Lecture 5 Time-Dependent BC

In this lecture we shall learn how to solve the inhomogeneous heat equation

$$
u_{t}-\alpha^{2} u_{x x}=h(x, t)
$$

with time-dependent BC. To begin with, let us consider the following IBVP problem with time-dependent BC:

$$
\begin{align*}
\mathrm{PDE}: & u_{t}=\alpha^{2} u_{x x} \quad 0 \leq x \leq L, 0<t<\infty \tag{1}\\
\mathrm{BC}: & u(0, t)=a(t) u(L, t)=b(t), \quad 0<t<\infty, \tag{2}\\
\mathrm{IC}: & u(x, 0)=f(x) \tag{3}
\end{align*}
$$

In the previous lecture, we had discussed the solution of this problem in the case where $a(t)$ and $b(t)$ are constant functions (independent of t) and $f(x)$ is a suitable given function. Notice that the function $w(x, t)$ defined by

$$
w(x, t)=\left[\frac{b(t)-a(t)}{L}\right] x+a(t)
$$

satisfies the $B C(2)$. However, $w(x, t)$ will not satisfy the PDE (1) unless $a(t)$ and $b(t)$ are constant. In fact,

$$
w_{t}-\alpha^{2} w_{x x}=\left[\frac{b^{\prime}(t)-a^{\prime}(t)}{L}\right] x+a^{\prime}(t)
$$

We now attempt to find a solution for the problem (1)-(3) of the form

$$
u(x, t)=w(x, t)+v(x, t)
$$

where $v(x, t)$ satisfies the following problem

$$
\begin{aligned}
v_{t}-\alpha^{2} v_{x x} & =u_{t}-\alpha^{2} u_{x x}-\left(w_{t}-\alpha^{2} w_{x x}\right) \\
& =-\left(w_{t}-\alpha^{2} w_{x x}\right) \\
& =-\left[b^{\prime}(t)-a^{\prime}(t)\right] x / L-a^{\prime}(t)
\end{aligned}
$$

Further,

$$
\begin{aligned}
& v(0, t)=u(0, t)-w(0, t)=a(t)-a(t)=0 \\
& v(L, t)=b(t)-b(t)=0
\end{aligned}
$$

Thus, the function $v(x, t)$ must satisfy the following related problem with homogeneous BC , but inhomogeneous PDE:

$$
\begin{align*}
\mathrm{PDE}: & v_{t}-\alpha^{2} v_{x x}=-\left[b^{\prime}(t)-a^{\prime}(t)\right] x / L-a^{\prime}(t), \quad 0 \leq x \leq L, 0<t<\infty \tag{4}\\
\mathrm{BC}: & v(0, t)=0, v(L, t)=0,0<t<\infty \tag{5}\\
\mathrm{IC}: & v(x, 0)=u(x, 0)-w(x, 0)=f(x)-[a(0)-b(0)] x / L-a(0) \tag{6}
\end{align*}
$$

Note: When $a(t)$ and $b(t)$ are constants, the PDE is homogeneous. But, in this case, $v(x, t)$ satisfies nonhomogeneous PDE.

The problem (4)-(6) is a special case of the following general problem:

$$
\begin{align*}
\mathrm{PDE}: & v_{t}-\alpha^{2} v_{x x}=h(x, t) \quad 0 \leq x \leq L, 0<t<\infty \tag{7}\\
\mathrm{BC}: & v(0, t)=0, v(L, t)=0,0<t<\infty \tag{8}\\
\mathrm{IC}: & v(x, 0)=g(x) \tag{9}
\end{align*}
$$

The solution procedure to the above problem was given by the French mathematician and physicist Jean-Marie-Constant Duhamel (1797-1872). The method is known as Duhamel's principle.

Suppose u_{1} and u_{2} are solutions of the following problems:
(P1 :

$$
\begin{array}{ll}
\mathrm{BC}: & u_{1}(0, t)=0, u_{1}(L, t)=0 \\
\mathrm{IC}: & u_{1}(x, 0)=g(x) \tag{10}
\end{array}
$$

$$
(P 2:) \mathrm{BC}: \quad u_{2}(0, t)=0, u_{2}(L, t)=0
$$

$$
\text { IC: } \quad u_{2}(x, 0)=0
$$

$$
\text { PDE: } \quad\left(u_{1}\right)_{t}-\alpha^{2}\left(u_{1}\right)_{x x}=0
$$

$$
\text { PDE: } \quad\left(u_{2}\right)_{t}-\alpha^{2}\left(u_{2}\right)_{x x}=h(x, t)
$$

It is easy to check that $v(x, t)=u_{1}(x, t)+u_{2}(x, t)$ solves (7)-(9). The solution u_{1} to the problem ($P 1$) is known (cf. Lecture 4 in Module 5). It remains only to solve the problem (P2) for u_{2}.

The above observation has led to the following (cf. [1]).
Theorem 1. A solution to problem (1)-(3) is given by

$$
u(x, t)=w(x, t)+u_{1}(x, t)+u_{2}(x, t)
$$

where

$$
w(x, t)=\left[\frac{b(t)-a(t)}{L}\right] x+a(t)
$$

is the particular solution of the $B C$ and $u_{1}(x, t)$ solves (P1) with $g(x)=f(x)-w(x, 0)$ and $u_{2}(x, t)$ solves (P2) with $h(x, t)=-\left(w_{t}-\alpha^{2} w_{x x}\right)=-\left[b^{\prime}(t)-a^{\prime}(t)\right] x / L-a^{\prime}(t)$.

1 Duhamel's principle

The basic idea of Duhamel's principle is to transfer the source term $h(x, t)$ to initial condition of related problems. This is done in the following manner. The function defined by

$$
u(x, t)=\int_{0}^{t} v(x, t ; s) d s
$$

is a solution of (7)-(9) provided $v(x, t ; s)$ is a solution of the problem

$$
\begin{align*}
\mathrm{PDE}: & v_{t}=\alpha^{2} v_{x x}, \quad 0 \leq x \leq L, 0<t<\infty \tag{11}\\
\mathrm{BC}: & v(0, t ; s)=0, v(L, t ; s)=0, \quad 0<t<\infty \tag{12}\\
\mathrm{IC}: & v(x, s ; s)=h(x, s) \tag{13}
\end{align*}
$$

Note that both PDE and BC are homogeneous. We use translation in time

$$
u(x, t)=\int_{0}^{t} \bar{v}(x, t-s ; s) d s
$$

to obtain an IC at $t=0$, instead of $t=s$. Rewriting (11)-(13) in terms of \bar{v}, we now reduce the problem to the following associated problem with IC at $t=0$:

$$
\begin{align*}
\mathrm{PDE}: & \bar{v}_{t}=\alpha^{2} \bar{v}_{x x} \quad 0 \leq x \leq L, 0<t<\infty \tag{14}\\
\mathrm{BC}: & \bar{v}(0, t ; s)=0, \bar{v}(L, t ; s)=0, \quad 0<t<\infty \tag{15}\\
\mathrm{IC}: & \bar{v}(x, 0 ; s)=h(x, s) \tag{16}
\end{align*}
$$

To illustrate the procedure let us consider the following example:
Example 2. Solve

$$
\begin{align*}
P D E: & u_{t}-\alpha^{2} u_{x x}=t \sin (x) \quad 0 \leq x \leq \pi, 0<t<\infty \tag{17}\\
B C: & u(0, t)=0, u(\pi, t)=0, \quad 0<t<\infty \tag{18}\\
I C: & u(x, 0)=0 \tag{19}
\end{align*}
$$

Solution. Here $h(x, t)=t \sin (x)$. We solve the related problem:

$$
\begin{align*}
\mathrm{PDE}: & \bar{v}_{t}=\alpha^{2} \bar{v}_{x x}, \quad 0 \leq x \leq \pi, 0<t<\infty, \tag{20}\\
\mathrm{BC}: & \bar{v}(0, t ; s)=0, \bar{v}(\pi, t ; s)=0, \quad 0<t<\infty, \tag{21}\\
\mathrm{IC}: & \bar{v}(x, 0 ; s)=h(x, s)=s \sin (x) . \tag{22}
\end{align*}
$$

Treating s a constant, we easily obtain $\bar{v}(x, t ; s)=s e^{-\alpha^{2} t} \sin (x)$. Note that

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t} \bar{v}(x, t-s ; s) d s=\int_{0}^{t} s e^{-\alpha^{2}(t-s)} \sin (x) d s \\
& =e^{-\alpha^{2} t} \sin (x) \int_{0}^{t} s e^{\alpha^{2} s} d s=\left[\left(\alpha^{2}\right)^{-1} t+\left(\alpha^{2}\right)^{-2}\left(e^{-\alpha^{2} t}-1\right)\right] \sin (x)
\end{aligned}
$$

which satisfies (17)-(19).
Theorem 3. (Duhamel's principle, [1]) Let $h(x, t)$ be a twice continuously differentiable function in $0 \leq x \leq L, t \geq 0$. Assume that, for each $s \geq 0$, the IBVP

$$
\begin{align*}
P D E: & v_{t}=\alpha^{2} v_{x x} \quad 0 \leq x \leq L, 0<t<\infty, \tag{23}\\
B C: & v(0, t ; s)=0, v(L, t ; s)=0, \quad 0<t<\infty, \tag{24}\\
I C: & v(x, 0 ; s)=h(x, s) . \tag{25}
\end{align*}
$$

has a solution $v(x, t ; s)$, where $v(x, t ; s), v_{t}(x, t ; s)$ and $v_{x x}(x, t ; s)$ are continuous (in all three variables). Then the unique solution of the problem

$$
\begin{align*}
P D E: & u_{t}-\alpha^{2} u_{x x}=h(x, t) \quad 0 \leq x \leq L, 0<t<\infty, \tag{26}\\
B C: & u(0, t)=0, u(L, t)=0, \quad 0<t<\infty \tag{27}\\
I C: & u(x, 0)=0 . \tag{28}
\end{align*}
$$

is given by

$$
\begin{equation*}
u(x, t)=\int_{0}^{t} v(x, t ; s) d s \tag{29}
\end{equation*}
$$

Proof. Note that the function $u(x, t)$ defined by

$$
u(x, t)=\int_{0}^{t} v(x, t ; s) d s
$$

satisfies the IC $u(x, 0)=0$ and the BC $u(0, t)=u(L, t)=0$. Observe that $v(x, t ; s)$ satisfies the BC (24). Now, with $g(t, s)=v(x, t ; s)$, where x fixed, we have

$$
\begin{aligned}
u_{t}(x, t) & =v(x, t ; t)+\int_{0}^{t} v_{t}(x, t ; s) d s \\
& =h(x, t)+\int_{0}^{t} \alpha^{2} v_{x x}(x, t ; s) d s
\end{aligned}
$$

Apply Leibniz's rule to obtain

$$
u_{t}(x, t)=h(x, t)+\alpha^{2} u_{x x}(x, t)
$$

By the hypothese on $v(x, t ; s)$, it follows that $u(x, t)$ is in C^{2}. For the uniqueness, see Theorem 4 (of Lecture 2 of Module 5).

REmARK 4. The solution u in (29) may be written as

$$
u(x, t)=\int_{0}^{t} \bar{v}(x, t-s ; s) d s
$$

where \bar{v} solves (14)-(16).
Example 5. Solve the $I B V P$:

$$
\begin{aligned}
& u_{t}-\alpha^{2} u_{x x}=t[\sin (2 \pi x)+2 x] \quad 0 \leq x \leq 1,0<t<\infty \\
& u(0, t)=1, \quad u(1, t)=t^{2}, \quad 0<t<\infty \\
& u(x, 0)=1+\sin (\pi x)-x
\end{aligned}
$$

Solution. The function that satisfies the BC is

$$
w(x, t)=\left(t^{2}-1\right) x+1
$$

Then $u(x, t)=w(x, t)+v(x, t)$, where $v(x, t)$ solves the related problem with homogeneous BC:

$$
\begin{aligned}
& v_{t}-k v_{x x}=u_{t}-\alpha^{2} u_{x x}-\left(w_{t}-\alpha^{2} w_{x x}\right)=t \sin (2 \pi x) \\
& v(0, t)=u(0, t)-w(0, t)=0 \\
& \quad v(1, t)=u(1, t)-w(1, t)=0 \\
& v(x, 0)=u(x, 0)-w(x, 0)=\sin (\pi x)
\end{aligned}
$$

Now, $v=u_{1}+u_{2}$, where u_{1} and u_{2}, respectively, solves
$\left(u_{1}\right)_{t}-\alpha^{2}\left(u_{1}\right)_{x x}=0$

$$
\left(u_{2}\right)_{t}-\alpha^{2}\left(u_{2}\right)_{x x}=t \sin (2 \pi x)
$$

(a) $\quad u_{1}(0, t)=0 \quad u_{1}(1, t)=0$
$u_{1}(x, 0)=\sin (\pi x)$
(b) $\quad u_{2}(0, t)=0 \quad u_{2}(1, t)=0$
$u_{2}(x, 0)=0$.

We know that $u_{1}(x, t)=e^{-\pi^{2} \alpha^{2} t} \sin (\pi x)$. The function u_{2} is found via Duhamel's principle. The solution u_{2} is given by

$$
u_{2}(x, t)=\int_{0}^{t} \bar{v}(x, t-s ; s) d s
$$

where \bar{v} solves the problem

$$
\begin{aligned}
& \bar{v}_{t}=\alpha^{2} \bar{v}_{x x} \\
& \bar{v}(0, t ; s)=0 \quad \bar{v}(L, t ; s)=0 \\
& \bar{v}(x, 0 ; s)=s \sin (2 \pi x)
\end{aligned}
$$

We know that $\bar{v}(x, t ; s)=s e^{-4 \pi^{2} \alpha^{2} t} \sin (2 \pi x)$. Thus,

$$
\begin{aligned}
u_{2}(x, t) & =\int_{0}^{t} s \cdot e^{-4 \pi^{2} \alpha^{2}(t-s)} \sin (2 \pi x) d s \\
& =e^{-4 \pi^{2} \alpha^{2} t} \sin (2 \pi x) \int_{0}^{t} s \cdot e^{4 \pi^{2} \alpha^{2} s} d s \\
& =\left(4 \pi^{2} \alpha^{2}\right)^{-2}\left[4 \pi^{2} \alpha^{2} t+e^{-4 \pi^{2} \alpha^{2} t}-1\right] \cdot \sin (2 \pi x)
\end{aligned}
$$

The solution is then given by

$$
u(x, t)=w(x, t)+u_{1}(x, t)+u_{2}(x, t)
$$

REmARK 6. Duhamel's principle is also applicable to problems with PDE $u_{t}-\alpha^{2} u_{x x}=$ $h(x, t)$ and homogeneous $B C$ of the forms:

$$
\begin{array}{lll}
u_{x}(0, t)=0 \\
u(L, t)=0
\end{array} ; \quad \begin{array}{ll}
u(0, t) & =0 \\
u_{x}(L, t) & =0
\end{array} ; \quad \begin{aligned}
& u_{x}(0, t)=0 \\
& u_{x}(L, t)=0
\end{aligned}
$$

Practice Problems

1. Solve the following IBVP:

$$
\begin{aligned}
& u_{t}=\alpha^{2} u_{x x}+\cos (3 t), \quad 0<x<1, \quad t>0 \\
& u_{x}(0, t)=0, u_{x}(1, t)=1, \quad t>0 \\
& u(x, 0)=\cos (\pi x) \frac{1}{2} x^{2}-x, \quad 0<x<1
\end{aligned}
$$

2. Solve the following IBVP:

$$
\begin{aligned}
& u_{t}=4 u_{x x}+e^{t} \sin (x / 2)-\sin (t), \quad 0<x<\pi, \quad t>0 \\
& u(0, t)=\cos (t), u(\pi, t)=0, \quad t>0 \\
& u(x, 0)=1, \quad 0<x<\pi
\end{aligned}
$$

