes with base-pairing or
because of the use of deoxyinosine triphosphate in
place of deoxyguanosine triphosphate; but this
chemistry has its own data quality problems caused
by reduced polymerase affinity for the dye-labeled
terminal nucleotide, one particular problem being a
substantial decrease in the signal for a G base fol-
lowing an A (Lee et al. 1992; Parker et al. 1996).

Other frequently seen problems include weak or
variable signal strength and noise peaks not corre-
sponding to a base. These can result from variation

in the efficiency of chain elongation or termination
by the polymerase because of sequence context ef-
fects or inefficient incorporation of the dideoxy
nucleotide, from impure or degraded reagents, or
from laboratory protocol errors. Secondary structure
in the template can produce polymerase stops, re-
sulting in a pileup of peaks at one point in the trace.
The signal downstream of a run of mononucleotide
or dinucleotide repeats frequently is degraded, pos-
sibly because of strand slippage during copying by
the polymerase.

The goal of base-calling software is to produce a
sequence as accurate as possible in the face of the
above data problems. Some of the earliest base-
calling software was part of the processing software
installed on the first ABI sequencing machines
(Connell et al. 1987). That software achieves impres-
sive accuracy and remains the standard against
which other methods must be judged. Although full
algorithmic details have not been published, ac-
cording to a recent ABI description of its base-
calling software (ABI 1996), the program uses mo-
bility curves to predict the peak spacing, and iden-
tifies the most likely peak in intervals of the
nominal peak spacing, assigning an N in the ab-
sence of a good choice. Subsequently, it adds and
removes bases using a criterion involving the uni-
formity of peak spacing.

The advent of high volume sequencing has
prompted development of other programs (Gid-
dings et al. 1993; Golden et al. 1993, 1995; Berno
1996). These all perform multiple gel image process-
ing steps including base-calling and have the merit
of allowing efficient centralized processing of the
data on a computer independent of the sequencing
machine; however, none of them report equaling
the accuracy of the ABI software.

This paper and the following one describe a
computer program phred that performs base-calling
and assigns an error probability to each called base.
Accuracy is shown to exceed that of the ABI base-
caller.

METHODS

Base-Calling Algorithm

Overview

The phred base-caller uses a four-phase procedure to
determine a sequence of base-calls from the pro-
cessed trace. In the first phase, idealized peak
locations (predicted peaks) are determined; the
idea is to use the fact that fragments are locally rela-
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tively evenly spaced, on average, in most regions
of the gel, to determine the correct number of bases
and their idealized evenly spaced locations in re-
gions where the peaks are not well resolved, noisy,
or displaced (as in compressions). In the second
phase, observed peaks are identified in the trace.
In the third phase, observed peaks are matched
to the predicted peak locations, omitting some
peaks and splitting others; as each observed peak
comes from a specific array and is thus associated
with 1 of the 4 bases, the ordered list of matched
observed peaks determines a base sequence for the
trace. In the final phase, the uncalled (i.e., un-
matched) observed peaks are checked for any peak
that appears to represent a base but could not be
assigned to a predicted peak in the third phase, and,
if found, the corresponding base is inserted into the
read sequence. The entire procedure is rapid, taking
less than half a second per trace on typical worksta-
tions.

Below, we describe in greater detail the ideas
involved in the above four phases. Although
the basic ideas are simple, the full implementation
is a complex, somewhat inelegant rule-based pro-
cedure, that has been arrived at empirically by
progressively refining the algorithms on the basis
of examining performance on particular cosmid
data sets [generated early in the Caenorhabditis el-
egans sequencing project (Sulston et al. 1992) and
distinct from the ones used for the accuracy testing
in this paper]. Specific parameter values and algo-
rithmic details not provided here may be found in
the source code, which is available from the au-
thors.

Phred takes as input chromatogram files, in
ABI format or Standard Chromatogram Format
(SCF) (Dear and Staden 1992), containing the
processed trace data; currently traces produced
either by the ABI analysis software, or by our own
lane processing program plan (B. Ewing and
P. Green, in prep.) may be used. Prior to peak
prediction, simple additional processing of the
trace is performed. The trace array amplitudes are
first normalized by summing the dominant peak
areas of each array from point 1500 to 2500 and
scaling to the smallest of the four average peak
areas. From the four normalized trace arrays, a sky-
line projection is then created by taking the maxi-
mum of the four array values at each point in the
trace.

Phase 1: Locating Predicted Peaks

Peak prediction attempts to find the idealized loca-

tions of the base peaks, using simple Fourier meth-
ods. This, in effect, supplies a peak spacing criterion
that, in conjunction with peak size considerations,
can help discriminate noise peaks from true ones
and resolve groups of merged peaks.

Peak prediction begins by examining the four
trace arrays to detect peaks. (These are used only as
a temporary tool for peak prediction and do not
necessarily correspond to the observed peaks de-
fined in the next section.) A detected peak is iden-
tified as the location of the maximum value, or, if
the maximum does not exist, the midpoint, be-
tween a pair of inflection points. The peak is re-
tained only if its height exceeds 10% of the height
of the previous peak and is greater than the heights
of the other three arrays at the same position. To
minimize the effects of varying peak heights for the
Fourier analyses described below, a synthetic trace is
then constructed as a frequency modulated sym-
metric square wave with values of 1.0 and 11.0,
such that each positive peak of the square wave is
centered on a detected peak location and has width
equal to one fourth of the peak-to-peak spacing; in
particular the synthetic trace has the same peak lo-
cations as the original (processed) trace.

The processed trace is then scanned to find re-
gions of uniform peak spacing, where a region is
defined to be a window of 200 trace points. For each
region centered on a detected peak, the peak period
(peak-to-peak spacing) values are determined for all
pairs of adjacent detected peaks within the region,
and the mean and standard deviation of these peri-
ods are determined. Any region for which the mean-
scaled standard deviation is <0.45 is designated as
having well-defined spacing. The region with the
lowest mean-scaled standard deviation is assumed
to have the most uniformly spaced peaks and is se-
lected as the starting region (S).

Finding the set of predicted peaks for the trace
relies on repeated application of an algorithm that,
given a region (R) and a set of permitted periods,
finds a predicted peak location peakR near the center
of the region together with an estimated period uR

chosen from the permitted set. This is done as fol-
lows. First a damped synthetic trace is constructed
by multiplying the value at each point in the syn-
thetic trace by a symmetric triangular filter that has
value 1.0 at the region midpoint and 0 outside the
region, and is linear between the midpoint and each
edge of the region; this effectively weights trace
points according to their distance from the mid-
point, with points near the midpoint getting the
highest weight. Then, among all sine waves having
a period in the permitted set, the one having the
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largest inner product with the damped trace is
found, using simple Fourier methods (Press et al.
1988). This sine wave can be thought of as the one
that best approximates the damped trace. The loca-
tion of the peak in this sine wave that is nearest to
the center point of the region is then taken as the
predicted peak peakR, and the period of the sine
wave is taken as the estimated period uR.

The predicted peaks for the trace are found by
iteratively applying the above algorithm, proceed-
ing first from the starting region toward the end of
the trace, and then from the starting region toward
the beginning of the trace. Specifically:

1. Find the predicted peak peakS and period uS asso-
ciated to the starting region S, using the above
procedure (in this case the set of permitted peri-
ods consists of all possible periods, and the fast
Fourier transform is computed to find the opti-
mal period uS).

2. Set the region R to S, and the direction d to
‘‘rightward’’.

3. Shift R in the direction d by an amount uR, and
relabel this new region as R. If R has well-defined
spacing and d is ‘‘rightward,’’ take the set of per-
mitted periods to be {uR 1 0.03, uR, uR + 0.03}; if
R has well-defined spacing and d is ‘‘leftward,’’
take the set of permitted periods to be {uR 1 0.25,
uR 1 0.20, uR 1 0.15,...,uR + 0.25}; if R does not
have well-defined spacing, take this set to be {uR}.

4. Find peakR and uR. If the end of the trace has been
reached, go to step 5; otherwise go to step 3.

5. If d is ‘‘leftward,’’ stop. Otherwise set R to S and d
to ‘‘leftward,’’ and go to step 3.

Phase 2: Locating Observed Peaks

Observed peaks are found by scanning the four trace
arrays for regions that are concave, that is, satisfy
2 2 v(i) ù v(i + 1) + v(i 1 1) where v(i) is the trace
value at point i. For each such region, the trace val-
ues are summed to estimate the peak area. If this
area exceeds 10% of the average area of the preced-
ing 10 accepted observed peaks and 5% of the area
of the immediately preceding peak, it is accepted as
an observed peak; otherwise it is ignored. The ratio
of the peak area to the ten peak average is stored as
the relative area of the peak.

The location of the observed peak is taken to be
the position in the trace where the peak area is bi-
sected. Because in some cases, a single peak may
later need to be split into two, three, or four virtual
peaks, the locations of the positions that trisect,
quadrisect, or pentisect the area are also found.

Phase 3: Matching Observed and Predicted Peaks

Peak matching consists of assigning an observed
peak to each predicted peak. This is the most com-
plex part of the base-calling procedure and consists
of three stages: finding easy matches (called fixed
peaks); using a dynamic programming algorithm to
align observed and predicted peaks that were not
matched in stage one; and matching observed peaks
that were not assigned in the first two stages but
appear to represent genuine bases.

It is useful to define the shift of an observed
peak relative to a particular predicted peak as the
distance between their locations, divided by the pe-
riod of the predicted peak. The shift may be posi-
tive, negative, or zero, with, for example, a positive
shift value indicating that the observed peak lies to
the left of the predicted peak. The shift change is the
difference between the shifts calculated for an ob-
served–predicted peak pair and the adjacent ob-
served–predicted peak pair; this is relevant in com-
pressions, where several observed–predicted pairs
may have large shifts, but small shift changes. For
notational clarity in the following, we also make the
following definitions: The observed peak that is as-
signed as the called peak associated to a predicted
peak is denoted the obs peak; prior to the final
choice of the obs peak, the best obs peak is a
working peak associated to the predicted peak; and
the best uncalled peak is an observed peak associ-
ated to the predicted peak but not called.

For each predicted peak all observed peaks (if
any) are found that are closer to that predicted peak
than to any other, and of these the one with the
largest relative area is designated the best obs

peak of the predicted peak. The observed peak
relative area values are then recalculated using
the running average area of the 10 preceding as-
signed best obs peaks.

In the first stage of peak matching, for any
group of four or more consecutive predicted peaks
that have best obs peaks with relative areas >0.2
and shifts between 10.2 and 0.2, the corresponding
observed peaks are designated as fixed and assigned
to the predicted peaks.

For the second stage, each observed peak not
assigned in stage 1 and having relative area greater
than 0.1, and each predicted peak to which no ob-
served peak was assigned in stage 1, is considered.
Each possible pairing of an unused observed peak
with an unused predicted peak is assigned a score
calculated as the observed peak area, times a penalty
factor <1 that takes into account the direction and
magnitude of the shift. Right shifts are penalized
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more than left shifts, reflecting the fact that frag-
ments may migrate faster but not slower than their
idealized rate; for example, a left shift of 0.5 scales
the area by 0.95, whereas a right shift of 10.5 scales
the area by 0.85. Large shifts are disallowed. A modi-
fied dynamic programming algorithm is then used
to find the alignment of observed and predicted
peaks having the highest total score, subject to the
constraints that each shift be in the allowed range
and each shift change be <0.7. A single observed
peak may be split into as many as four observed
peaks assigned to consecutive predicted peaks. Split-
ting is disallowed when the observed peak relative
area falls below 1.6 and when the shift of an ob-
served peak component falls outside the range
10.5 ø shift ø 2.1.

The third stage has two parts. In the first part,
for each observed peak that was not assigned to a
predicted peak in the first or second stage, phred
checks whether the nearest predicted peak has an
assigned observed peak. If so, the observed peak is
assigned as the best uncalled peak of the predicted
peak (unless a larger peak has already been so as-
signed). If not, phred assigns it as the best obs peak
of the predicted peak, unless the predicted peak al-
ready has a best obs peak with larger relative area;
in the latter case phred assigns the observed peak as
the best uncalled peak unless there is already a
larger assigned best uncalled peak.

In the second part, any predicted peak without
an assigned observed peak is checked to see whether
it has a best obs peak not already assigned to any
predicted peak. If it does, this best obs peak is as-
signed as the obs peak for the predicted peak. If the
best obs peak has already been assigned, the ob-
s peak of an adjacent predicted peak is checked to
see whether it has a relative area exceeding the
minimum value for splitting and has not been split
the maximum number of times; if so, it is split and
assigned to the predicted peak.

If no suitable observed peak can be assigned to
a predicted peak, the corresponding base-call is de-
fined to be N. This occurs very rarely.

Phase 4: Finding Missed Peaks

Occasionally, following completion of the above
three phases there remain one or more well-resolved
observed peaks that clearly represent bases but have
not been assigned to predicted peaks. This can occur
when a severe compression, extensive noise, or a
lane processing aberration interferes with peak pre-
diction, resulting in underestimation of the number
of peaks in a region so that some observed peaks

have no free predicted peak to which they can be
assigned. To recover such peaks, following the
matching phase each remaining unmatched ob-
served peak is checked to see whether it (1) has the
largest of the four signals at its time point, (2) meets
a minimum size criterion, (3) is unsplit, (4) is
flanked by resolved peaks, and (5) is such that add-
ing it results in improved peak spacing. If all condi-
tions are met, an additional predicted peak is cre-
ated and the observed peak is assigned to it.

Accuracy Assessment Methods

In principle, the accuracy of a basecalling program
is easily measured by aligning read sequences pro-
duced by that program to the correct sequence and
tabulating discrepancies. There are a number of
subtleties in such an analysis, however, and it is easy
to get misleading results. The details of the align-
ment algorithm can significantly affect how errors
are classified. Moreover, it is important to allow for
variability of error rates within and between reads,
since otherwise the most error prone parts of the
reads, or a small subset of reads with a very high
error rate, can unduly influence the results. It is also
worth recognizing that not all regions of a read are
equally important; the higher quality part tends to
be the most useful in practice, and the error rates in
that part are therefore of most relevance.

We assessed the accuracy of the phred and ABI
base-callers in several large sets of reads from cosmid
clones sequenced in three laboratories (Table 1).
These included (set 1) 9 mammalian (human and
mouse) cosmids, sequenced by L. Rowen in L.
Hood’s laboratory (University of Washington); (set
2) 9 C. elegans cosmids from the Washington Uni-
versity Genome Sequencing Center (R. Waterston);
and (set 3) 36 human chromosome 7 cosmids, from
the University of Washington Genome Sequencing
Center (M. Olson). In each case the sequencing
strategy consisted of a moderate to high depth
(62 1 102) shotgun phase in which dye primer
reads were obtained from M13 subclones, followed
by a finishing phase in which additional reads
(mostly dye terminator) were used to close gaps and
resolve low quality regions. Trace processing was
performed using ABI analysis software.

The sets differed somewhat in the machine run-
ning conditions that were used and in the sequenc-
ing polymerase (see footnote to Table 1); in particu-
lar we separate the analyses of the cosmid sets one
and two from the analyses of cosmid set three be-
cause set three had average read lengths several
hundred bases longer than the other two sets, which
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would complicate interpretation of combined re-
sults. Dye primer reads were analyzed separately
from dye terminator reads.

For each cosmid we created two FASTA format-
ted files, one containing the ABI base-called reads,
and the other containing the phred base-called reads
(as generated from the ABI-processed trace files).
Each of these was screened to mask out vector se-
quence, and the screened reads were then aligned to
the finished cosmid sequence and discrepancies
tabulated.

Alignment of the reads to the finished sequence
was performed by use of a restricted Smith–
Waterman (Smith and Waterman 1981) algorithm
as implemented in the program cross match (P.
Green, in prep.), which searches bands in the Smith-
–Waterman matrix surrounding word matches be-
tween the query and target sequences. It is impor-
tant to recognize that the details of the alignment
(its precise extent and the positions and types of the
discrepancies) depend to some degree on the param-
eters used in the Smith–Waterman algorithm,
which in our case were +1 for a match, 12 for a
mismatch, 14 for a gap-initiation penalty, and 13
for a gap-extension penalty. The error rate in se-
quence reads tends to increase progressively toward
the end of the read, and the local alignment stops
when the error rate starts becoming high enough to
produce a negative score. With our parameter val-
ues, this occurs where the error rate starts to exceed

roughly 30% (depending on the distribution and
type of the discrepancies). In regions containing
multiple errors, there may be several possible ways
of aligning the read against the cosmid sequence.
For example, with compressions (where typically a
set of peaks are shifted leftward), frequently the
base-caller will get the number of bases correct, but
it will omit one base (the first shifted peak in the
group) and then compensate by inserting an addi-
tional base (or N) following the last shifted peak.
Such a miscalled region may be aligned against the
true sequence in either of two ways: by having a
single deletion and a single insertion flanking sev-
eral correctly matching bases; or by having no in-
dels but multiple substitution discrepancies. Which
of these has the higher score will depend on the
relative sizes of the indel and mismatch penalties, as
well as on the precise sequence of the shifted bases.
Our parameter values tend to modestly favor align-
ments with substitution discrepancies rather than
indels.

The relative performances of the ABI and phred
base-callers were assessed by use of a computer pro-
gram written to compare the cross match outputs
for the two sets of reads for each cosmid. The num-
ber of aligned bases for each method (i.e., the num-
ber of bases in the Smith–Waterman alignment,
summed over all reads) was first determined. For
meaningful comparison of the error rates of two dif-
ferent base-calling methods it is important to re-

Table 1. Cosmid Set Descriptions

Set
Cos-

midsa
%
GC

Total
reads

Dye primer reads Dye terminator reads

aligned
phred
reads

aligned
ABI

reads

aligned
phred
bases

aligned
ABI

bases

aligned
phred
reads

aligned
ABI

reads

aligned
phred
bases

aligned
ABI

bases

1 9 43 8240 6527 6558 3258752 3197134 143 145 60461 59265
2 9 37 13448 10307 10265 4741753 4548633 279 274 113398 101080
3 36b 43 27184 21417 21562 17379770 16431563 1541 1540 1338434 1280766

aCosmid set 1 GenBank accession nos. AE00063 (cosmid 0742C), AE000665 (cosmid 82C), U66059 (cosmids A14, G54, K26, K35,
AND X21B), AF029308 (cosmids X13A and X224). Cosmid set 2 accession nos.: U23454, U39645, U23529, U39742, U29535,
U23518, U29381, U28732, and U29536. Cosmid set 3 accession nos.: AC000099, AC000123, AC000109, AC000110, AC000354,
AC000361, AC000362, AC000363, AC000364, AC000355, AC000356, AC000124, AC000125, AC000357, AC000126, AC000127,
AC000358, AC000359, AC002495, AC002424, AC000373, AC000365, AC000366, AC000367, AC002113, AC002114, AC002497,
AC002083, AC002084, AC000369, AC000370, AC002057, AC000374, AC000371, AC000372, and AC002498.
bTwo of these are cosmid fragments of 4.2 and 8.9 kb long.
All reads were from M13 subclone templates, and almost all were generated in ABI 373 sequencing machines (2.2% of set 3 was
sequenced on ABI 377 machines). Cosmid set 1 gels were processed with ABI v. 1.0.x (10.5%), 1.1.x (9.1%), 1.2.x (73.0%), and 2.0.1
(7.3%) analysis software. Cosmid set 2 gels were processed with ABI v. 1.2.x (100.0%) analysis software. Cosmid set 3 gels were
processed with ABI version 1.2.x (3.3%), 2.1.x (80.6%), and 3.0.x (16.1%) analysis software. Taq polymerase and short (34 cm) gels
were used for cosmid sets 1 and 2. TaqFS polymerase and long (48 cm) gels were used for cosmid set 3.
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strict attention to the part of each trace for which
errors can be counted for both methods simulta-
neously (if one instead counts errors for each
method in the entire part of the read alignable for
that method, the more accurate method may actu-
ally appear less accurate, because in general it will
have a longer alignable read length and the addi-
tional aligned bases will be in a lower quality part of
the trace that has an intrinsically higher error rate).
We did this by considering for each trace the seg-
ment of the cosmid sequence that is aligned to the
ABI-called read by cross match, the segment of the
cosmid that is aligned to the phred-called read, and
then taking the intersection of these two segments
(this intersection is called the set of jointly alignable
bases for the trace). Discrepancies inside this seg-
ment were tabulated; those outside it were ignored.
Discrepancies were classified as substitutions (not
counting Ns), Ns, insertions, and deletions, and
tabulated in 100-base intervals with respect to posi-
tion in the read sequence. The error rate for a par-
ticular error type in a particular 100-base interval in
a data set is computed as the total number of errors
of that type in that interval, divided by the total
number of jointly alignable bases in that interval in
the data set.

Table 2 shows the number of jointly alignable
bases in each interval of 100 read bases in the cos-
mid sets. From positions 100 to 199, the number of
aligned bases is nearly equal to the number of

aligned reads multiplied by 100, reflecting the fact
that most reads have alignable lengths of 200 or
more. The number of aligned bases in positions 1 to
99 is lower, in part because the first few bases of the
read are from the sequencing vector and in part be-
cause lower trace quality for the first 50 or so peaks
sometimes results in enough basecalling errors to
prematurely truncate the alignment. The number of
aligned bases decreases slowly from position 200 up
to about position 400 in cosmid sets one and two,
and up to about position 800 in the data sets of
cosmid set three, reflecting the fact that most reads
have relatively high data quality in these regions.
Thereafter, the numbers of aligned bases drop rap-
idly owing to degradation of trace quality toward
the end of the read.

RESULTS AND DISCUSSION

We compared the accuracy of the ABI and phred
base-callers in three sets of cosmids (see Table 1, and
Accuracy Assessment Methods). Although there is
some variability within each set, on average cosmid
sets 1 and 2 may be considered to be of average
quality (Taq polymerase, short gels), whereas cos-
mid set 3 is of high quality (TaqFS polymerase, long
gels). Sets 1 and 2 had very similar error profiles and
were combined for the analyses described below.
Dye primer and dye terminator reads from each set
were analyzed separately.

Figures 1–4 summarize the error rates
by error type and read position in the
phred and ABI reads for each data set. (To
permit meaningful comparison, we
count errors only in the part of each trace
for which both the ABI and phred base-
calls are accurate enough to be jointly
alignable; see Accuracy Assessment
Methods.) Consistent with our quality
designation above, set three has fewer er-
rors at corresponding read positions than
do sets 1 and 2, and the dye primer reads
in each set have fewer errors at corre-
sponding positions than the dye termi-
nator reads. In general the error rates for
both ABI and phred are quite low in the
middle (high quality) parts of the reads,
rising sharply later in the reads. There is
an inflection point (reduction in the rate
of increase) in many of the overall error
rate plots later in the reads that corre-
sponds closely with the point at which
the number of alignable bases drops
(Table 2). This appears to be attributable

Table 2. The Total Number of Jointly (phred and ABI)
Aligned Bases in Each Data Set by Read Position
and Chemistry

Base
position

Cosmid sets 1 and 2 Cosmid set 3

dye
primer

dye
terminator

dye
primer

dye
terminator

0–99 1257891 25713 1295476 110854
100–199 1633260 39811 2061225 150636
200–299 1616786 37901 2058974 149023
300–399 1509497 31060 2033304 147021
400–499 1002456 15480 1981676 143205
500–599 347668 4403 1910734 139170
600–699 93586 643 1773872 132953
700–799 33624 18 1486434 120471
800–899 9279 967925 93722
900–999 225 387513 59183

1000–1099 67934 15673
1100–1199 2448 957
1200–1299 56 87
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to a subpopulation of reads that have significantly
higher quality, and thus longer alignable lengths
and lower error rates, than the bulk of the reads.

Phred’s total error rates (lower right panel in
Figs. 1–4) are lower than ABI’s in all parts of the
read, in each data set. Overall, for the dye primer
data, phred has ∼41% fewer errors than ABI in sets 1
and 2, and 52% fewer errors in set 3; for the dye
terminator data, phred has 39% fewer errors in all
three sets. It is interesting that the relative improve-
ment is greatest in the highest quality data set (set 3
dye–primer reads). Table 1 shows that the phred-
called reads on average had about 5% longer align-
able read length than the ABI reads, which is con-
sistent with phred’s greater accuracy throughout the
read. To ensure that these results are not attribut-
able to a small subset of reads with high error rates,
we repeated the analyses after excluding the 5% of
ABI reads and the 5% of phred reads having the
highest error rates. The same relative differential
(40%–50% fewer errors with phred) was seen on the
pruned data sets.

It is instructive to consider the different error

types. Insertion or deletion errors (indels) are more
serious than substitution errors for many purposes
[e.g., in expressed sequence tag (EST) data, where
they may change the reading frame thus making
homology detection more difficult]. The combined
indel rate for phred is lower throughout the read
length in each data set, except past base 1000 in set
3 where ABI does slightly better. In the regions of
higher trace quality (i.e., before the sharp dropoff in
numbers of aligned bases) phred’s insertion and de-
letion rates are both lower than ABI’s. After this
point, the rates for both ABI and phred increase sub-
stantially but with different tendencies. The phred
deletion rates increase somewhat more quickly than
ABI’s and are substantially higher than ABI’s to-
wards the end of the trace; conversely the ABI in-
sertion rates increase more rapidly than phred’s. It
appears that the ABI base-caller is more likely to add
a peak than to remove one, while phred avoids high
insertion rates with its tightly constrained peak pre-
diction algorithm. The elevated phred deletion rates
later in the trace are probably attributable to the fact
that phred freezes the predicted peak spacing value

Figure 2 Phred (gray bars) and ABI (black bars) error
rates for dye terminator data in cosmid sets 1 and 2.

Figure 1 Phred (gray bars) and ABI (black bars) error
rates for dye primer data in cosmid sets 1 and 2.
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where it can no longer reliably determine it, which
tends to underestimate the number of predicted
peaks when the true spacing decreases.

Phred makes roughly the same numbers of sub-
stitution errors as ABI, except for the terminator
reads of cosmid sets one and two where the phred
substitution rate is about twice the ABI rate in the
high quality part of the trace. However, ABI calls
substantially more N’s than phred throughout, in
part because phred only calls an N when it cannot
find an observed peak to associate to a predicted
peak location, while the ABI software assigns an N
when either it cannot find a peak or the call is un-
certain because of noise peaks. The combined sub-
stitution +N rate is substantially higher for ABI than
for phred in all data sets.

Because we consider any failure to predict the
correct base as an error, N’s are errors. This is the
only sensible policy, as otherwise a base-caller could
inflate its accuracy simply by calling N’s in any low-
quality region; for example, phred could attain an
error rate of <1 in 10,000 by designating every base
with quality value <40 as an N (Ewing and Green
1998). Assigning an N to an ambiguous peak has

some merit in the absence of quality values because
it helps to indicate low trace quality, but is not use-
ful when quality values are available. Nonetheless in
fairness to the ABI software one must acknowledge
that its performance under our criteria could be im-
proved by modifying it to always guess a base. If we
assume (optimistically) that by doing so the ABI
software could convert 75% of its N’s to correct
base-calls, with the remaining 25% becoming sub-
stitution errors, then the ABI substitution error rates
would approximately equal the phred rates in the
high quality regions of the traces, but would exceed
the phred rates later in the traces in all cases except
the terminator data for cosmid sets one and two.
Total error rates would still be less for phred than for
ABI.

Sensitivity to Lane-Processing Method

We believe that phred’s observed peak detector and
its methods for aligning observed peaks to predicted
peaks will work well regardless of the trace source.
This is not true of the peak prediction algorithm,
however, which was tuned on ABI-processed traces

Figure 4 Phred (gray bars) and ABI (black bars) error
rates for dye terminator data in cosmid set 3.

Figure 3 Phred (gray bars) and ABI (black bars) error
rates for dye primer data in cosmid set 3.
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and works well only when the trace processing in-
cludes a step to render the peak spacing relatively
uniform; without such peak spacing normalization,
phred may predict peaks poorly in some regions of
the trace, resulting in increased numbers of indels.
Other specifics of the lane processing may also af-
fect phred performance. The ABI mobility correction
appears to be less accurate toward the beginning
and end of the trace, affecting basecalling accuracy
there. In addition, it appears that the ABI trace pro-
cessing broadens peaks excessively, which has the
effect of reducing resolution and increasing the
numbers of deletion errors.

We have recently developed a trace-processing
program, plan, that reads raw trace data and pro-
cesses the trace arrays. Preliminary tests indicate
that phred’s performance on traces processed using
plan is comparable to, or slightly better than, that
using ABI processed traces.

Further Improvements

What further accuracy improvements are possible?
The high-quality part of the trace presents different
issues from the later, lower quality part. For most
applications where an accurate finished sequence is
required, the high-quality part of the trace is by far
the most important, since it is the only part usable
in deriving the final sequence. Raw data quality in
the later parts of the trace is such that, although
improved basecalling accuracy is certainly possible,
it would be extremely difficult to reduce the error
rate to the level necessary to infer highly accurate
sequence.

In the high-quality part of the trace the major
sources of error at present are compressions in dye
primer data, and highly variable peak heights or
missing peaks in dye terminator data. Both of these
are sequence-context dependent, and classifying
the specific sequence motifs that are most error
prone is a promising approach to improving accu-
racy. It is particularly important to improve phred’s
ability to identify and resolve CC and GG compres-
sions, which are often difficult even for skilled hu-
man finishers to detect by eye, and we have recently
made some progress in this regard using rules for
hairpin-prone sequences.

Improved accuracy in the lower quality part of
the trace would be useful in single read applications
(e.g., EST sequencing), and to improve repeat dis-
crimination and assist in making joins in the early
phases of shotgun sequencing projects (which helps
make collection of additional data more efficient by
delineating the sizes of regions where more data are

needed). The major gains to be made here are in
improved peak spacing estimation and in process-
ing to improve peak resolution.

Program Availability

C source code is available at no charge to academic
researchers for research purposes, and by com-
mercial license from the University of Washington
to other users; contact Brent Ewing at bge@u.
washington.edu.
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