Lecture 3 Method of Separation of Variables

Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

- PDE is linear and homogeneous (not necessarily constant coefficients) and
- BC are linear and homogeneous.

Basic Idea: To seek a solution of the form

$$
u(x, t)=X(x) T(t)
$$

where $X(x)$ is some function of x and $T(t)$ in some function of t. The solutions are simple because any temperature $u(x, t)$ of this form will retain its basic "shape" for different values of time t. The separation of variables reduced the problem of solving the PDE to solving the two ODEs: One second order ODE involving the independent variable x and one first order ODE involving t. These ODEs are then solved using given initial and boundary conditions.

To illustrate this method, let us apply to a specific problem. Consider the following IBVP:

$$
\begin{align*}
\mathrm{PDE}: & u_{t}=\alpha^{2} u_{x x}, \quad 0 \leq x \leq L, 0<t<\infty \tag{1}\\
\mathrm{BC}: & u(0, t)=0 u(L, t)=0, \quad 0<t<\infty \tag{2}\\
\mathrm{IC}: & u(x, 0)=f(x), \quad 0 \leq x \leq L \tag{3}
\end{align*}
$$

Step 1: (Reducing to the ODEs) Assume that equation (1) has solutions of the form

$$
u(x, t)=X(x) T(t)
$$

where X is a function of x alone and T is a function of t alone. Note that

$$
u_{t}=X(x) T^{\prime}(t) \quad \text { and } \quad u_{x x}=X^{\prime \prime}(x) T(t)
$$

Now, substituting these expression into $u_{t}=\alpha^{2} u_{x x}$ and separating variables, we obtain

$$
\begin{aligned}
& X(x) T^{\prime}(t)=\alpha^{2} X^{\prime \prime}(x) T(t) \\
& \Rightarrow \quad \frac{T^{\prime}(t)}{\alpha^{2} T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
\end{aligned}
$$

Since a function of t can equal a function of x only when both functions are constant. Thus,

$$
\frac{T^{\prime}(t)}{\alpha^{2} T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=c
$$

for some constant c. This leads to the following two ODEs:

$$
\begin{align*}
T^{\prime}(t)-\alpha^{2} c T(t) & =0, \tag{4}\\
X^{\prime \prime}(x)-c X(x) & =0 . \tag{5}
\end{align*}
$$

Thus, the problem of solving the PDE (1) is now reduced to solving the two ODEs.

Step 2:(Applying BCs)

Since the product solutions $u(x, t)=X(x) T(t)$ are to satisfy the BC (2), we have

$$
u(0, t)=X(0) T(t)=0 \quad \text { and } \quad X(L) T(t)=0, \quad t>0
$$

Thus, either $T(t)=0$ for all $t>0$, which implies that $u(x, t)=0$, or $X(0)=X(L)=0$. Ignoring the trivial solution $u(x, t)=0$, we combine the boundary conditions $X(0)=$ $X(L)=0$ with the differential equation for X in (5) to obtain the BVP:

$$
\begin{equation*}
X^{\prime \prime}(x)-c X(x)=0, \quad X(0)=X(L)=0 . \tag{6}
\end{equation*}
$$

There are three cases: $c<0, c>0, c=0$ which will be discussed below. It is convenient to set $c=-\lambda^{2}$ when $c<0$ and $c=\lambda^{2}$ when $c>0$, for some constant $\lambda>0$.

Case 1. ($c=\lambda^{2}>0$ for some $\lambda>0$). In this case, a general solution to the differential equation (5) is

$$
X(x)=C_{1} e^{\lambda x}+C_{2} e^{-\lambda x},
$$

where C_{1} and C_{2} are arbitrary constants. To determine C_{1} and C_{2}, we use the BC $X(0)=0, \quad X(L)=0$ to have

$$
\begin{align*}
& X(0)=C_{1}+C_{2}=0, \tag{7}\\
& X(L)=C_{1} e^{\lambda L}+C_{2} e^{-\lambda L}=0 . \tag{8}
\end{align*}
$$

From the first equation, it follows that $C_{2}=-C_{1}$. The second equation leads to

$$
\begin{aligned}
& C_{1}\left(e^{\lambda L}-e^{-\lambda L}\right)=0, \\
\Rightarrow \quad & C_{1}\left(e^{2 \lambda L}-1\right)=0, \\
\Rightarrow \quad & C_{1}=0 .
\end{aligned}
$$

since $\left(e^{2 \lambda L}-1\right)>0$ as $\lambda>0$. Therefore, we have $C_{1}=0$ and hence $C_{2}=0$. Consequently $X(x)=0$ and this implies $u(x, t)=0$ i.e., there is no nontrivial solution to (5) for the case $c>0$.

Case 2. (when $\mathrm{c}=0$)
The general solution solution to (5) is given by

$$
X(x)=C_{3}+C_{4} x
$$

Applying BC yields $C_{3}=C_{4}=0$ and hence $X(x)=0$. Again, $u(x, t)=X(x) T(t)=0$. Thus, there is no nontrivial solution to (5) for $c=0$.

Case 3. (When $c=-\lambda^{2}<0$ for some $\lambda>0$)

The general solution to (5) is

$$
X(x)=C_{5} \cos (\lambda x)+C_{6} \sin (\lambda x)
$$

This time the $\mathrm{BC} X(0)=0, \quad X(L)=0$ gives the system

$$
\begin{aligned}
C_{5} & =0 \\
C_{5} \cos (\lambda L)+C_{6} \sin (\lambda L) & =0
\end{aligned}
$$

As $C_{5}=0$, the system reduces to solving $C_{6} \sin (\lambda L)=0$. Hence, either $\sin (\lambda L)=0$ or $C_{6}=0$. Now

$$
\sin (\lambda L)=0 \quad \Longrightarrow \quad \lambda L=n \pi, \quad n=0, \pm 1, \pm 2, \ldots
$$

Therefore, (5) has a nontrivial solution $\left(C_{6} \neq 0\right)$ when

$$
\lambda L=n \pi \quad \text { or } \quad \lambda=\frac{n \pi}{L}, \quad n=1,2,3, \ldots
$$

Here, we exclude $n=0$, since it makes $c=0$. Therefore, the nontrivial solutions (eigenfunctions) X_{n} corresponding to the eigenvalue $c=-\lambda^{2}$ are given by

$$
\begin{equation*}
X_{n}(x)=a_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{9}
\end{equation*}
$$

where a_{n} 's are arbitrary constants.
Step 3: (Applying IC)
Let us consider solving equation (4). The general solution to (4) with $c=-\lambda^{2}=\left(\frac{n \pi}{L}\right)^{2}$ is

$$
T_{n}(t)=b_{n} e^{-\alpha^{2}\left(\frac{n \pi}{L}\right)^{2} t}
$$

Combing this with (9), the product solution $u(x, t)=X(x) T(t)$ becomes

$$
\begin{aligned}
u_{n}(x, t) & :=X_{n}(x) T_{n}(t)=a_{n} \sin \left(\frac{n \pi x}{L}\right) b_{n} e^{-\alpha^{2}\left(\frac{n \pi}{L}\right)^{2} t} \\
& =c_{n} e^{-\alpha^{2}\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), \quad n=1,2,3, \ldots
\end{aligned}
$$

where c_{n} is an arbitrary constant.
Since the problem (9) is linear and homogeneous, an application of superposition principle gives

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\alpha^{2}\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right) \tag{10}
\end{equation*}
$$

which will be a solution to (1)-(3), provided the infinite series has the proper convergence behavior.

Since the solution (10) is to satisfy IC (3), we must have

$$
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)=f(x), \quad 0<x<L
$$

Thus, if $f(x)$ has an expansion of the form

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{11}
\end{equation*}
$$

which is called a Fourier sine series (FSS) with c_{n} 's are given by the formula

$$
\begin{equation*}
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \tag{12}
\end{equation*}
$$

Then the infinite series (10) with the coefficients c_{n} given by (12) is a solution to the problem (1)-(3).
Example 1. Find the solution to the following IBVP:

$$
\begin{align*}
u_{t} & =3 u_{x x} \quad 0 \leq x \leq \pi, 0<t<\infty \tag{13}\\
u(0, t) & =u(\pi, t)=0, \quad 0<t<\infty \tag{14}\\
u(x, 0) & =3 \sin 2 x-6 \sin 5 x, \quad 0 \leq x \leq \pi \tag{15}
\end{align*}
$$

Solution. Comparing (13) with (1), we notice that $\alpha^{2}=3$ and $L=\pi$. Using formula (10), we write a solution $u(x, t)$ as

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-3 n^{2} t} \sin (n x)
$$

To determine c_{n} 's, we use IC (15) to have

$$
u(x, 0)=3 \sin 2 x-6 \sin 5 x=\sum_{n=1}^{\infty} c_{n} \sin (n x)
$$

Comparing the coefficients of like terms, we obtain

$$
c_{2}=3 \quad \text { and } \quad c_{5}=-6
$$

and the remaining c_{n} 's are zero. Hence, the solution to the problem (13)-(15) is

$$
\begin{aligned}
u(x, t) & =c_{2} e^{-3(2)^{2} t} \sin (2 x)+c_{5} e^{-3(5)^{2} t} \sin (5 x) \\
& =3 e^{-12 t} \sin (2 x)-6 e^{-75 t} \sin (5 x)
\end{aligned}
$$

Practice Problems

1. Solve the following IBVP:

$$
\begin{aligned}
& u_{t}=16 u_{x x}, \quad 0<x<1, \quad t>0 \\
& u(0, t)=0, u(1, t)=0, \quad t>0 \\
& u(x, 0)=(1-x) x, \quad 0<x<1
\end{aligned}
$$

2. Solve the following IBVP:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad 0<x<\pi, \quad t>0 \\
& u_{x}(0, t)=u_{x}(\pi, t)=0, \quad t>0 \\
& u(x, 0)=1-\sin x, \quad 0<x<\pi
\end{aligned}
$$

