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Lecture 4 Time-Independent Homogeneous BC

The boundary conditions in previous lecture are assumed to be homogeneous, where we

are able to use the superposition principle in forming general solutions of the PDE. We

now turn to the situation where the BC are not both homogeneous, but are independent

of time variable t. The method of solution consists of the following steps:

• Step 1: Find a particular solution of the PDE and BC.

• Step 2: Find the solution of a related problem with homogeneous BC. Then, add

this solution to that particular solution obtained in Step 1.

The procedure is illustrated in the following example.

PDE: ut = α2uxx 0 ≤ x ≤ L, 0 < t <∞, (1)

BC: u(0, t) = a u(L, t) = b, 0 < t <∞, (2)

IC: u(x, 0) = f(x), 0 ≤ x ≤ L, (3)

where a and b are arbitrary constants and f(x) is a given function.

Solution. Seek a particular solution up(x, t) of the form up(x, t) = cx + d, where c

and d are chosen so that the BC are satisfied:

a = up(0, t) = c · 0 + d = d,

b = up(L, t) = cL+ d = cL+ a.

=⇒ d = a and c = (b− a)/L.

Thus,

up(x, t) = (b− a)x/L+ a

solves both the PDE with the BC’s being satisfied.

Consider the related homogeneous problem (i.e., with homogeneous PDE and BC)

PDE: vt = α2vxx 0 ≤ x ≤ L, 0 < t <∞,

BC: v(0, t) = 0, v(L, t) = 0, 0 < t <∞, (4)

IC: v(x, 0) = f(x)− up(x, 0), 0 ≤ x ≤ L.

If f(x)− up(x, 0) is of the form
∑∞

n=1 cn sin(nπx/L), then its solution is given by

v(x, t) =

∞∑
n=1

cne
−(nπ/L)2α2t sin(nπx/L).
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Now, set u(x, t) = up(x, t)+v(x, t). Then it is easy to verify that u(x, t) solves (1). Indeed,

u(x, t) solves (1) by the superposition principle. Further, we have

BC: u(0, t) = up(0, t) + v(0, t) = a+ 0 = a

u(L, t) = up(L, t) + v(L, t) = b+ 0 = b

IC: u(x, 0) = up(x, 0) + v(x, 0) = up(x, 0) + f(x)− up(x, 0) = f(x).

REMARK 1. (i) It is necessary to subtract up(x, 0) from f(x) to form the initial condition

for the related problem (4) so that the initial condition (3) is satisfied.

(ii) Since any particular solution will do, for simplicity one should consider a particular

solution of the form cx+ d, and find the constants, using the BC. The reason is that the

formula only applies to the BC of (2). For other BC, we obtain other particular solution.

For example, If ux(0, t) = a, u(L, t) = b then up(x, t) = a(x− L) + b.

EXAMPLE 2.

PDE: ut = 2uxx 0 ≤ x ≤ 1, 0 < t <∞, (5)

BC: ux(0, t) = 1 u(1, t) = −2, 0 < t <∞, (6)

IC: u(x, 0) = x+ cos2(3πx/4)− 5/2. (7)

Solution. Take up(x, t) = cx + d. The first BC ux(0, t) = 1 yields c = 1, while

up(1, t) = 1 + d yields d = −3 by the second BC. Thus, up(x, t) = x − 3. The related

homogeneous problem is

vt = 2vxx 0 ≤ x ≤ 1, 0 < t <∞,

vx(0, t) = 0 v(1, t) = 0, 0 < t <∞

v(x, 0) = [x+ cos2(3πx/4)− 5/2]− (x− 3)

=
1

2
+

1

2
cos(3πx/2)− 5/2 + 3 = 1 +

1

2
cos(3πx/2).

It is easy to obtain the solution of the related homogeneous problem as

v(x, t) = e−9π2t/2[1 +
1

2
cos(3πx/2)].

Then

u(x, t) = x− 3 + e−9π2t/2[1 +
1

2
cos(3πx/2)].

From the above examples, we notice that the particular solution is time independent, or

in steady-state.

Note: Any steady-state solution of the heat equation ut = α2uxx is of the form cx+ d.
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The solutions u(x, t) are sums of a steady-state particular solution of the PDE and

BC and the solution v(x, t) of the related homogeneous problem which is transient in the

sense that v(x, t) → 0 as t→ ∞. Thus

u(x, t) = up(x, t) + v(x, t) → up(x, t), as t→ ∞.

(steady-state solution) (transient solution)

That is, the solution u approaches the steady-state solution as t→ ∞. However, for some

types of BC there are no steady-state particular solutions, as illustrated in the following

example.

EXAMPLE 3. Consider the problem

PDE: ut = α2uxx 0 ≤ x ≤ L, 0 < t <∞, (8)

BC: ux(0, t) = a ux(L, t) = b, (9)

IC: u(x, 0) = f(x), (10)

where a and b are constants, and f(x) is a given function.

Solution. Let up(x, t) = cx + d. Then, using BC, we obtain c = a and c = b, which

is impossible unless a = b.

NOTE: Observe that the boundary conditions state that heat is being drained out

of the end x = 0 at a rate ux(0, t) = a and heat is flowing into the end x = L at a rate

ux(L, t) = b. If b > a, then the heat energy is being added to the rod at a constant rate.

If b < a, the rod loses heat at a constant rate. Thus, we cannot expect a steady-state

solution of the PDE and BC, unless a = b.

The simplest form for a particular solution, that reflects the fact that the heat energy

is changing at a constant rate, is

up(x, t) = ct+ h(x)

where c is a constant and h(x) is a function of x. The constant c and the function h(x)

can be determined from the PDE and BC. Thus,

c = (up)t = α2(up)xx = α2h′′(x)

=⇒ h′′(x) =
c

α2

=⇒ h(x) =
c

2α2
x2 + dx+ e,

for constants d and e. Using BC, we note that

a = (up)x(0, t) = h′(0) = d =⇒ d = a.
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b = (up)x(L, t) = h′(L) =
cL

α2
+ d =⇒ c =

(b− a)α2

L
.

Thus, a particular solution (taking e = 0, for simplicity) is obtained as:

up(x, t) =
(b− a)

L
α2t+

(b− a)

2L
x2 + ax =

(b− a)

L
[α2t+

1

2
x2] + ax. (11)

The related homogeneous problem is

vt = α2vxx 0 ≤ x ≤ L, t ≥ 0,

vx(0, t) = 0 vx(L, t) = 0, 0 < t <∞,

v(x, 0) = f(x)− up(x, 0) = f(x)− [
(b− a)

2L
x2 + ax].

If f(x)− up(x, 0) is of the form
∑∞

n=0 cn cos(nπx/L), we have the solution

u(x, t) = up(x, t) + v(x, t)

= up(x, t) +

∞∑
n=0

cne
−(nπ/L)2α2t cos(nπx/L),

where up(x, t) is given by (11).

Practice Problems

1. Solve the following IBVP:

ut = uxx, 0 < x < L, t > 0,

u(0, t) = a, u(L, t) = b, t > 0,

u(x, 0) = a+ bx, 0 ≤ x ≤ L.

2. Solve the following IBVP:

ut = 4uxx, 0 < x < π, t > 0,

u(0, t) = 5, u(π, t) = 10, t > 0,

u(x, 0) = sinx− sin 3x, 0 < x < π.
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