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Lecture 3 Method of Separation of Variables

Separation of variables is one of the oldest technique for solving initial-boundary value

problems (IBVP) and applies to problems, where

• PDE is linear and homogeneous (not necessarily constant coefficients) and

• BC are linear and homogeneous.

Basic Idea: To seek a solution of the form

u(x, t) = X(x)T (t),

where X(x) is some function of x and T (t) in some function of t. The solutions are simple

because any temperature u(x, t) of this form will retain its basic “shape” for different

values of time t. The separation of variables reduced the problem of solving the PDE

to solving the two ODEs: One second order ODE involving the independent variable x

and one first order ODE involving t. These ODEs are then solved using given initial and

boundary conditions.

To illustrate this method, let us apply to a specific problem. Consider the following

IBVP:

PDE: ut = α2uxx, 0 ≤ x ≤ L, 0 < t <∞, (1)

BC: u(0, t) = 0 u(L, t) = 0, 0 < t <∞, (2)

IC: u(x, 0) = f(x), 0 ≤ x ≤ L. (3)

Step 1:(Reducing to the ODEs) Assume that equation (1) has solutions of the form

u(x, t) = X(x)T (t),

where X is a function of x alone and T is a function of t alone. Note that

ut = X(x)T ′(t) and uxx = X ′′(x)T (t).

Now, substituting these expression into ut = α2uxx and separating variables, we obtain

X(x)T ′(t) = α2X ′′(x)T (t)

⇒ T ′(t)

α2T (t)
=
X ′′(x)

X(x)
.
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Since a function of t can equal a function of x only when both functions are constant.

Thus,

T ′(t)

α2T (t)
=
X ′′(x)

X(x)
= c

for some constant c. This leads to the following two ODEs:

T ′(t)− α2cT (t) = 0, (4)

X ′′(x)− cX(x) = 0. (5)

Thus, the problem of solving the PDE (1) is now reduced to solving the two ODEs.

Step 2:(Applying BCs)

Since the product solutions u(x, t) = X(x)T (t) are to satisfy the BC (2), we have

u(0, t) = X(0)T (t) = 0 and X(L)T (t) = 0, t > 0.

Thus, either T (t) = 0 for all t > 0, which implies that u(x, t) = 0, or X(0) = X(L) = 0.

Ignoring the trivial solution u(x, t) = 0, we combine the boundary conditions X(0) =

X(L) = 0 with the differential equation for X in (5) to obtain the BVP:

X ′′(x)− cX(x) = 0, X(0) = X(L) = 0. (6)

There are three cases: c < 0, c > 0, c = 0 which will be discussed below. It is convenient

to set c = −λ2 when c < 0 and c = λ2 when c > 0, for some constant λ > 0.

Case 1. (c = λ2 > 0 for some λ > 0). In this case, a general solution to the differential

equation (5) is

X(x) = C1e
λx + C2e

−λx,

where C1 and C2 are arbitrary constants. To determine C1 and C2, we use the BC

X(0) = 0, X(L) = 0 to have

X(0) = C1 + C2 = 0, (7)

X(L) = C1e
λL + C2e

−λL = 0. (8)

From the first equation, it follows that C2 = −C1. The second equation leads to

C1(e
λL − e−λL) = 0,

⇒ C1(e
2λL − 1) = 0,

⇒ C1 = 0.
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since (e2λL−1) > 0 as λ > 0. Therefore, we have C1 = 0 and hence C2 = 0. Consequently

X(x) = 0 and this implies u(x, t) = 0 i.e., there is no nontrivial solution to (5) for the

case c > 0.

Case 2. (when c=0)

The general solution solution to (5) is given by

X(x) = C3 + C4x.

Applying BC yields C3 = C4 = 0 and hence X(x) = 0. Again, u(x, t) = X(x)T (t) = 0.

Thus, there is no nontrivial solution to (5) for c = 0.

Case 3. (When c = −λ2 < 0 for some λ > 0)

The general solution to (5) is

X(x) = C5 cos(λx) + C6 sin(λx).

This time the BC X(0) = 0, X(L) = 0 gives the system

C5 = 0,

C5 cos(λL) + C6 sin(λL) = 0.

As C5 = 0, the system reduces to solving C6 sin(λL) = 0. Hence, either sin(λL) = 0 or

C6 = 0. Now

sin(λL) = 0 =⇒ λL = nπ, n = 0,±1,±2, . . . .

Therefore, (5) has a nontrivial solution (C6 ̸= 0) when

λL = nπ or λ =
nπ

L
, n = 1, 2, 3, . . . .

Here, we exclude n = 0, since it makes c = 0. Therefore, the nontrivial solutions (eigen-

functions) Xn corresponding to the eigenvalue c = −λ2 are given by

Xn(x) = an sin(
nπx

L
), (9)

where an’s are arbitrary constants.

Step 3:(Applying IC)

Let us consider solving equation (4). The general solution to (4) with c = −λ2 = (nπL )2

is

Tn(t) = bne
−α2(nπ

L
)2t.
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Combing this with (9), the product solution u(x, t) = X(x)T (t) becomes

un(x, t) := Xn(x)Tn(t) = an sin(
nπx

L
)bne

−α2(nπ
L

)2t

= cne
−α2(nπ

L
)2t sin(

nπx

L
), n = 1, 2, 3, . . . ,

where cn is an arbitrary constant.

Since the problem (9) is linear and homogeneous, an application of superposition

principle gives

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

cne
−α2(nπ

L
)2t sin(

nπx

L
), (10)

which will be a solution to (1)-(3), provided the infinite series has the proper convergence

behavior.

Since the solution (10) is to satisfy IC (3), we must have

u(x, 0) =
∞∑
n=1

cn sin
(nπx
L

)
= f(x), 0 < x < L.

Thus, if f(x) has an expansion of the form

f(x) =
∞∑
n=1

cn sin
(nπx
L

)
, (11)

which is called a Fourier sine series (FSS) with cn’s are given by the formula

cn =
2

L

∫ L

0
f(x) sin(

nπx

L
)dx. (12)

Then the infinite series (10) with the coefficients cn given by (12) is a solution to the

problem (1)-(3).

EXAMPLE 1. Find the solution to the following IBVP:

ut = 3uxx 0 ≤ x ≤ π, 0 < t <∞, (13)

u(0, t) = u(π, t) = 0, 0 < t <∞, (14)

u(x, 0) = 3 sin 2x− 6 sin 5x, 0 ≤ x ≤ π. (15)

Solution. Comparing (13) with (1), we notice that α2 = 3 and L = π. Using formula

(10), we write a solution u(x, t) as

u(x, t) =

∞∑
n=1

cne
−3n2t sin(nx).
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To determine cn’s, we use IC (15) to have

u(x, 0) = 3 sin 2x− 6 sin 5x =
∞∑
n=1

cn sin(nx).

Comparing the coefficients of like terms, we obtain

c2 = 3 and c5 = −6,

and the remaining cn’s are zero. Hence, the solution to the problem (13)-(15) is

u(x, t) = c2e
−3(2)2t sin(2x) + c5e

−3(5)2t sin(5x)

= 3e−12t sin(2x)− 6e−75t sin(5x).

Practice Problems

1. Solve the following IBVP:

ut = 16uxx, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x, 0) = (1− x)x, 0 < x < 1.

2. Solve the following IBVP:

ut = uxx, 0 < x < π, t > 0,

ux(0, t) = ux(π, t) = 0, t > 0,

u(x, 0) = 1− sinx, 0 < x < π.
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