
MODULE 5: HEAT EQUATION 20

Lecture 5 Time-Dependent BC

In this lecture we shall learn how to solve the inhomogeneous heat equation

ut − α2uxx = h(x, t)

with time-dependent BC. To begin with, let us consider the following IBVP problem with

time-dependent BC:

PDE: ut = α2uxx 0 ≤ x ≤ L, 0 < t <∞, (1)

BC: u(0, t) = a(t) u(L, t) = b(t), 0 < t <∞, (2)

IC: u(x, 0) = f(x). (3)

In the previous lecture, we had discussed the solution of this problem in the case where a(t)

and b(t) are constant functions (independent of t) and f(x) is a suitable given function.

Notice that the function w(x, t) defined by

w(x, t) =

[
b(t)− a(t)

L

]
x+ a(t)

satisfies the BC (2). However, w(x, t) will not satisfy the PDE (1) unless a(t) and b(t)

are constant. In fact,

wt − α2wxx =

[
b′(t)− a′(t)

L

]
x+ a′(t).

We now attempt to find a solution for the problem (1)-(3) of the form

u(x, t) = w(x, t) + v(x, t),

where v(x, t) satisfies the following problem

vt − α2vxx = ut − α2uxx − (wt − α2wxx)

= −(wt − α2wxx)

= −[b′(t)− a′(t)]x/L− a′(t).

Further,

v(0, t) = u(0, t)− w(0, t) = a(t)− a(t) = 0,

v(L, t) = b(t)− b(t) = 0.
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Thus, the function v(x, t) must satisfy the following related problem with homogeneous

BC, but inhomogeneous PDE:

PDE: vt − α2vxx = −[b′(t)− a′(t)]x/L− a′(t), 0 ≤ x ≤ L, 0 < t <∞, (4)

BC: v(0, t) = 0, v(L, t) = 0, 0 < t <∞, (5)

IC: v(x, 0) = u(x, 0)− w(x, 0) = f(x)− [a(0)− b(0)]x/L− a(0). (6)

Note: When a(t) and b(t) are constants, the PDE is homogeneous. But, in this case,

v(x, t) satisfies nonhomogeneous PDE.

The problem (4)-(6) is a special case of the following general problem:

PDE: vt − α2vxx = h(x, t) 0 ≤ x ≤ L, 0 < t <∞, (7)

BC: v(0, t) = 0, v(L, t) = 0, 0 < t <∞ (8)

IC: v(x, 0) = g(x). (9)

The solution procedure to the above problem was given by the French mathematician and

physicist Jean-Marie-Constant Duhamel (1797-1872). The method is known as Duhamel’s

principle.

Suppose u1 and u2 are solutions of the following problems:

(P1 :)

PDE: (u1)t − α2(u1)xx = 0

BC: u1(0, t) = 0, u1(L, t) = 0

IC: u1(x, 0) = g(x)

(P2 :)

PDE: (u2)t − α2(u2)xx = h(x, t)

BC: u2(0, t) = 0, u2(L, t) = 0

IC: u2(x, 0) = 0

(10)

It is easy to check that v(x, t) = u1(x, t) + u2(x, t) solves (7)-(9). The solution u1 to the

problem (P1) is known (cf. Lecture 4 in Module 5). It remains only to solve the problem

(P2) for u2.

The above observation has led to the following (cf. [1]).

THEOREM 1. A solution to problem (1)-(3) is given by

u(x, t) = w(x, t) + u1(x, t) + u2(x, t),

where

w(x, t) =

[
b(t)− a(t)

L

]
x+ a(t)

is the particular solution of the BC and u1(x, t) solves (P1) with g(x) = f(x) − w(x, 0)

and u2(x, t) solves (P2) with h(x, t) = −(wt − α2wxx) = −[b′(t)− a′(t)]x/L− a′(t).
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1 Duhamel’s principle

The basic idea of Duhamel’s principle is to transfer the source term h(x, t) to initial

condition of related problems. This is done in the following manner. The function defined

by

u(x, t) =

∫ t

0
v(x, t; s)ds

is a solution of (7)-(9) provided v(x, t; s) is a solution of the problem

PDE: vt = α2vxx, 0 ≤ x ≤ L, 0 < t <∞, (11)

BC: v(0, t; s) = 0, v(L, t; s) = 0, 0 < t <∞, (12)

IC: v(x, s; s) = h(x, s). (13)

Note that both PDE and BC are homogeneous. We use translation in time

u(x, t) =

∫ t

0
v̄(x, t− s; s)ds

to obtain an IC at t = 0, instead of t = s. Rewriting (11)-(13) in terms of v̄, we now

reduce the problem to the following associated problem with IC at t = 0:

PDE: v̄t = α2v̄xx 0 ≤ x ≤ L, 0 < t <∞, (14)

BC: v̄(0, t; s) = 0, v̄(L, t; s) = 0, 0 < t <∞ (15)

IC: v̄(x, 0; s) = h(x, s). (16)

To illustrate the procedure let us consider the following example:

EXAMPLE 2. Solve

PDE: ut − α2uxx = t sin(x) 0 ≤ x ≤ π, 0 < t <∞, (17)

BC: u(0, t) = 0, u(π, t) = 0, 0 < t <∞, (18)

IC: u(x, 0) = 0. (19)

Solution. Here h(x, t) = t sin(x). We solve the related problem:

PDE: v̄t = α2v̄xx, 0 ≤ x ≤ π, 0 < t <∞, (20)

BC: v̄(0, t; s) = 0, v̄(π, t; s) = 0, 0 < t <∞, (21)

IC: v̄(x, 0; s) = h(x, s) = s sin(x). (22)
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Treating s a constant, we easily obtain v̄(x, t; s) = se−α2t sin(x). Note that

u(x, t) =

∫ t

0
v̄(x, t− s; s)ds =

∫ t

0
se−α2(t−s) sin(x)ds

= e−α2t sin(x)

∫ t

0
seα

2sds =
[
(α2)−1t+ (α2)−2(e−α2t − 1)

]
sin(x),

which satisfies (17)-(19).

THEOREM 3. (Duhamel’s principle, [1]) Let h(x, t) be a twice continuously differen-

tiable function in 0 ≤ x ≤ L, t ≥ 0. Assume that, for each s ≥ 0, the IBVP

PDE: vt = α2vxx 0 ≤ x ≤ L, 0 < t <∞, (23)

BC: v(0, t; s) = 0, v(L, t; s) = 0, 0 < t <∞, (24)

IC: v(x, 0; s) = h(x, s). (25)

has a solution v(x, t; s), where v(x, t; s), vt(x, t; s) and vxx(x, t; s) are continuous (in all

three variables). Then the unique solution of the problem

PDE: ut − α2uxx = h(x, t) 0 ≤ x ≤ L, 0 < t <∞, (26)

BC: u(0, t) = 0, u(L, t) = 0, 0 < t <∞, (27)

IC: u(x, 0) = 0. (28)

is given by

u(x, t) =

∫ t

0
v(x, t; s)ds. (29)

Proof. Note that the function u(x, t) defined by

u(x, t) =

∫ t

0
v(x, t; s)ds

satisfies the IC u(x, 0) = 0 and the BC u(0, t) = u(L, t) = 0. Observe that v(x, t; s)

satisfies the BC (24). Now, with g(t, s) = v(x, t; s), where x fixed, we have

ut(x, t) = v(x, t; t) +

∫ t

0
vt(x, t; s)ds

= h(x, t) +

∫ t

0
α2vxx(x, t; s)ds.

Apply Leibniz’s rule to obtain

ut(x, t) = h(x, t) + α2uxx(x, t).

By the hypothese on v(x, t; s), it follows that u(x, t) is in C2. For the uniqueness, see

Theorem 4 (of Lecture 2 of Module 5).
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REMARK 4. The solution u in (29) may be written as

u(x, t) =

∫ t

0
v̄(x, t− s; s)ds

where v̄ solves (14)-(16).

EXAMPLE 5. Solve the IBVP:

ut − α2uxx = t[sin(2πx) + 2x] 0 ≤ x ≤ 1, 0 < t <∞,

u(0, t) = 1, u(1, t) = t2, 0 < t <∞,

u(x, 0) = 1 + sin(πx)− x.

Solution. The function that satisfies the BC is

w(x, t) = (t2 − 1)x+ 1.

Then u(x, t) = w(x, t)+v(x, t), where v(x, t) solves the related problem with homogeneous

BC:

vt − kvxx = ut − α2uxx − (wt − α2wxx) = t sin(2πx)

v(0, t) = u(0, t)− w(0, t) = 0

v(1, t) = u(1, t)− w(1, t) = 0

v(x, 0) = u(x, 0)− w(x, 0) = sin(πx).

Now, v = u1 + u2, where u1 and u2, respectively, solves

(a)

(u1)t − α2(u1)xx = 0

u1(0, t) = 0 u1(1, t) = 0

u1(x, 0) = sin(πx)

(b)

(u2)t − α2(u2)xx = t sin(2πx)

u2(0, t) = 0 u2(1, t) = 0

u2(x, 0) = 0.

We know that u1(x, t) = e−π2α2t sin(πx). The function u2 is found via Duhamel’s principle.

The solution u2 is given by

u2(x, t) =

∫ t

0
v̄(x, t− s; s)ds,

where v̄ solves the problem

v̄t = α2v̄xx

v̄(0, t; s) = 0 v̄(L, t; s) = 0

v̄(x, 0; s) = s sin(2πx).
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We know that v̄(x, t; s) = se−4π2α2t sin(2πx). Thus,

u2(x, t) =

∫ t

0
s · e−4π2α2(t−s) sin(2πx)ds

= e−4π2α2t sin(2πx)

∫ t

0
s · e4π2α2sds

= (4π2α2)−2
[
4π2α2t+ e−4π2α2t − 1

]
· sin(2πx).

The solution is then given by

u(x, t) = w(x, t) + u1(x, t) + u2(x, t).

REMARK 6. Duhamel’s principle is also applicable to problems with PDE ut − α2uxx =

h(x, t) and homogeneous BC of the forms:

ux(0, t) = 0

u(L, t) = 0
;

u(0, t) = 0

ux(L, t) = 0
;

ux(0, t) = 0

ux(L, t) = 0.
.

Practice Problems

1. Solve the following IBVP:

ut = α2uxx + cos(3t), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 1, t > 0,

u(x, 0) = cos(πx)
1

2
x2 − x, 0 < x < 1.

2. Solve the following IBVP:

ut = 4uxx + et sin(x/2)− sin(t), 0 < x < π, t > 0,

u(0, t) = cos(t), u(π, t) = 0, t > 0,

u(x, 0) = 1, 0 < x < π.
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